MATH 4565

Prof. Alexandru Suciu TOPOLOGY

MIDTERM EXAM

1. Let $X = \{0, 1\}$ be the 2-element set equipped with the topology $\mathcal{T} = \{\emptyset, \{0\}, X\}$.

- (a) Is every continuous map $X \to \mathbb{R}$ constant?
- (b) Is every continuous map $\mathbb{R} \to X$ constant?
- (c) Is X a Hausdorff space?
- (d) Is X connected?
- (e) Is X path-connected?
- (f) Is X locally connected?
- (g) Is X locally path-connected?
- (h) Determine all self-homeomorphisms of X.
- **2.** Let A be a subspace of a topological space X. A retraction of X onto A is a continuous map $r: X \to A$ such that r(a) = a for all $a \in A$. If such a map exists, we say that A is a retract of X.
 - (a) Prove the following: If X is Hausdorff and A is a retract of X, then A is closed.
 - (b) By the above, the open interval (0, 1) is *not* a retract of the real line \mathbb{R} . Nevertheless, show that the closed interval [0, 1] is a retract of \mathbb{R} .
- **3.** Let (X, \mathcal{T}) be a topological space, let \mathcal{B} be a basis for the topology \mathcal{T} , and let ~ be an equivalence relation on X.
 - (a) Show that if the projection $q: X \to X/\sim$ is an open map, then $q(\mathcal{B}) := \{q(B) : B \in \mathcal{B}\}$ is a basis for the quotient topology of X/\sim .
 - (b) Show that in general (if the projection map q is not open), the conclusion of part (a) does not hold.
- **4.** Let $q: X \to Y$ be a quotient map. Suppose Y is connected, and, for each $y \in Y$, the subspace $q^{-1}(\{y\})$ is connected. Show that X is also connected.

- 5. Let $q: X \to Y$ be a quotient map, let U be an open subset of X, and let $q|_U: U \to q(U)$ be the restriction of q to U (co-restricted to its image).
 - (a) Suppose U is a saturated open subset of X. Show that $q|_U : U \to q(U)$ is again a quotient map.
 - (b) Give an example showing that the saturation hypothesis is necessary.
- 6. Let $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ be the unit sphere in \mathbb{R}^{n+1} , with the topology induced from the standard (Euclidean) topology on \mathbb{R}^{n+1} , for $n \ge 1$. Also let $\mathbb{RP}^n = S^n / \sim$ be the projective *n*-space, obtained as the quotient space of S^n by the equivalence relation $x \sim y$ if y = x or y = -x.
 - (a) Show that S^n is path-connected, by constructing for any two points $x, y \in S^n$ an explicit path connecting them.
 - (b) Show that S^n is locally path-connected.
 - (c) Show that \mathbb{RP}^n is path-connected and locally path-connected.
- 7. Let $X = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Q} \text{ or } y \in \mathbb{Q}\}$ be the set of all points in the plane with at least one rational coordinate. Show that X, with the subspace topology, is a path-connected space.
- 8. Let X be a locally path-connected space. Let U be an open, connected subset of X. Show that U is path-connected.