For each problem be sure to explain the steps in your argument and fully justify your conclusions.

1. For the power series $\sum_{n=1}^{\infty} \frac{2^{2 n}}{\left(3^{3 n}\right) \sqrt{n}} x^{n}$,
(a) $(9 \mathrm{pts})$ Find the radius of convergence.
(b) (9 pts$)$ Find the exact interval of convergence.
2. Let $f_{n}(x)=\frac{3 n+1-\sin (x)}{2 n+\cos (x)}$.
(a) (9 pts) Show that $\left(f_{n}\right)$ converges uniformly on \mathbb{R}. Hint: First decide what the limit function is and then show that convergence is uniform.
(b) (9 pts) Using your result in part (a) and results in the text, determine $\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x$ for $a<b$. Be sure to cite any results you use to justify your answer.
3. Let $f_{n}(x)=n^{2} x e^{-n x^{2}}$.
(a) (9 pts) Show that the sequence $\left(f_{n}\right)$ converges pointwise on \mathbb{R} and determine the function $f=\lim _{n \rightarrow \infty} f_{n}$.
(b) (9 pts) Show that f_{n} does not converge uniformly on any interval containing 0 .
(c) (9 pts) Show that f_{n} does converge uniformly on any interval of the form $[a, \infty)$ with $a>0$.
4. Let $f_{n}(x)=\sqrt{x}+\frac{1}{\sqrt{n}}$ and $f(x)=\sqrt{x}$, for $x \in[0, \infty)$.
(a) (9 pts) Show that f_{n} converges to f uniformly on $[0, \infty)$.
(b) (9 pts) Show that f_{n}^{2} converges to f^{2} pointwise on $[0, \infty)$.
(c) (9 pts) Show that f_{n}^{2} does not converge uniformly to f^{2} on $[0, \infty)$.
5. (10 pts) Show that $\sum_{n=1}^{\infty} \frac{\sin (\sqrt{n} x)}{n^{3 / 2}}$ converges uniformly on \mathbb{R} to a continuous function.
