In your work on the following problems you may use the theorems about limits in section 9 of the text.

1. (17 pts) Find a function $f(\epsilon)$ defined for $\epsilon>0$ with the property that

$$
\begin{equation*}
\left|\frac{3 n+5}{7 n-11}-\frac{3}{7}\right|<\epsilon \quad \text { for all } n \in \mathbb{N} \text { with } n>f(\epsilon) \tag{1}
\end{equation*}
$$

Solution: Let $f(\epsilon)=\max \left\{\frac{68}{42 \epsilon}, 11\right\}$ for $\epsilon>0$, and let n be an element in \mathbb{N} with $n>f(\epsilon)$, then

$$
\frac{68}{7 \epsilon}<6 n<7 n-11
$$

where the first inequality follows by multiplying each term in the inequality $\frac{68}{42 \epsilon}<n$ by 6 and second inequality follows since $n>f(\epsilon)$ with $n \in \mathbb{N}$ implies that $n \geq 12$. Note that

$$
\frac{68}{7 \epsilon}<7 n-11 \quad \text { implies } \quad \frac{68}{7(7 n-11)}<\epsilon
$$

and hence,

$$
\begin{aligned}
\left|\frac{3 n+5}{7 n-11}-\frac{3}{7}\right| & =\left|\frac{21 n+35-21 n+33}{7(7 n-11)}\right| \\
& =\left|\frac{68}{7(7 n-11)}\right|<\epsilon
\end{aligned}
$$

and the proof of inequality (1) is complete.
2. $(17 \mathrm{pts})$ Find $\lim \sqrt{4 n^{2}+3 n+2}-2 n$

Solution:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sqrt{4 n^{2}+3 n+2}-2 n & =\lim _{n \rightarrow \infty}\left(\sqrt{4 n^{2}+3 n+2}-2 n\right)\left(\frac{\sqrt{4 n^{2}+3 n+2}+2 n}{\sqrt{4 n^{2}+3 n+2}+2 n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{4 n^{2}+3 n+2-4 n^{2}}{\sqrt{4 n^{2}+3 n+2}+2 n}=\lim _{n \rightarrow \infty} \frac{3 n+2}{\sqrt{4 n^{2}+3 n+2}+2 n} \\
& =\lim _{n \rightarrow \infty} \frac{3+2 / n}{\sqrt{4+3 / n+2 / n^{2}}+2} \\
& =\frac{3+0}{\sqrt{4+0+0}+2}=\frac{3}{\sqrt{4}+2}=\frac{3}{4}
\end{aligned}
$$

where the last line follows from the line just before the last line using that $\lim _{n \rightarrow \infty} 1 / n=$ $\lim _{n \rightarrow \infty} 1 / n^{2}=0$ (Theorem 9.7 (a) with $p=1$ and then with $p=2$), Theorem 9.3, Theorem 9.6, and Example 5 on page 42 of the text.
3. (17 pts) The squeeze theorem states that if $a_{n} \leq x_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\lim a_{n}=\lim b_{n}=L$, then the sequence (x_{n}) converges to L. Use the $N-\epsilon$ definition of limit to prove the squeeze theorem.

Solution: Note that given a number $\epsilon>0$ and any number A, the set of numbers r with $|r-A|<\epsilon$ is the open interval of numbers r with $A-\epsilon<r<A+\epsilon$. To refer to this property in the steps below we write

$$
\begin{equation*}
\{r:|r-A|<\epsilon\}=\{r: A-\epsilon<r<A+\epsilon\} \text { for } \epsilon>0 \tag{2}
\end{equation*}
$$

The proof of the squeeze theorem proceeds as follows. Let $\epsilon>0$ be given. Then since $\lim _{n \rightarrow \infty} b_{n}=L$ there is an $N_{1} \in \mathbb{N}$ such that $\left|b_{n}-L\right|<\epsilon$ for $n \geq N_{1}$, and hence, by equation (2) we have

$$
b_{n}<L+\epsilon \quad \text { for } n \geq N_{1}
$$

Similarly, since since $\lim _{n \rightarrow \infty} a_{n}=L$ there is an $N_{2} \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\epsilon$ for $n \geq N_{2}$, and hence, by equation (2) we have

$$
L-\epsilon<a_{n} \quad \text { for } n \geq N_{2}
$$

Then for $n \geq N=\max \left\{N_{1}, N_{2}\right\}$ using the inequalities above along with $a_{n} \leq x_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ we have

$$
L-\epsilon<a_{n} \leq x_{n} \leq b_{n}<L+\epsilon \quad \text { for all } n \geq N
$$

In particular

$$
L-\epsilon<x_{n}<L+\epsilon \quad \text { for all } n \geq N
$$

Hence, by equation (2) we have

$$
\left|L-x_{n}\right|<\epsilon \quad \text { for all } n \geq N
$$

and the proof is complete.
4. (17 pts) Use the $N-\epsilon$ definition of limit to show that the sequence with terms $x_{n}=\cos \left(\frac{n \pi}{3}\right)$ does not converge.

