Be sure to fully justify your response to each problem by citing any results in the text that you use and by writing out additional arguments as needed.

1. (10 pts) Determine the values of a for which $\lim _{n \rightarrow+\infty}\left(1+\frac{a}{n}\right)^{n}$ is finite, and give a formula for the limit for those values of a.
2. (15 pts) Let f be a function defined on \mathbb{R}. Suppose there exists $p>1$ with the property that $|f(x)-f(y)| \leq|x-y|^{p}$ for all $x, y \in \mathbb{R}$. Prove that f is a constant function.
3. (10 pts) Let f be a function that is differentiable on an open interval (a, b). Show that if there is a number $M>0$ such that

$$
\left|f^{\prime}(x)\right| \leq M \quad \text { for all } x \in(a, b)
$$

then f is uniformly continuous on (a, b).
4. (15 pts) Suppose f is a continuous function on $[a, b]$ and differentiable on the interior (a, b) with constant derivative $f^{\prime}(x)=M$. Prove using the Mean Value Theorem that $f(x)$ is a linear function (i.e., there are constants A, B such that $f(x)=A x+B)$.
5. Let $f(x)=\ln (1+x)$, let $\sum_{n=0}^{\infty} a_{n} x^{n}$ be the Taylor series for f, and let $R_{n}(x)$ be the remainder $R_{n}(x)=\ln (1+x)-\sum_{k=0}^{n-1} a_{k} x^{k}$ for $x>-1$.
(a) (10 pts) Using the formula for $R_{n}(x)$ in $\S 31.3$ Taylor's Theorem (p. 250), find an upper bound for $\left|R_{n}(x)\right|$.
(b) (10 pts) Find all values of $x>-1$ for which it follows from your result in part (a) that $\lim _{n \rightarrow+\infty} R_{n}(x)=0$.
6. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{2 \pi x}\right), & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

(a) (10 pts) Is f continuous?
(b) (10 pts) Is the restriction of f to the interval $[-1,1]$ uniformly continuous?
(c) (10 pts) Is f differentiable?

