Suppose M is connected. Then
If d=1 and n=2, then Confn(M) is disconnected.
If d=2, then Confn(M) is connected.

• $\operatorname{Conf}(\mathbb{C}) = \mathbb{C} \simeq \{0\}$

- Conf₂ (C) $\cong \mathbb{C} \times (\mathbb{C} \setminus \{0\}) \simeq \{0\} \times S^1 \simeq S^1$
- Conf3 (1) $\stackrel{\sim}{=} \mathbb{C} \times (Cnf_2(\mathbb{C} \setminus \{0\}))$ $\stackrel{\cong}{=} \mathbb{C} \times (\mathbb{C} \setminus \{0\}) \times (\mathbb{C} \setminus \{0\})$ $\stackrel{\simeq}{=} S^1 \times (S^1 \vee S^1)$

2. Unordered configurations

- For instance, if $S = \{1, 2\}$, its permutations are $1 \rightarrow 1$ and 1×1^{2} $2 \rightarrow 2$ and 2×2^{2}
- Permutations can be composed. E.g.: $1 + \frac{1}{2} + \frac{1}{3} + \frac$
- The symmetric group Sn is the group
 I all permutations of the set \$1,-n?.
 Its order is n!
- Given a space M, the group acts
 on Mⁿ by permuting the coordinates:
 Sn × Mⁿ → Mⁿ
 (\$\mathcal{O}_{n}(m_1,m_n)) → (\$mod_3, ..., m_0(n_3))\$
- This action restricts to a free action of Sn on Conf. (M).

Definition the unordered configuration space of n points in a space M is $UConf_n(M) = Conf_n(M)/S_n$ (the quotient space of the ordered configuration space by the above free action). · UConfn(M) may be viewed as the space of all subsets Em1, --, m3 CM of Size n, · The quotient map, $Conf_n(M) \longrightarrow UConf_n(M)$ is a (regular) cover, with group of dect transformations Sn. · E.g., $Conf_2(\mathbb{C}) \longrightarrow UConf_2(\mathbb{C})$ is, up to homotopy, the 2-fold cover $S \longrightarrow S'$ $z \longmapsto z^2$ $\bigcirc \rightarrow ()$

3. Fundamental groups
Configuration spaces
Review:
• Fundamental group of M, based at zo:

$$T_{4}(M, z_{0}) = \{10000 \text{ X in M based at } z_{0}\}$$

with $Y_{1}, Y_{2} = \text{concatenation of the two loop}$
 $Y_{1}, Y_{2} = \text{concatenation of the two loop}$
 $Y_{1} = 1000 \text{ traversed in opposite objection}$
 $Y_{1} = 1000 \text{ t$

Theorem (Fox& Fadell - 1962) (i) $\pi_1(Conf_m(C)) \cong \mathcal{P}_m$ - pure braid group on mstrings $(2) \operatorname{tr}_{1} \left(\operatorname{UConf}_{n} \left(\mathcal{C} \right) \right) \cong \mathcal{B}_{n}$ - braid group pn n strings > 2 n-1 n/C Proof (1) +=0 basepoint xo ↓ / ℃ t=1/3 G t=12 - n-1 (2) Similar RED · Now recall the Sn-cover $\operatorname{Con}_{n}^{\prime}(\mathbb{C}) \longrightarrow \operatorname{UCon}_{n}^{\prime}(\mathbb{C})$ Using the relationship between covers and fundamental group, ve get exact sequence $| \longrightarrow \mathcal{P}_{m} \xrightarrow{\text{ker}(2)} \mathcal{B}_{n} \xrightarrow{q} \mathcal{S}_{n} \longrightarrow |$ where q sends a braid & to the induced permutation of the strands, e.g., $q(X_i) = X_i$

• Examples: $n=1 \qquad | \longrightarrow P_{1} \longrightarrow B_{1} \longrightarrow S_{1} \longrightarrow |$ $m=2 \qquad | \longrightarrow P_{2} \longrightarrow B_{2} \longrightarrow S_{2} \longrightarrow |$ $| \longrightarrow Z \longrightarrow Z \longrightarrow Z \longrightarrow |$ $m=3 \qquad | \longrightarrow P_{3} \longrightarrow B_{3} \longrightarrow S_{3} \longrightarrow |$ $m=2 \qquad | \longrightarrow P_{3} \longrightarrow B_{3} \longrightarrow S_{3} \longrightarrow |$

· Remark In Turn, the braid groups completely determine the homotopy types of the respective configuration spaces: $Conf_n(c) \stackrel{\sim}{\xrightarrow{\sim}} K(P_n, I)$ $UConf_m(c) \simeq K(B_n, 1)$

4. Braids and polynomials

. We may identify \mathbb{C}^n with the space of all monic polynomials with coefficients in \mathbb{C} : $\mathbb{C}^n \xrightarrow{\cong} \operatorname{Polyn}(\mathbb{C})$ $(a_1, a_2, \dots, a_n) \longrightarrow \operatorname{P}(\mathbb{X}) = \operatorname{X}^n + a_1 \operatorname{X}^{n-2} + \dots + a_n$

