MATH 3150

For each problem be sure to explain the steps in your argument and fully justify your conclusions.

- 1. For the power series $\sum_{n=1}^{\infty} \frac{2^{2n}}{(3^{3n})\sqrt{n}} x^n$,
 - (a) (9 pts) Find the radius of convergence.
 - (b) (9 pts) Find the exact interval of convergence.

2. Let
$$f_n(x) = \frac{3n + 1 - \sin(x)}{2n + \cos(x)}$$

- (a) (9 pts) Show that (f_n) converges uniformly on \mathbb{R} . *Hint*: First decide what the limit function is and then show that convergence is uniform.
- (b) (9 pts) Using your result in part (a) and results in the text, determine $\lim_{n\to\infty} \int_a^b f_n(x) dx$ for a < b. Be sure to cite any results you use to justify your answer.
- 3. Let $f_n(x) = n^2 x e^{-nx^2}$.
 - (a) (9 pts) Show that the sequence (f_n) converges pointwise on \mathbb{R} and determine the function $f = \lim_{n \to \infty} f_n$.
 - (b) (9 pts) Show that f_n does not converge uniformly on any interval containing 0.
 - (c) (9 pts) Show that f_n does converge uniformly on any interval of the form $[a, \infty)$ with a > 0.

4. Let
$$f_n(x) = \sqrt{x} + \frac{1}{\sqrt{n}}$$
 and $f(x) = \sqrt{x}$, for $x \in [0, \infty)$.

- (a) (9 pts) Show that f_n converges to f uniformly on $[0, \infty)$.
- (b) (9 pts) Show that f_n^2 converges to f^2 pointwise on $[0, \infty)$.
- (c) (9 pts) Show that f_n^2 does *not* converge uniformly to f^2 on $[0, \infty)$.

5. (10 pts) Show that
$$\sum_{n=1}^{\infty} \frac{\sin(\sqrt{nx})}{n^{3/2}}$$
 converges uniformly on \mathbb{R} to a continuous function.