Be sure to include your reasoning in your answers to the following questions.

1. (a) (10 pts) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<\frac{1}{n^{3 / 2}} \quad \text { for all } n \in \mathbb{N}
$$

Prove that $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
Solution: Let $\epsilon>0$ be given. Since the p-series $\sum 1 / n^{3 / 2}$ converges, it follows that the series $\sum 1 / n^{3 / 2}$ satisfies the Cauchy criterion. Hence there is an $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{i=0}^{\ell} \frac{1}{(n+i)^{3 / 2}}<\epsilon \quad \text { for all } n \geq N \text { and all } \ell \geq 0 \tag{1}
\end{equation*}
$$

For $k \in \mathbb{N}$, from the triangle inequality and equation (1) with $\ell=k-1$, it follows that

$$
\begin{aligned}
\left|s_{n}-s_{n+k}\right| & =\left|s_{n}-s_{n+1}+s_{n+1}-s_{n+2}+s_{n+2}+\cdots-s_{n+k-1}+s_{n+k-1}-s_{n+k}\right| \\
& \leq\left|s_{n+1}-s_{n}\right|+\left|s_{n+2}-s_{n+1}\right|+\cdots+\left|s_{n+k}-s_{n+k-1}\right| \\
& <\frac{1}{(n)^{3 / 2}}+\frac{1}{(n+1)^{3 / 2}}+\frac{1}{(n+2)^{3 / 2}}+\cdots+\frac{1}{(n+k-1)^{3 / 2}} \\
& <\epsilon
\end{aligned}
$$

for all $n \geq N$, and hence, s_{n} is a Cauchy sequence.
(b) (10 pts) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<\frac{1}{n^{2 / 3}} \quad \text { for all } n \in \mathbb{N} \text {. }
$$

Show by means of an example that the sequence (s_{n}) may not converge.
Solution: Consider the sequence $\left(s_{n}\right)$ with

$$
s_{n}=\sum_{k=1}^{n} \frac{1}{k^{2 / 3}} .
$$

Then

$$
\left|s_{n+1}-s_{n}\right|=\frac{1}{(n+1)^{2 / 3}}<\frac{1}{n^{2 / 3}}
$$

for all $n \in \mathbb{N}$. On the other hand, the sequence $\left(s_{n}\right)$ is the sequence of partial sums of the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2 / 3}},
$$

which is a p-series with $p=2 / 3<1$, and thus not a converging series. (This can also be shown by using the integral test for convergence/divergence.) By definition, this means that the sequence (s_{n}) does not converge, and we are done.
2. Consider the sequence $\left(x_{n}\right)$ with terms $x_{n}=(1-1 / n) \cos (n \pi / 4)$.
(a) (10 pts) Write out the first 10 terms in this sequence

Solution:

$$
\begin{aligned}
& x_{1}=(1-1) \cos (\pi / 4)=0, \\
& x_{2}=(1-1 / 2) \cos (\pi / 2)=0, \\
& x_{3}=(1-1 / 3) \cos (3 \pi / 4)=-(2 / 3)(\sqrt{2} / 2)=-\sqrt{2} / 3, \\
& x_{4}=-(1-1 / 4)=-3 / 4, \\
& x_{5}=(1-1 / 5) \cos (5 \pi / 4)=(4 / 5)(-\sqrt{2} / 2)=-(2 / 5) \sqrt{2}, \\
& x_{6}=(1-1 / 6) \cos (6 \pi / 4)=0, \\
& x_{7}=(1-1 / 7) \cos (7 \pi / 4)=(6 / 7)(\sqrt{2} / 2)=(3 / 7) \sqrt{2}, \\
& x_{8}=(1-1 / 8) \cos (8 \pi / 4)=7 / 8, \\
& x_{9}=(1-1 / 9)(\sqrt{2} / 2)=(4 / 9) \sqrt{2}, \\
& x_{10}=(1-1 / 10) \cos (10 \pi / 4)=0
\end{aligned}
$$

(b) (10 pts) Give an example of a monotonic subsequence of $\left(x_{n}\right)$.

