
MATH 3150 Problem Set 2 Fall 2023

In your work on the following problems you may use the theorems about limits in section 9 of the
text.

1. (17 pts) Find a function f (ϵ) defined for ϵ > 0 with the property that

(1)
∣∣∣∣∣ 3n + 5
7n − 11

−
3
7

∣∣∣∣∣ < ϵ for all n ∈ N with n > f (ϵ)

Solution: Let f (ϵ) = max
{

68
42ϵ , 11

}
for ϵ > 0, and let n be an element in N with n > f (ϵ), then

68
7ϵ
< 6n < 7n − 11

where the first inequality follows by multiplying each term in the inequality 68
42ϵ < n by 6 and

second inequality follows since n > f (ϵ) with n ∈ N implies that n ≥ 12. Note that

68
7ϵ
< 7n − 11 implies

68
7(7n − 11)

< ϵ

and hence, ∣∣∣∣∣ 3n + 5
7n − 11

−
3
7

∣∣∣∣∣ = ∣∣∣∣∣21n + 35 − 21n + 33
7(7n − 11)

∣∣∣∣∣
=

∣∣∣∣∣ 68
7(7n − 11)

∣∣∣∣∣ < ϵ
and the proof of inequality (1) is complete.

2. (17 pts) Find lim
√

4n2 + 3n + 2 − 2n

Solution:

lim
n→∞

√
4n2 + 3n + 2 − 2n = lim

n→∞
(
√

4n2 + 3n + 2 − 2n)
 √4n2 + 3n + 2 + 2n
√

4n2 + 3n + 2 + 2n


= lim

n→∞

4n2 + 3n + 2 − 4n2

√
4n2 + 3n + 2 + 2n

= lim
n→∞

3n + 2
√

4n2 + 3n + 2 + 2n

= lim
n→∞

3 + 2/n√
4 + 3/n + 2/n2 + 2

=
3 + 0

√
4 + 0 + 0 + 2

=
3

√
4 + 2

=
3
4

where the last line follows from the line just before the last line using that limn→∞ 1/n =
limn→∞ 1/n2 = 0 (Theorem 9.7 (a) with p = 1 and then with p = 2), Theorem 9.3, Theorem
9.6, and Example 5 on page 42 of the text.
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3. (17 pts) The squeeze theorem states that if an ≤ xn ≤ bn for all n ∈ N and lim an = lim bn = L,
then the sequence (xn) converges to L. Use the N − ϵ definition of limit to prove the squeeze
theorem.

Solution: Note that given a number ϵ > 0 and any number A, the set of numbers r with
|r − A| < ϵ is the open interval of numbers r with A− ϵ < r < A+ ϵ. To refer to this property in
the steps below we write

(2) {r : |r − A| < ϵ} = {r : A − ϵ < r < A + ϵ} for ϵ > 0

The proof of the squeeze theorem proceeds as follows. Let ϵ > 0 be given. Then since
limn→∞ bn = L there is an N1 ∈ N such that |bn − L| < ϵ for n ≥ N1, and hence, by equation (2)
we have

bn < L + ϵ for n ≥ N1

Similarly, since since limn→∞ an = L there is an N2 ∈ N such that |an − L| < ϵ for n ≥ N2, and
hence, by equation (2) we have

L − ϵ < an for n ≥ N2

Then for n ≥ N = max{N1,N2} using the inequalities above along with an ≤ xn ≤ bn for all
n ∈ N we have

L − ϵ < an ≤ xn ≤ bn < L + ϵ for all n ≥ N
In particular

L − ϵ < xn < L + ϵ for all n ≥ N
Hence, by equation (2) we have

|L − xn| < ϵ for all n ≥ N

and the proof is complete.

4. (17 pts) Use the N − ϵ definition of limit to show that the sequence with terms xn = cos
(nπ

3

)
does not converge.

Solution: First, some preliminary observations. Note that the sequence starts as
1
2
,−

1
2
,−1,−

1
2
,

1
2
, 1,

1
2
,−

1
2
,−1,−

1
2
,

1
2
, 1, . . .

