
MATH 3150 Solutions to Problem Set 3 Fall 2023

Be sure to include your reasoning in your answers to the following questions.

1. (a) (10 pts) Let (sn) be a sequence such that

|sn+1 − sn| <
1

n3/2 for all n ∈ N

Prove that (sn) is a Cauchy sequence and hence a convergent sequence.

Solution: Let ε > 0 be given. Since the p-series
∑

1/n3/2 converges, it follows that the
series

∑
1/n3/2 satisfies the Cauchy criterion. Hence there is an N ∈ N such that

(1)
∑̀
i=0

1
(n + i)3/2 < ε for all n ≥ N and all ` ≥ 0

For k ∈ N, from the triangle inequality and equation (1) with ` = k − 1, it follows that

|sn − sn+k| = |sn − sn+1 + sn+1 − sn+2 + sn+2 + · · · − sn+k−1 + sn+k−1 − sn+k|

≤ |sn+1 − sn| + |sn+2 − sn+1| + · · · + |sn+k − sn+k−1|

<
1

(n)3/2 +
1

(n + 1)3/2 +
1

(n + 2)3/2 + · · · +
1

(n + k − 1)3/2

< ε

for all n ≥ N, and hence, sn is a Cauchy sequence.

(b) (10 pts) Let (sn) be a sequence such that

|sn+1 − sn| <
1

n2/3 for all n ∈ N.

Show by means of an example that the sequence (sn) may not converge.
Solution: Consider the sequence (sn) with

sn =

n∑
k=1

1
k2/3 .

Then
|sn+1 − sn| =

1
(n + 1)2/3 <

1
n2/3

for all n ∈ N. On the other hand, the sequence (sn) is the sequence of partial sums of the
series

∞∑
k=1

1
k2/3 ,

which is a p-series with p = 2/3 < 1, and thus not a converging series. (This can also
be shown by using the integral test for convergence/divergence.) By definition, this means
that the sequence (sn) does not converge, and we are done.

2. Consider the sequence (xn) with terms xn = (1 − 1/n) cos(nπ/4).

(a) (10 pts) Write out the first 10 terms in this sequence
Solution:
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x1 = (1 − 1) cos(π/4) = 0,
x2 = (1 − 1/2) cos(π/2) = 0,
x3 = (1 − 1/3) cos(3π/4) = −(2/3)(

√
2/2) = −

√
2/3,

x4 = −(1 − 1/4) = −3/4,
x5 = (1 − 1/5) cos(5π/4) = (4/5)(−

√
2/2) = −(2/5)

√
2,

x6 = (1 − 1/6) cos(6π/4) = 0,
x7 = (1 − 1/7) cos(7π/4) = (6/7)(

√
2/2) = (3/7)

√
2,

x8 = (1 − 1/8) cos(8π/4) = 7/8,
x9 = (1 − 1/9)(

√
2/2) = (4/9)

√
2,

x10 = (1 − 1/10) cos(10π/4) = 0

(b) (10 pts) Give an example of a monotonic subsequence of (xn).
Solution: Set nk = 8k for k ∈ N, then the subsequence sk = xnk is given by

sk =

(
1 −

1
8k

)
cos(8kπ/4) =

(
1 −

1
8k

)
cos(2kπ) = 1 −

1
8k

1/[8(k + 1)] < 1/[8k] so

sk+1 = 1 − (1/[8(k + 1)]) > 1 − 1/[8k] = sk

and hence, (sk) is an increasing subsequence of (xn).

(c) (10 pts) Give the lim sup xn and lim inf xn

Solution: We will show that lim inf xn = −1 and lim sup xn = 1.
By Theorem 11.8 we have for (sn) be any sequence and S the set of subsequential limits of
(sn), that

sup S = lim sup sn and inf S = lim inf sn

If (tn) is a convergent subsequence of (sn) then lim tn ∈ S , and so from the result above we
have that