Solution: Set $n_{k}=8 k$ for $k \in \mathbb{N}$, then the subsequence $s_{k}=x_{n_{k}}$ is given by

$$
s_{k}=\left(1-\frac{1}{8 k}\right) \cos (8 k \pi / 4)=\left(1-\frac{1}{8 k}\right) \cos (2 k \pi)=1-\frac{1}{8 k}
$$

$1 /[8(k+1)]<1 /[8 k]$ so

$$
s_{k+1}=1-(1 /[8(k+1)])>1-1 /[8 k]=s_{k}
$$

and hence, $\left(s_{k}\right)$ is an increasing subsequence of $\left(x_{n}\right)$.
(c) (10 pts) Give the $\lim \sup x_{n}$ and $\lim \inf x_{n}$

Solution: We will show that $\lim \inf x_{n}=-1$ and $\lim \sup x_{n}=1$.
By Theorem 11.8 we have for $\left(s_{n}\right)$ be any sequence and S the set of subsequential limits of $\left(s_{n}\right)$, that

$$
\sup S=\limsup s_{n} \quad \text { and } \quad \inf S=\liminf s_{n}
$$

If $\left(t_{n}\right)$ is a convergent subsequence of $\left(s_{n}\right)$ then $\lim t_{n} \in S$, and so from the result above we have that

$$
\begin{equation*}
\liminf s_{n} \leq \lim t_{n} \leq \limsup s_{n} \tag{2}
\end{equation*}
$$

Now for the subsequence s_{k} of $\left(x_{n}\right)$ in the solution to part (b) given by $s_{k}=x_{8 k}=1-(1 / 8 k)$, we have that $\lim s_{k}=1$. Thus, from equation (2) we have that $1 \leq \lim \sup x_{n}$.
Now recall that $\lim \sup x_{n}$ is the limit of the sequence $v_{N}=\sup \left\{x_{n}: n \geq N\right\}$. Also, note that $\left|x_{n}\right|=|(1-1 / n) \cos (n \pi / 4)|<1$. So, $-1<x_{n}<1$ for all $n \in \mathbb{N}$ and it follows that $v_{N} \leq 1$ for all n. Since (v_{N}) is a decreasing sequence, the sequence v_{N} converges to its inf; that is, $\lim v_{N}=\inf \left\{v_{N}: N \in \mathbb{N}\right\}$ which must be ≤ 1 since each v_{N} is less than or equal to 1 . Thus,

$$
\lim \sup x_{n}=\lim v_{N} \leq 1
$$

and the proof that $\lim \sup x_{n}=1$ is complete.
The proof that $\lim \inf x_{n}=-1$ is similar. Set $n_{k}=8 k+4$, then the terms in the subsequence $s_{k}=x_{n_{k}}$ are

$$
s_{k}=x_{8 k+4}=\left(1-\frac{1}{8 k+4}\right) \cos ([8 k+4] \pi / 4)=-\left(1-\frac{1}{8 k+4}\right)=-1+\frac{1}{8 k+4}
$$

and it follows that $\lim s_{k}=-1$. From equation (2) it follows that $\lim \inf x_{n} \geq-1$.
$\liminf x_{n}=\lim u_{N}$ where $u_{N}=\inf \left\{x_{n}: n \geq \mathbb{N}\right\} . u_{N}$ is an increasing sequence, and hence, converges to $\sup \left\{u_{N}\right\}$. Since $x_{n}>-1$ for all n, it follows that each $u_{N} \geq-1$ so $\sup \left\{u_{N}\right\}=$ $\lim \inf x_{n} \geq-1$. This completes the proof that $\lim \inf x_{n}=-1$.
An alternate approach is to give an argument that for each $N \in \mathbb{N}$,

$$
u_{N}=\inf \left\{x_{n}: n \geq N\right\}=-1 \quad \text { and } \quad v_{N}=\sup \left\{x_{n}: n \geq N\right\}=1
$$

The result then follows since by definition of $\lim \sup$ and $\lim \inf$, we have $\lim \sup x_{n}=$ $\lim v_{N}$ and $\liminf x_{n}=\lim u_{N}$.
3. (10 pts) Let $\left(x_{n}\right)$ be a sequence with $\lim x_{2 n}=1$ and $\lim x_{2 n+1}=5$. Show that every convergent subsequence of x_{n} converges to either 1 or 5 .
Solution: The proof is by contradiction.
Suppose that there is a convergent subsequence $s_{k}=x_{n_{k}}$ of x_{n} with $\lim s_{k}=a$ with $a \neq 1$ and $a \neq 5$. Then choose an $\epsilon>0$ such that no two of the open intervals, $(1-\epsilon, 1+\epsilon)$, $(1-a, 1+a)$, and $(5-\epsilon, 5+\epsilon)$ have any any elements in common. For this one can choose $\epsilon=(1 / 3) \min \{|1-a|,|5-a|\}$. Then since $\lim s_{k}=a$, there is an $N_{1} \in \mathbb{N}$ such that

$$
\left|s_{k}-a\right|<\epsilon \quad \text { for all } k \geq N_{1}
$$

Similarly, since $\lim x_{2 n}=1$ there is an $N_{2} \in \mathbb{N}$ such that $\left|1-x_{2 n}\right|<\epsilon$ for all even numbers $2 n$ with $2 n \geq N_{2}$, and since $\lim x_{2 n+1}=5$, there is an $N_{3} \in \mathbb{N}$ such that $\left|5-x_{2 n+1}\right|<\epsilon$ for all odd numbers $2 n+1$ with $2 n+1 \geq N_{3}$. Set $N=\max \left\{N_{1}, N_{2}, N_{3}\right\}$.

