Braids and Configuration Spaces
i. Ordered configurations

- Let M be a topological space,
- For each $n \geqslant 1$ let $M^{n}=\underbrace{M \times \operatorname{cor}-\times M}_{n \text { times }}$ (with product topology).
Definition The ordered configuration space of n points in M is the space

$$
\operatorname{Conf}_{n}(M)=\left\{\left(m_{1}, \ldots, m_{n}\right) \in M^{n} \mid m_{i} \neq m_{j} \text { for all } i \neq j\right\} \text {. }
$$

- If M is a manifold of dimension d, then Conf $f_{n}(M)$ is a manifold of dimension $d n$.
Eg:

$$
\begin{aligned}
& \operatorname{Conf}_{1}(M)=M \\
& \operatorname{Conf}_{2}(M)=M \times M \vee \Delta \quad(\Delta=\text { diagonal })
\end{aligned}
$$

- Suppose M is connected. Then
- If $d=1$ and $n \geqslant 2$, then Conf (m) is disconnected.
- If $d \geqslant 2$, then $\operatorname{Conf}(M)$ is connected.
- Suppose now $M=G$ is a topological group (egg, $\mathcal{F}=\mathbb{R}^{n}, \mathbb{C}^{\prime}, \mathbb{C}^{x}=\mathbb{T}\{0\}, S^{\prime}$, etc)
Then

$$
\begin{aligned}
& \operatorname{Con} f_{n}(G) \xrightarrow[\cong]{\cong} \times \operatorname{Conf}_{n-1}(G \backslash\{e\}) \\
& \left(g_{1}, \ldots, g_{n}\right) \longrightarrow\left(g_{1},\left(g_{1}^{-1} g_{2}, \ldots, g_{1}^{-1} g_{n}\right)\right)
\end{aligned}
$$

- Most important case is when $M=\mathbb{R}^{2}$, i.e., $M=\mathbb{C}$.
- A point in Conf n ($\mathbb{C})$ can be viewed as an x-tuple of distinct points in \mathbb{C}

- $\operatorname{Conf}(\mathbb{C})=\mathbb{C} \simeq\{0\}$
- $\operatorname{Conf}_{2}(\mathbb{C}) \cong \mathbb{C} \times(\mathbb{C} \backslash\{0\}) \simeq\{0\} \times S^{1} \simeq S^{1}$
- $\left.\operatorname{Conf}_{3}(\mathbb{C}) \cong \mathbb{C} \times \operatorname{Conf}_{2}(\mathbb{\{} \backslash 00\}\right)$

$$
\begin{aligned}
& \left.\simeq \mathbb{C} \times\left(\mathbb{C} \backslash S_{0}\right\}\right) \times(\mathbb{C} \backslash\{0,1\}) \\
& \simeq S^{\prime} \times\left(S^{\prime} V S^{\prime}\right)
\end{aligned}
$$

2. Unordered configurations

- A permutation of a set S is a bijection from S to S.
- For instance, if $S=\{1,2\}$, its permutations are $\begin{aligned} & 1 \rightarrow 1 \\ & 2 \rightarrow 2\end{aligned}$ and $\sum_{2}>y_{2}^{\prime \prime}$
- Permutations car be composed. Eg.?

- The symmetric group S_{n} is the group of all permutations of the set $\{1, \ldots, n\}$. Its order is n !
- Given a space M, the group acts on M^{n} by permuting the coorolinates:

$$
\begin{aligned}
& S_{n} \times M^{n} \longrightarrow M^{n} \\
& \left.\left(\sigma,\left(m_{1} \sim, m_{n}\right)\right) \longrightarrow\left(m_{b a}\right), \ldots, m_{\sigma(n)}\right)
\end{aligned}
$$

- This action restricts to a free action of S_{n} on $C_{n+n}(M)$.

Definition The unordered configuration space of n points in a space M is

$$
U \operatorname{Conf}_{n}(M)=\operatorname{Conf}_{n}(M) / S_{n}
$$

(the quotient space of the ordered configuration space by the above free action).

- UConfn(M) may be viewed as the space of all subsets $\left\{m_{1}, \ldots, m_{n}\right\} \subset M$ of size n.
- The quotient maps

$$
\operatorname{Con}_{n}(M) \longrightarrow U \operatorname{Con}_{n}(M)
$$

is a (regular) cover, with group of deck transformations S_{n}.