(2) lim inf sn ≤ lim tn ≤ lim sup sn

Now for the subsequence sk of (xn) in the solution to part (b) given by sk = x8k = 1−(1/8k),
we have that lim sk = 1. Thus, from equation (2) we have that 1 ≤ lim sup xn.
Now recall that lim sup xn is the limit of the sequence vN = sup{xn : n ≥ N}. Also, note that
|xn| = |(1 − 1/n) cos(nπ/4)| < 1. So, −1 < xn < 1 for all n ∈ N and it follows that vN ≤ 1
for all n. Since (vN) is a decreasing sequence, the sequence vN converges to its inf; that is,
lim vN = inf{vN : N ∈ N} which must be ≤ 1 since each vN is less than or equal to 1. Thus,

lim sup xn = lim vN ≤ 1

and the proof that lim sup xn = 1 is complete.
The proof that lim inf xn = −1 is similar. Set nk = 8k+4, then the terms in the subsequence
sk = xnk are

sk = x8k+4 =

(
1 −

1
8k + 4

)
cos([8k + 4]π/4) = −

(
1 −

1
8k + 4

)
= −1 +

1
8k + 4

and it follows that lim sk = −1. From equation (2) it follows that lim inf xn ≥ −1.
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lim inf xn = lim uN where uN = inf{xn : n ≥ N}. uN is an increasing sequence, and hence,
converges to sup{uN}. Since xn > −1 for all n, it follows that each uN ≥ −1 so sup{uN} =

lim inf xn ≥ −1. This completes the proof that lim inf xn = −1.
An alternate approach is to give an argument that for each N ∈ N,

uN = inf{xn : n ≥ N} = −1 and vN = sup{xn : n ≥ N} = 1

The result then follows since by definition of lim sup and lim inf, we have lim sup xn =

lim vN and lim inf xn = lim uN .

3. (10 pts) Let (xn) be a sequence with lim x2n = 1 and lim x2n+1 = 5. Show that every convergent
subsequence of xn converges to either 1 or 5.
Solution: The proof is by contradiction.

Suppose that there is a convergent subsequence sk = xnk of xn with lim sk = a with a , 1
and a , 5. Then choose an ε > 0 such that no two of the open intervals, (1 − ε, 1 + ε),
(1 − a, 1 + a), and (5 − ε, 5 + ε) have any any elements in common. For this one can choose
ε = (1/3) min{|1 − a|, |5 − a|}. Then since lim sk = a, there is an N1 ∈ N such that

|sk − a| < ε for all k ≥ N1

Similarly, since lim x2n = 1 there is an N2 ∈ N such that |1 − x2n| < ε for all even numbers 2n
with 2n ≥ N2, and since lim x2n+1 = 5, there is an N3 ∈ N such that |5 − x2n+1| < ε for all odd
numbers 2n + 1 with 2n + 1 ≥ N3. Set N = max{N1,N2,N3}.

Now consider the term sN = xnN . Since N ≥ N1, we have that |xnN − a| < ε. Note that since
sk = xnk is a subsequence of (xn) it follows that nN ≥ N and hence nN ≥ N2 and nN ≥ N3. If nN

is even, then since nN ≥ N2, it follows that |xnN − 1| < ε which contradicts |xnN − a| < ε. If nN

is odd, then since nN ≥ N3, it follows that |xnN − 5| < ε which contradicts |xnN − a| < ε. Since
nN is either even or odd, it follows that the assumption that there is a convergent subsequence
of (xn) with limit not equal to either 1 or 5 leads to a contradiction.

4. (10 pts) Let (xn) and (yn) be two bounded sequences of non-negative numbers. Show that

lim inf(xnyn) ≥ lim inf(xn) · lim inf(yn).

Solution: Step 1. As a first step, let us prove the following statement: Let A, B be two subsets
of R+ = [0,∞), and let A · B = {ab : a ∈ A, b ∈ B}; then

(3) inf(A · B) = inf(A) inf(B).

To establish this inequality, first note that A ⊆ R+ implies inf(A) ≥ 0, and similarly inf(B) ≥ 0.
Next, by the definition of infimum, we have that a ≥ inf(A) and b ≥ inf(B), for all a ∈ A
and b ∈ B. Since all these quantities are non-negative, we multiply these inequalities (without
changing the direction of those inequalities), and conclude that

ab ≥ inf(A) inf(B), for all a ∈ A and b ∈ B.

This shows that the set A · B is bounded below by inf(A) inf(B), and so

inf(A · B) ≥ inf(A) inf(B).

To prove the reverse inequality, let c = ab be an arbitrary element in A · B. By definition of
infimum, c ≥ inf(A ·B). If c = 0, then inf(A ·B) = 0, and so inf(A ·B) ≤ inf(A) inf(B), in which
case we are done. Thus, we may assume c , 0, which implies a > 0 and b > 0 for all a ∈ A
and b ∈ B.