Now consider the term $s_{N}=x_{n_{N}}$. Since $N \geq N_{1}$, we have that $\left|x_{n_{N}}-a\right|<\epsilon$. Note that since $s_{k}=x_{n_{k}}$ is a subsequence of $\left(x_{n}\right)$ it follows that $n_{N} \geq N$ and hence $n_{N} \geq N_{2}$ and $n_{N} \geq N_{3}$. If n_{N} is even, then since $n_{N} \geq N_{2}$, it follows that $\left|x_{n_{N}}-1\right|<\epsilon$ which contradicts $\left|x_{n_{N}}-a\right|<\epsilon$. If n_{N} is odd, then since $n_{N} \geq N_{3}$, it follows that $\left|x_{n_{N}}-5\right|<\epsilon$ which contradicts $\left|x_{n_{N}}-a\right|<\epsilon$. Since n_{N} is either even or odd, it follows that the assumption that there is a convergent subsequence of $\left(x_{n}\right)$ with limit not equal to either 1 or 5 leads to a contradiction.
4. (10 pts) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two bounded sequences of non-negative numbers. Show that

$$
\lim \inf \left(x_{n} y_{n}\right) \geq \liminf \left(x_{n}\right) \cdot \liminf \left(y_{n}\right)
$$

Solution: Step 1. As a first step, let us prove the following statement: Let A, B be two subsets of $\mathbb{R}_{+}=[0, \infty)$, and let $A \cdot B=\{a b: a \in A, b \in B\}$; then

$$
\begin{equation*}
\inf (A \cdot B)=\inf (A) \inf (B) \tag{3}
\end{equation*}
$$

To establish this inequality, first note that $A \subseteq \mathbb{R}_{+}$implies $\inf (A) \geq 0$, and similarly $\inf (B) \geq 0$. Next, by the definition of infimum, we have that $a \geq \inf (A)$ and $b \geq \inf (B)$, for all $a \in A$ and $b \in B$. Since all these quantities are non-negative, we multiply these inequalities (without changing the direction of those inequalities), and conclude that

$$
a b \geq \inf (A) \inf (B), \text { for all } a \in A \text { and } b \in B .
$$

This shows that the set $A \cdot B$ is bounded below by $\inf (A) \inf (B)$, and so

$$
\inf (A \cdot B) \geq \inf (A) \inf (B)
$$

To prove the reverse inequality, let $c=a b$ be an arbitrary element in $A \cdot B$. By definition of infimum, $c \geq \inf (A \cdot B)$. If $c=0$, then $\inf (A \cdot B)=0$, and so $\inf (A \cdot B) \leq \inf (A) \inf (B)$, in which case we are done. Thus, we may assume $c \neq 0$, which implies $a>0$ and $b>0$ for all $a \in A$ and $b \in B$.

Now fix $b \in B$; then the following holds. For all $a \in A$ (writing $c=a b$),

$$
a=c / b \geq \inf (A \cdot B) / b,
$$

and so $\inf (A) \geq \inf (A \cdot B) / b$. If $\inf (A)=0$, then this implies $\inf (A \cdot B) \leq 0$, which forces $\inf (A \cdot B)=0$, and so $\inf (A \cdot B) \leq \inf (A) \inf (B)$. Otherwise, we get $b \geq \inf (A \cdot B) / \inf (A)$. Since this inequality holds for all $b \in B$, we deduce that $\inf (B) \geq \inf (A \cdot B) / \inf (A)$, that is, $\inf (A \cdot B) \leq \inf (A) \inf (B)$. Therefore, the equality (3) has been established.

Step 2. For the second step, let us first recall the definition of $\liminf x_{n}$ and $\lim \inf y_{n}$. For each $N \geq 1$, put $A_{N}:=\left\{x_{n}: n>N\right\}$ and $B_{N}:=\left\{y_{n}: n>N\right\}$, and set

$$
u_{N}=\inf \left(A_{N}\right) \text { and } w_{N}=\inf \left(B_{N}\right) .
$$

Then both $\left(u_{N}\right)$ and $\left(w_{N}\right)$ are bounded, decreasing sequences; therefore, both are convergent sequences. By definition, their respective limits are:

$$
\liminf x_{n}=\lim _{N \rightarrow \infty} u_{N} \text { and } \liminf y_{n}=\lim _{N \rightarrow \infty} w_{N} .
$$