- Egg. $\operatorname{Conf}(\mathbb{C}) \longrightarrow \cup \operatorname{Conf}_{2}(\mathbb{C})$ is, up to homotopy, the 2-fold cover $S_{z}^{\prime} \mapsto S^{\prime}$
 \square

3. Fundamental groups of configuration spaces
Review:

- Fundamental group of M, based at x_{0} :

$$
\pi_{1}\left(M, x_{0}\right)=\left\{\begin{array}{l}
\text { loops } \gamma \text { in } M \text { based at } x_{0} \\
\text { modulo homotopy rel } x_{0}
\end{array}\right\}
$$

with $\gamma_{1} \cdot \gamma_{2}=$ concatenation of the two loop $r_{1} \rightarrow x^{\gamma_{2}}$
" $\gamma^{-1}=\operatorname{loop}$ traversed in opposite direction

- identity = constant loon at x_{0}
- If M is path-connected, then
$\pi_{1}\left(M, x_{0}\right) \cong \pi_{1}\left(M, x_{1}\right)$ for all $x_{0}, x_{1} \in M$
So write it simply as $\pi_{1}(M)$.
- $\pi_{1}\left(M_{1} \times M_{2}\right) \cong \pi_{1}\left(M_{1}\right) \times \pi_{1}\left(M_{2}\right)$
- Examples:
- π_{1} (contractible space) $=\{e\}$

$$
\hat{e}_{\text {e.g. },} \mathbb{R}^{n}
$$

$$
\cdot \pi_{1}(\mathbb{C} \backslash\{0\}) \cong \pi_{1}\left(S^{1}\right)=\pi_{0}
$$

- $\pi_{1}(\mathbb{C} \backslash\{n$ points $\}) \cong \pi_{1}(\underbrace{S^{1} v \cdots v S^{\prime}}_{n})=F_{n}$
 on n letters

Theorem (Fox\& Fardel - 1962)
(n) $\pi_{1}\left(\operatorname{Con} f_{n}(\mathbb{C})\right) \cong P_{n}$ - pure braid group on unstrings
(2) $\pi_{1}\left(U C_{o n} f_{n}(\mathbb{C})\right) \cong B_{n}$

(2) Similar

QED

- Now recall the S_{n}-cover

$$
\operatorname{Conf}_{n}(\mathbb{C}) \longrightarrow U \operatorname{Conf}_{n}(\mathbb{C})
$$

Using the relationship between covers and fundamental group, we get exact sequence

$$
1 \rightarrow P_{n} \xrightarrow{\operatorname{ker}(q)} B_{n} \xrightarrow{q} S_{n} \longrightarrow 1
$$

where q sends a braid β to the induced permutation of the strands, egg.,

$$
q\left(\begin{array}{ll}
1 & y_{1}^{3} \\
1 & 1 \\
1 & 3
\end{array}\right)=\left.{ }_{1}^{2} X_{2}^{2}\right|_{3} ^{3}
$$

- Examples:

$$
\begin{aligned}
& n=1
\end{aligned}
$$

$$
\begin{aligned}
& n=3 \quad 1 \longrightarrow P_{\substack{ \\
12 \\
Z \times F_{2}}}^{P_{3}} \longrightarrow B_{3} \longrightarrow 1
\end{aligned}
$$

- Remark In turn, the braid groups completely determine the homotopy types of the respective configuration spaces:

$$
\begin{gathered}
\operatorname{Conf}_{n}(\mathbb{C}) \simeq K\left(P_{n}, 1\right) \\
U \operatorname{Con} f_{n}(\mathbb{C}) \simeq K\left(B_{n}, 1\right) \\
0
\end{gathered}
$$

4. Braids and polynomials

- We may identify \mathbb{C}^{n} with the space of all monic polynomials with coefficients in \mathbb{C} :

$$
\left.\begin{array}{rl}
\mathbb{C}^{n} & \left.\cong P_{0} l_{y} \mathbb{C}\right) \\
\left(a_{1}, a_{2}, \ldots, a_{n}\right) & \longrightarrow P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}
\end{array}\right)
$$

- By the Fundamental Theorem of Algebra, even non-coustant polynomial completely
factors into a prooluct of linear factors':

$$
\begin{equation*}
P(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right) \tag{}
\end{equation*}
$$

where $z_{1}, \Rightarrow z_{n}$ are the roots of P.

- The coefficients of Pray be recovered from its roots, as the elementary symmetric polynomials in those roots (up to sign):

$$
\left\{\begin{array}{l}
a_{1}=z_{1}+z_{2}+\cdots+z_{n} \\
a_{2}=\sum_{i<j} z_{i} z_{j} \\
\vdots \\
a_{n}=z_{1} \cdots z_{n}
\end{array}\right.
$$

- These formulas were discovered by Francis Viete in the late 1500s. They provide an identification

$$
\begin{aligned}
& {\left[^{n} / S_{n} \xrightarrow[V_{\text {ietás }} \quad \stackrel{n}{\approx}]{n}\right.} \\
& \left(z_{1}, \ldots, z_{n}\right) \longrightarrow\left(a_{1, \ldots, a_{n}}\right) \\
& \uparrow \\
& P(x)=\left(x-z_{1}\right)-\left(x-z_{n}\right) \quad P(x)=x^{n}+a_{1} x^{n-1}+00+a_{n}
\end{aligned}
$$

- Some of the factors in (*) may be repeated. So let

$$
S P o l_{n}(\mathbb{E})=\left\{\begin{array}{l}
\text { space of polynomials } \\
\text { with no repeated factors }
\end{array}\right\}
$$

or, the space of square - free polynomials.