Solution: First, some preliminary observations. Note that the sequence starts as

$$
\frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2}, \frac{1}{2}, 1, \frac{1}{2},-\frac{1}{2},-1,-\frac{1}{2}, \frac{1}{2}, 1, \ldots
$$

Due to the fact that the cosine function has period 2π, the terms of the sequence repeat with a period of $(2 \pi) /(\pi / 3)=6$, that is, $x_{n+6}=x_{n}$ for all n, taking values ± 1 and $\pm \frac{1}{2}$.

Now suppose the sequence converges, that is, $\lim _{n \rightarrow \infty} x_{n}=x$, for some $x \in \mathbb{R}$. This means: For every $\epsilon>0$, there is an $N(\epsilon) \in \mathbb{R}$ such that $\left|x_{n}-x\right|<\epsilon$ for all $n>N(\epsilon)$. In particular, taking $\epsilon=\frac{1}{2}$: there is an $N=N\left(\frac{1}{2}\right)$ such that $\left|x_{n}-x\right|<\frac{1}{2}$ for all $n>N$. Consider two cases (we could consider more, but that's all we need):

- $n=6 k+1$, with $k \geq 0$. Then $x_{n}=\frac{1}{2}$, and so $\left|\frac{1}{2}-x\right|<\frac{1}{2}$ for $n>N$.
- $n=6 k+2$, with $k \geq 0$. Then $x_{n}=-\frac{1}{2}$, and so $\left|\frac{1}{2}+x\right|=\left|-\frac{1}{2}-x\right|<\frac{1}{2}$ for $n>N$.

From the triangle inequality and the above, we find that

$$
1=\frac{1}{2}+\frac{1}{2}=\left|\frac{1}{2}-x+\frac{1}{2}+x\right| \leq\left|\frac{1}{2}-x\right|+\left|\frac{1}{2}+x\right|<\frac{1}{2}+\frac{1}{2}=1
$$

or, $1<1$, a contradiction. Therefore, the sequence $\left(x_{n}\right)$ does not converge.
5. Let $x_{1}=2$ and $x_{n+1}=\frac{6 x_{n}^{2}+1}{5}$ for $n \geq 1$.
(a) (5 pts) Show that, if $a=\lim x_{n}$, then $a=\frac{1}{2}$ or $a=\frac{1}{3}$.

Solution: If the sequence converges, we can use the properties of limits to infer that

$$
\lim x_{n+1}=\lim \frac{6 x_{n}^{2}+1}{5}=\frac{6\left(\lim x_{n}^{2}\right)+1}{5}=\frac{6\left(\lim x_{n}\right)^{2}+1}{5} .
$$

Therefore, since $a=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} x_{n+1}$, we get

$$
a=\frac{6 a^{2}+1}{5}, \text { or } 6 a^{2}-5 a+1=0, \text { or }(3 a-1)(2 a-1)=0,
$$

and so $a=\frac{1}{2}$ or $a=\frac{1}{3}$.
(b) (5 pts) Does $\lim x_{n}$ exist?

Solution: No. A reason is that every convergent sequence is bounded, but this sequence is not bounded above. To show this, it is enough to show that $x_{n}>n$ for all n (since the sequence of natural numbers itself is not bounded above). We prove this by induction on n. Clearly, $x_{1}=2>1$. Assume $x_{n}>n$; then

$$
x_{n+1}=\frac{6 x_{n}^{2}+1}{5}>\frac{6 n^{2}+1}{5}>n+1
$$

where the last inequality is equivalent to $6 n^{2}-5 n-4=(3 n-4)(2 n+1)>0$, which holds for all $n \geq 2$. So we showed that $x_{n}>n$ implies $x_{n+1}>n+1$. Therefore, by induction, $x_{n}>n$ for all n, and this completes the proof that the sequence $\left(x_{n}\right)$ is not bounded, and thus does not have a limit.
(c) (5 pts) Discuss the apparent contradiction between parts (a) and (b).

Solution: There is no contradiction between the two answers. Indeed, the computations in part (a)-which used properties of limits-were predicated upon the premise that the sequence $\left(x_{n}\right)$ is convergent. Yet, as we saw in part (b), the sequence is not even bounded, let alone convergent, so the premise of part (a) was false.
6. (17 pts) Let (x_{n}) be a convergent sequence. Suppose that $x_{n} \geq a$ for all but finitely many n. Show that $\lim x_{n} \geq a$.
Solution: Set $x=\lim x_{n}$. Then, for every $\epsilon>0$, there is an $N(\epsilon) \in \mathbb{R}$ such that $\left|x_{n}-x\right|<\epsilon$ for all $n>N(\epsilon)$.

The assumption that $x_{n} \geq a$ for all but finitely many n may be rephrased as follows: There is an $N_{0} \in \mathbb{N}$ such that $x_{n} \geq a$ for all $n \geq N_{0}$.

For $\epsilon>0$, let $N_{1}=\max \left\{N(\epsilon), N_{0}\right\}$. Then, for all $n>N_{1}$, we have:

$$
x-a=\left(x-x_{n}\right)+\left(x_{n}-a\right) \geq x-x_{n}>-\epsilon
$$

Since the inequality $x-a>-\epsilon$ holds for all $\epsilon>0$, we must have $x-a \geq 0$, and we are done.

