
 

Braids and Configuration Spaces
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If M is a manifold ofdimension d then

Conf M is a manifold of dimension dm
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Suppose M is connected Then

If del and n 2 then Conf m is disconnected

If d 72 then Conf M is connected
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Suppose now M G is a topological group
leg G Rn I do s etc

Then
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Most important case is when M R2
i.e M O

A point in Conf Ca can be viewed as
an n tuple of distinctpoints in a
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2Unorderedconfigurations

A permutation of a sets is a bijection
from S to S

For instance if S 1,27 its permutations
are 1 1 and ITS272

Permutations can be composed E.g

The symmetricgroup Sn is the group

of all permutations of the setEbony
Its order is n

Given a space M the group acts
on M by permuting the coordinates
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o in Mn Mea Moon

This action restricts to a free action

of Sn on Conf M
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the quotientspaceof the orderedconfiguration
space by the abovefree action

UConfn M may be viewed as the space
of all subsets Me mm CM of
size n

The quotient map
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is a regular cover with group
of deck transformations sin
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3 Fundamental groups of
configurations

Review
Fundamental group of M based at so

Ty M a loops 8 in M based at a
modulo homotopy nee xo

with
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If M is path connected then
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so write it simply as I M
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Examples
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theorem Fox Fadell 1962

in Tn Conf CK Pm purebraidgroup
on n strings

T GConfn Q 1 Bn braidgroup
on n strings

is
8 1
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Now recall the Sn cover

conf Ca U conf Ca

Using therelationship between covers and fundamental

group we get exact sequence
1 PÉ Bn 9 Sn 1

where q sends a braid p to the induced
permutation of the strands e.g
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Remand In turn the braidgroups completely
determine the homotopy typesof the
respective configuration spaces
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4 Braidsandpolynonia
We may identify a with the space
of all monic polynomials with
coefficients in Q
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By the FundamentalTheorem ofAlgebra
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factors into a productof linear factors
PCXICX ZDa.CXZ.FI
wheIayznartherootsofp
The coefficients of may be
recovered from its roots as the

elementary symmetric polynomials in
those roots Cup tosign
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These formulas were discovered byFrancois Viet
in the late 1500s They provide an

identification
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Some of the factors in maybe repeated
So let

SPolyn a space ofpolynomials
with no repeated linearfactors

in the space of square freepolynomials

There is then an identification
SPoly Ca UConf Ca

X Ey X Zn Zion Zn

Therefore In SPoly Ca Bn

To conclude let us describe in more

concrete terms the space s Poly Ca

Note that I G x z ex Zn

has a repeated root precisely when
the polynomial of degree n
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This polynomial can be re interpreted
as a polynomial in the variables a can pan

Dn Ca
via the Vieta formulas

Therefore

T
i

discriminant hypersurface An 0

Let us describe these hypersurface
in low degrees N 2,34
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loop r around
the parabola

that is see Yoa
loop braid

MLB
Let pox xtiaixtazxtast be
a cubic polynomial
Changing variables via x t g
gives the simpler cubic
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Up to sign then the discriminant is
Alu 4 443 27 v2
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Changing coordinates judiciously we maywrite an arbitrary monic quartic as

Pex X tax't Vx W

The discriminant polynomial becomes
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The corresponding hypersurface in 3 space
is called the swallowtail singularity



after this bird

Thus By IT 63 I Acurwed

The Swallow's Tail
by Salvador Dali

1983