Due to the fact that the cosine function has period 2π, the terms of the sequence repeat with a
period of (2π)/(π/3) = 6, that is, xn+6 = xn for all n, taking values ±1 and ±1

2 .
Now suppose the sequence converges, that is, limn→∞ xn = x, for some x ∈ R. This means:

For every ϵ > 0, there is an N(ϵ) ∈ R such that |xn − x| < ϵ for all n > N(ϵ). In particular,
taking ϵ = 1

2 : there is an N = N( 1
2 ) such that |xn − x| < 1

2 for all n > N. Consider two cases (we
could consider more, but that’s all we need):
• n = 6k + 1, with k ≥ 0. Then xn =

1
2 , and so

∣∣∣ 1
2 − x

∣∣∣ < 1
2 for n > N.

• n = 6k + 2, with k ≥ 0. Then xn = −
1
2 , and so

∣∣∣1
2 + x

∣∣∣ = ∣∣∣−1
2 − x

∣∣∣ < 1
2 for n > N.

From the triangle inequality and the above, we find that

1 =
1
2
+

1
2
=

∣∣∣∣∣12 − x +
1
2
+ x
∣∣∣∣∣ ≤ ∣∣∣∣∣12 − x

∣∣∣∣∣ + ∣∣∣∣∣12 + x
∣∣∣∣∣ < 1

2
+

1
2
= 1

or, 1 < 1, a contradiction. Therefore, the sequence (xn) does not converge.
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5. Let x1 = 2 and xn+1 =
6x2

n + 1
5

for n ≥ 1.

(a) (5 pts) Show that, if a = lim xn, then a = 1
2 or a = 1

3 .
Solution: If the sequence converges, we can use the properties of limits to infer that

lim xn+1 = lim
6x2

n + 1
5

=
6(lim x2

n) + 1
5

=
6(lim xn)2 + 1

5
.

Therefore, since a = limn→∞ xn = limn→∞ xn+1, we get

a =
6a2 + 1

5
, or 6a2 − 5a + 1 = 0, or (3a − 1)(2a − 1) = 0,

and so a = 1
2 or a = 1

3 .

(b) (5 pts) Does lim xn exist?
Solution: No. A reason is that every convergent sequence is bounded, but this sequence
is not bounded above. To show this, it is enough to show that xn > n for all n (since the
sequence of natural numbers itself is not bounded above). We prove this by induction on
n. Clearly, x1 = 2 > 1. Assume xn > n; then

xn+1 =
6x2

n + 1
5

>
6n2 + 1

5
> n + 1,

where the last inequality is equivalent to 6n2 − 5n − 4 = (3n − 4)(2n + 1) > 0, which holds
for all n ≥ 2. So we showed that xn > n implies xn+1 > n + 1. Therefore, by induction,
xn > n for all n, and this completes the proof that the sequence (xn) is not bounded, and
thus does not have a limit.

(c) (5 pts) Discuss the apparent contradiction between parts (a) and (b).
Solution: There is no contradiction between the two answers. Indeed, the computations
in part (a)—which used properties of limits—were predicated upon the premise that the
sequence (xn) is convergent. Yet, as we saw in part (b), the sequence is not even bounded,
let alone convergent, so the premise of part (a) was false.

6. (17 pts) Let (xn) be a convergent sequence. Suppose that xn ≥ a for all but finitely many n.
Show that lim xn ≥ a.
Solution: Set x = lim xn. Then, for every ϵ > 0, there is an N(ϵ) ∈ R such that |xn − x| < ϵ for
all n > N(ϵ).

The assumption that xn ≥ a for all but finitely many n may be rephrased as follows: There is
an N0 ∈ N such that xn ≥ a for all n ≥ N0.

For ϵ > 0, let N1 = max{N(ϵ),N0}. Then, for all n > N1, we have:

x − a = (x − xn) + (xn − a) ≥ x − xn > −ϵ

Since the inequality x − a > −ϵ holds for all ϵ > 0, we must have x − a ≥ 0, and we are done.