Furthermore, since both $\left(u_{N}\right)$ and $\left(w_{N}\right)$ are convergent, the product of the two sequences, $\left(u_{N} w_{N}\right)$, also converges, and

$$
\begin{equation*}
\lim _{N \rightarrow \infty} u_{N} w_{N}=\left(\lim _{N \rightarrow \infty} u_{N}\right) \cdot\left(\lim _{N \rightarrow \infty} w_{N}\right)=\lim \inf \left(x_{n}\right) \cdot \lim \inf \left(y_{n}\right) . \tag{4}
\end{equation*}
$$

Since $A_{N} \subset \mathbb{R}_{+}$and $B_{N} \subset \mathbb{R}_{+}$, we have by Step 1 that $\inf \left(A_{N}\right) \inf \left(B_{N}\right)=\inf \left(A_{N} \cdot B_{N}\right)$. Using the fact that $\left\{x_{n} y_{n}: n>N\right\} \subset A_{N} B_{N}$ and monotonicity of inf, we get

$$
u_{N} w_{N}=\inf \left(A_{N}\right) \inf \left(B_{N}\right)=\inf \left(A_{N} \cdot B_{N}\right) \leq \inf \left\{x_{n} y_{n}: n>N\right\}
$$

for all $N \geq 1$. Taking the limit as $N \rightarrow \infty$ on both sides, we obtain

$$
\begin{equation*}
\lim _{N \rightarrow \infty} u_{N} w_{N} \leq \lim _{N \rightarrow \infty} \inf \left\{x_{n} y_{n}: n>N\right\}=\liminf \left(x_{n} y_{n}\right) . \tag{5}
\end{equation*}
$$

Putting together equations (4) and (5) proves the desired inequality.
5. For each of the following series, determine whether the series converges or diverges. Justify your answers.
(a) $(10 \mathrm{pts}) \sum \frac{1}{n \ln (n)^{3}}$

Solution: Use the integral test. The substitution $u=\ln (x)$ gives $d u=(1 / x) d x$ so

$$
\begin{aligned}
\int \frac{1}{x \ln (x)^{3}} d x & =\int \frac{1}{u^{3}} d u \\
& =\int u^{-3} d u \\
& =\frac{-1}{2} u^{-2}+C \\
& =\frac{-1}{2 \ln (x)^{2}}+C
\end{aligned}
$$

Since $\lim _{a \rightarrow \infty} \ln (a)=+\infty$, it follows that $\lim _{a \rightarrow \infty}\left(1 / \ln (a)^{2}\right)=0$. Thus, for the improper integral we have

$$
\begin{aligned}
\int_{2}^{\infty} \frac{1}{x \ln (x)^{3}} d x & =\lim _{a \rightarrow \infty} \int_{2}^{a} \frac{1}{x \ln (x)^{3}} d x \\
& =\left.\lim _{a \rightarrow \infty} \frac{-1}{2 \ln (x)^{2}}\right|_{2} ^{a} \\
& =\lim _{a \rightarrow \infty}\left(\frac{1}{2 \ln (2)^{2}}-\frac{1}{2 \ln (a)^{2}}\right) \\
& =\frac{1}{2 \ln (2)^{2}}-0=\frac{1}{2 \ln (2)^{2}}
\end{aligned}
$$

Since the improper integral converges, it follows from the integral test that the series $\sum \frac{1}{n \ln (n)^{3}}$ converges.
(b) $(10 \mathrm{pts}) \sum_{n=2}^{\infty} \frac{n^{2}+2 n+7}{2^{n}-1}$

Solution: Use the ratio test with $a_{n}=\frac{n^{2}+2 n+7}{2^{n}-1}$.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}+2(n+1)+7}{n^{2}+2 n+7} \cdot \frac{2^{n}-1}{2^{n+1}-1} \\
& =\lim _{n \rightarrow \infty} \frac{([n+1] / n)^{2}+2\left([n+1] / n^{2}\right)+7 / n^{2}}{1+2 / n+7 / n^{2}} \cdot \frac{1-1 / 2^{n}}{2-1 / 2^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(1+1 / n)^{2}+2\left(1 / n+1 / n^{2}\right)+7 / n^{2}}{1+2 / n+7 / n^{2}} \cdot \frac{1-1 / 2^{n}}{2-1 / 2^{n}} \\
& =\frac{1+0+0}{1+0+0} \cdot \frac{1-0}{2-0} \\
& =\frac{1}{2}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} a_{n+1} / a_{n}=1 / 2<1$, it follows from the ratio test that the series
$\sum_{n=2}^{\infty} \frac{n^{2}+2 n+7}{2^{n}-1}$ converges.
(c) $(10 \mathrm{pts}) \sum(1+2 / n)^{n}$

Solution: Since $(1+2 / n)^{n}>1$ for all n, it follows that $\lim (1+2 / n)^{n}$ can not be 0 , and hence, the series diverges by the term test which is Corollary 14.5 in the text.