· By the Fundamental Theorem of Algebra, even non-constant polynomial completely

factors into a product of linear factors. $P(\mathbf{x}) = (\mathbf{x} - \mathbf{z}_1) \cdots (\mathbf{x} - \mathbf{z}_n) \quad (\mathbf{x})$ where Z1, 2, 2n are the roots of P. The coefficients of P may be recovered from its roots, as the elementary symmetric polynomials in those roots (up to sign); $a_1 = Z_1 + Z_2 + - + Z_n$ $\begin{aligned}
\begin{aligned}
A_2 &= \sum_{i < j} \tilde{Z}_i \tilde{Z}_j \\
\vdots \\
a_n &= \tilde{Z}_1 &= -\tilde{Z}_n
\end{aligned}$ These formulas were discovered by François Viète in the late 1500s. They provide an identification CM/Sm Vieta's map CM

· Some of the factors in (*) may be repeated. So let SPolyn (I) = { space of polynomials ? With no repeated linear } tactors pr, the space of square - free polynomials. . There is then an identification $SPoly_{n}(\mathbb{C}) \xrightarrow{\cong} UGnf_{n}(\mathbb{C})$ $(X - Z_{y}) - (X - Z_{n}) \iff (Z_{1}, \dots, Z_{n})$ Therefore, π, (SPoly (C)) ≥ Bn. · To conclude, let us describe in more concrete terms the space SPoly (C) · Note that P(x) = (x-21) · · · (x-Zn) has a repeated root precisely when the polynomial (of degreen) $\Delta_{n}(z) := \prod_{\substack{i \leq i \leq j \leq n}} \left(Z_{i} - Z_{j} \right)^{z}$ Vanishes,

• This polynomial can be re-interpreted
as a polynomial in the variables
$$a=(a_1, ..., a_n)$$

 $\Delta_n(a)$
via the Vieta formulas.
• Therefore:
 $SToly_n(C) = \{(a_1, ..., a_n)\in C' \mid \Delta_n(a) \neq 0\}$
i.e., the complement in C^n of the
discriminant hypersurface $\Delta_n = 0$.
• Let us describe these hypersurfaces
in low degrees $(n=2, 3, 4)$.
• $[n=2]$
 $P(X) = (X-Z_1)(X-Z_2)$
 $= X^2 - (Z_1+Z_2)X + Z_1Z_2$
 $= X^2 + Q_X + Q_2$
where $a_1 = -(Z_1+Z_2), \quad Q_2 = Z_1Z_2$
 $: \Delta_2 = (Z_1-Z_2)^2$
 $= Z_1^2 - Z_1Z_2 + Z_2^2$

$$= (\overline{z_1} + \overline{z_2})^2 - 4 \overline{z_1} \overline{z_2}$$

$$\therefore [\Delta_2(a) = \alpha_1^2 - 4\alpha_2]$$

(more generally, if $P(x) = ax^2 + bx + c$, then
 $\Delta = b^2 - 4ac$, a formula that goes
back to the Babylouians
 $a_2 + bx + c$, then
 $back to the Babylouians$
 $a_2 + bx + c$, then
 $back to the Babylouians$
 $a_2 + bx + c$, then
 $back to the Babylouians$
 $a_2 + bx + c$, $bx + c$

$$[M=3]$$
• Let $P(x) = x^{3} + a_{1} \times + a_{2} \times^{2} + a_{3} \times^{3} + be$
a cabic polynomial.
• Changing variables via $x = t - \frac{a_{1}}{3}$
gives the simpler cabic
$$P(t) = t^{3} + ut + V$$

, Up to sign, then, the discriminant is $\Delta(u,v) = 4u^3 + 27v^2$ $\mathcal{B}_{3} = \overline{\mathcal{M}}_{1} \left(\mathcal{C}^{3} \times \left\{ \Delta_{3} = 0\right\} \right)$ $=\pi_{1}\left(\mathbb{C}^{2}\setminus\left\{\Delta(u,v)=o\right\}\right)$ $\Delta(u,v) = 0$ singularity at o k=trefal = $\langle 0_1, 0_2 | 0_1 0_2 0_1 = 0_2 0_1 0_2 \rangle$ n=4 · Changing coordinates judicionsly, we may write an arbitrary (monic) quartic as $P(x) = X^4 + u x^2 + v x + w$. The discriminant polynomial becomes $(u, v, w) = 8 u^4 w - 4 u^3 v^2 - 128 u^2 w^2 +$ $144 u V^2 W - 27 V^4 + 256 W^3$ • The corresponding hypersurface (in 3-space) is called the <u>Swallowtail</u> singularity.

 $\mathcal{B}_{4} = \pi_{1} \left(\mathbb{C}^{3} \setminus \{ \Delta(u, v, w) = 0 \} \right)$ · Thus:

The Swallow's Tail -by Salvador Dali (1983)