MATH 3150 Solutions to Problem Set 3, Fall 2023 4

Now fix b ∈ B; then the following holds. For all a ∈ A (writing c = ab),

a = c/b ≥ inf(A · B)/b,

and so inf(A) ≥ inf(A · B)/b. If inf(A) = 0, then this implies inf(A · B) ≤ 0, which forces
inf(A · B) = 0, and so inf(A · B) ≤ inf(A) inf(B). Otherwise, we get b ≥ inf(A · B)/ inf(A).
Since this inequality holds for all b ∈ B, we deduce that inf(B) ≥ inf(A · B)/ inf(A), that is,
inf(A · B) ≤ inf(A) inf(B). Therefore, the equality (3) has been established.

Step 2. For the second step, let us first recall the definition of lim inf xn and lim inf yn. For
each N ≥ 1, put AN B {xn : n > N} and BN B {yn : n > N}, and set

uN = inf(AN) and wN = inf(BN).

Then both (uN) and (wN) are bounded, decreasing sequences; therefore, both are convergent
sequences. By definition, their respective limits are:

lim inf xn = lim
N→∞

uN and lim inf yn = lim
N→∞

wN .

Furthermore, since both (uN) and (wN) are convergent, the product of the two sequences,
(uNwN), also converges, and

(4) lim
N→∞

uNwN =

(
lim

N→∞
uN

)
·

(
lim

N→∞
wN

)
= lim inf(xn) · lim inf(yn).

Since AN ⊂ R+ and BN ⊂ R+, we have by Step 1 that inf(AN) inf(BN) = inf(AN · BN). Using
the fact that {xnyn : n > N} ⊂ AN BN and monotonicity of inf, we get

uNwN = inf(AN) inf(BN) = inf(AN · BN) ≤ inf{xnyn : n > N}

for all N ≥ 1. Taking the limit as N → ∞ on both sides, we obtain

(5) lim
N→∞

uNwN ≤ lim
N→∞

inf{xnyn : n > N} = lim inf(xnyn).

Putting together equations (4) and (5) proves the desired inequality.

5. For each of the following series, determine whether the series converges or diverges. Justify
your answers.

(a) (10 pts)
∑ 1

n ln(n)3

Solution: Use the integral test. The substitution u = ln(x) gives du = (1/x)dx so∫
1

x ln(x)3 dx =
∫

1
u3 du

=

∫
u−3 du

=
−1
2

u−2 +C

=
−1

2 ln(x)2 +C
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Since lima→∞ ln(a) = +∞, it follows that lima→∞(1/ ln(a)2) = 0. Thus, for the improper
integral we have ∫ ∞

2

1
x ln(x)3 dx = lim

a→∞

∫ a

2

1
x ln(x)3 dx

= lim
a→∞

−1
2 ln(x)2

∣∣∣∣∣∣a
2

= lim
a→∞

(
1

2 ln(2)2 −
1

2 ln(a)2

)
=

1
2 ln(2)2 − 0 =

1
2 ln(2)2

Since the improper integral converges, it follows from the integral test that the series∑ 1
n ln(n)3 converges.

(b) (10 pts)
∞∑

n=2

n2 + 2n + 7
2n − 1

Solution: Use the ratio test with an =
n2+2n+7

2n−1 .

lim
n→∞

an+1

an
= lim

n→∞

(n + 1)2 + 2(n + 1) + 7
n2 + 2n + 7

·
2n − 1

2n+1 − 1

= lim
n→∞

([n + 1]/n)2 + 2([n + 1]/n2) + 7/n2

1 + 2/n + 7/n2 ·
1 − 1/2n

2 − 1/2n

= lim
n→∞

(1 + 1/n)2 + 2(1/n + 1/n2) + 7/n2

1 + 2/n + 7/n2 ·
1 − 1/2n

2 − 1/2n

=
1 + 0 + 0
1 + 0 + 0

·
1 − 0
2 − 0

=
1
2

Since limn→∞ an+1/an = 1/2 < 1, it follows from the ratio test that the series
∞∑

n=2

n2 + 2n + 7
2n − 1

converges.

(c) (10 pts)
∑

(1 + 2/n)n

Solution: Since (1 + 2/n)n > 1 for all n, it follows that lim(1 + 2/n)n can not be 0, and
hence, the series diverges by the term test which is Corollary 14.5 in the text.


