Homotopy Types of

 Complements of

 Complements of

 2-Arrangements in \mathbb{R}^{4}

 2-Arrangements in \mathbb{R}^{4}}

Daniel Matei and Alexandru I. Suciu

May 4, 1998

Centennial Poster Session
Northeastern University

A 2-arrangement in $\mathbb{R}^{2 d}$ is a collection $\mathcal{A}=$ $\left\{H_{1}, \ldots, H_{n}\right\}$ of codim 2 linear subspaces so that, $\forall I \subseteq\{1, \ldots, n\}$, the space $\bigcap_{i \in I} H_{i}$ has even dimension.
$H_{*}(M ; \mathbb{Z})$ computed by Goresky \& MacPherson, Vassiliev, Jewell, Orlik \& Shapiro.
$H^{*}(M ; \mathbb{Z})$ computed by Björner \& Ziegler.
These results generalize the work of Arnol'd, Brieskorn, and Orlik \& Solomon on complex hyperplane arrangements. Unlike the OrlikSolomon algebra, which is completely determined by $L(\mathcal{A})$, there are sign ambiguities in the relations defining $H^{*}(M ; \mathbb{Z})$.

This ambiguity cannot be resolved. Ziegler found a pair of 2 -arrangements in $\mathbb{R}^{4}, \mathcal{B}=$ $\left\{H_{1}, \ldots, H_{4}\right\}, \mathcal{B}^{\prime}=\left\{H_{1}^{\prime}, \ldots, H_{4}^{\prime}\right\}$, such that:

$$
\begin{gathered}
L(\mathcal{B}) \cong L\left(\mathcal{B}^{\prime}\right) \\
H^{*}(M(\mathcal{B})) \not \cong H^{*}\left(M\left(\mathcal{B}^{\prime}\right)\right)
\end{gathered}
$$

Question (Ziegler): Is the homotopy type of the complement of a 2-arrangement in \mathbb{R}^{4}, $M=M(\mathcal{A})$, determined by the cohomology ring $H^{*}(M)$?

Answer (M-S): No. There are 2-arrangements in \mathbb{R}^{4} such that:

$$
\begin{aligned}
& L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right) \\
& H^{*}(M(\mathcal{A})) \cong H^{*}\left(M\left(\mathcal{A}^{\prime}\right)\right) \\
& \phi_{k}(G(\mathcal{A}))=\phi_{k}\left(G\left(\mathcal{A}^{\prime}\right)\right) \\
& \theta_{k}(G(\mathcal{A}))=\theta_{k}\left(G\left(\mathcal{A}^{\prime}\right)\right) \\
& M(\mathcal{A}) \not \not ㇒ M\left(\mathcal{A}^{\prime}\right)
\end{aligned}
$$

These arrangements are cones on Mazurovskiī's K and L configurations of 6 skew lines in \mathbb{R}^{3}.

The difference in homotopy types is picked up by the characteristic varieties associated to the Alexander module $A=A(\mathcal{A})$.

The method yields a complete homotopy classification of 2 -arrangements in \mathbb{R}^{4}, for $n \leq 6$.

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be a 2 -arrangement in \mathbb{R}^{4}. Then $M \simeq K(G, 1)$, where

$$
\begin{aligned}
G & =F_{n-1} \rtimes_{\alpha} \mathbb{Z} \quad\left(\alpha \in P_{n-1}\right) \\
& =\left\langle t_{1}, \ldots, t_{n-1}, t_{n} \mid t_{n}^{-1} t_{i} t_{n}=\alpha\left(t_{i}\right)\right\rangle
\end{aligned}
$$

The Alexander module has presentation

$$
\left.C_{1} \xrightarrow{\Omega=(\mathrm{id}-\Theta(\alpha)} d_{1}\right) C_{1} \oplus C_{0} \rightarrow A \rightarrow 0
$$

where $C_{0}=\wedge=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right], C_{1}=\wedge^{n-1}$.

Let $E_{d}(A)$ be the ideal generated by the ($n-$ $d) \times(n-d)$ minors of Ω. It defines the $d^{\text {th }}$ characteristic variety, $V_{d}=V_{d}(A)$, in the affine torus $\left(\mathbb{C}^{*}\right)^{n}$. Get a tower

$$
\left(\mathbb{C}^{*}\right)^{n} \supset V_{1} \supset \cdots \supset V_{n-2} \supset V_{n-1}=\{(1, \ldots, 1)\}
$$

The characteristic varieties are well-defined up to an automorphism of $\left(\mathbb{C}^{*}\right)^{n}$ of the form $t_{i} \mapsto t_{1}^{a_{i 1}} \cdots t_{n}^{a_{i n}}$, where $\left(a_{i j}\right) \in \mathrm{GL}(n ; \mathbb{Z})$. As such, they depend only on the homotopy type of M-that is, only on G.

Example: The Ziegler arrangements

$$
\begin{aligned}
Q(\mathcal{B}) & =x y(x-y)(x-2 y) \\
Q\left(\mathcal{B}^{\prime}\right) & =x y(x-y)(x-2 \bar{y})
\end{aligned}
$$

$$
V_{1}=V_{2}=\left\{t \in\left(\mathbb{C}^{*}\right)^{4} \mid t_{4}-1=0\right\}
$$

$$
V_{1}^{\prime}=\left\{t_{4}-1=0\right\} \cup\left\{t_{4}-t_{2}^{2}=0\right\}
$$

$$
V_{2}^{\prime}=\left\{t_{4}-1=t_{2}+1=0\right\} \cup\left\{t_{3}-1=t_{4}-1=t_{2}-1=0\right\}
$$

$$
\cup\left\{t_{1}-1=t_{4}-1=t_{2}-1=0\right\}
$$

The characteristic varieties of \mathcal{B} and \mathcal{B}^{\prime} may be distinguished by the number of irreducible components, or by codimension. Alternatively, by the number of p-torsion points. E.g.:

$$
\operatorname{Tor}_{3}\left(V_{1}\right)=27, \quad \operatorname{Tor}_{3}\left(V_{1}^{\prime}\right)=45
$$

Example: The Mazurovskiī configurations

May distinguish the characteristic varieties by the number of irreducible components, or by the number of torsion points. E.g.:

$$
\operatorname{Tor}_{2}\left(V_{1}\right)=32, \quad \operatorname{Tor}_{2}\left(V_{1}^{\prime}\right)=31
$$