- There is then an iolentification

$$
\begin{aligned}
& \operatorname{SPoly}_{n}(\mathbb{C}) \longleftrightarrow \operatorname{Con}_{n}(\mathbb{C}) \\
& \left(x-z_{4}\right) \cdots\left(x-z_{n}\right) \longleftrightarrow\left(z_{1}, \cdots, z_{n}\right)
\end{aligned}
$$

- Therefore, $\pi_{1}\left(\operatorname{SPoly}_{n}(\mathbb{C})\right) \cong B_{n}$.
- To conclude, let us describe in more concrete terms the space $S P_{0} l_{y_{n}}(\mathbb{C})$
- Note that $P(x)=\left(x-z_{1}\right) \cdots\left(x-z_{n}\right)$ has a repeated root precisely when the polynomial (of degree)

$$
\Delta_{n}(z):=\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)^{2}
$$

Vanishes.

- This polynomial can be re-interpreted as a polynomial in the variables $a=\left(a_{1}, \ldots, a_{n}\right)$

$$
\Delta_{n}(a)
$$

via the Vieta formulas.

- Therefore:

$$
S P_{0} l_{y_{n}}(\mathbb{C})=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n} \mid \Delta_{n}(a) \neq 0\right\}
$$

i.e., the complement in \mathbb{C}^{n} of the discriminant hypersurface $\Delta_{n}=0$.

- Let us describe these hypersurfaces in low degrees $(n=2,3,4)$.
- $n=2$

$$
\begin{aligned}
P(x) & =\left(x-z_{1}\right)\left(x-z_{2}\right) \\
& =x^{2}-\left(z_{1}+z_{2}\right) x+z_{1} z_{2} \\
& =x^{2}+a_{1} x+a_{2}
\end{aligned}
$$

where $a_{1}=-\left(z_{1}+z_{2}\right), \quad a_{2}=z_{1} z_{2}$

$$
\begin{aligned}
\therefore \Delta_{2} & =\left(z_{1}-z_{2}\right)^{2} \\
& =z_{1}^{2}-2 z_{1} z_{2}+z_{2}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(z_{1}+z_{2}\right)^{2}-4 z_{1} z_{2} \\
\therefore \Delta_{2}(a) & =a_{1}^{2}-4 a_{2}
\end{aligned}
$$

(mare generally, if $P(x)=a x^{2}+b x+c$, then $\Delta=b^{2}-4 a c$, a formula that goes back to the Babylonians

$$
\begin{aligned}
B_{2} & =\pi_{1}\left(\mathbb{C}^{2} \backslash\left\{\Delta_{2}=0\right\}\right) \\
& \cong \mathbb{Z}
\end{aligned}
$$

generated by the loop r around the parabola
That is:

$n=3$
Let $P(x)=x^{3}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ be a cubic polynomial.

- Changing variables via $x=t-\frac{a_{1}}{3}$ gives the simpler cubic

$$
P(t)=t^{3}+u t+v
$$

- Up to sign, then, the discriminant is

$$
\Delta(u, v)=4 u^{3}+27 v^{2}
$$

$$
\begin{aligned}
& B_{3}=\pi\left(\mathbb{C}^{3} \backslash\left\{\Delta_{3}=0\right\}\right) \\
& =\pi_{1}\left(\mathbb{C}^{2} \backslash\{\Delta(u, v)=0\}\right. \\
& =\pi_{1}\left(s^{3} \backslash(\}_{0}^{1}\right) \\
& =\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
\end{aligned}
$$

$n=4$

- Changing coordinates judiciously, we may write an arbitrary (Ionic) quartic as

$$
P(x)=x^{4}+u x^{2}+v x+w
$$

- The discriminant polynomial becomes

$$
\begin{aligned}
& \Delta(u, v, w)=8 u^{4} w-4 u^{3} v^{2}-128 u^{2} w^{2}+ \\
& 144 u v^{2} w-27 v^{4}+256 w^{3} .
\end{aligned}
$$

- The corresponding hypersurface (in 3-space) is called the swallowtail singularity.

after this bird:

- Thus: $\quad B_{4}=\pi_{1}\left(\mathbb{C}^{3} \backslash\{\Delta(u, v, w)=0\}\right)$

The Swallow's Tail -by Salvador Dali (1983)

