Definition 1. A sequence (s_{n}) converges to the number S if given any $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|s_{n}-S\right|<\epsilon$ for all $n \geq N$.

Definition 2. A number U is called the least upper bound or sup of a set S if
(1) $s \leq U$ for all $s \in S$, and
(2) If L is any number with $L<U$, then there is an element $s \in S$ with $L<s$.

Completeness Axiom. Every nonempty subset S of the real numbers \mathbb{R} that is bounded above has a least upper bound.

Definition 3. Given a sequence $\left(x_{n}\right)$ and $N \in \mathbb{N}$, let $v_{N}=\sup \left\{x_{n}: n \geq N\right\}$. Then $\left(v_{N}\right)$ is a decreasing sequence, and hence, has a limit. We define $\lim \sup x_{n}$ to be the limit of the sequence $\left(v_{N}\right)$.
Set $u_{N}=\inf \left\{x_{n}: n \geq N\right\}$. Then $\left(u_{N}\right)$ is an increasing sequence, and hence, has a limit. We define $\liminf x_{n}$ to be the limit of the sequence $\left(u_{N}\right)$. Moreover, $u_{N} \leq v_{N}$ for all $N \in \mathbb{N}$.
Definition 4. A sequence $\left(x_{n}\right)$ is called a Cauchy sequence if given any $\epsilon>0$ there is an $N \in \mathbb{N}$ such that $\left|s_{m}-s_{n}\right|<\epsilon$ for all $n \geq N$ and $m \geq N$.

Theorem 1. Every Cauchy sequence is bounded. A sequence of real numbers is a Cauchy sequence if and only if it is convergent.

Theorem 2. Every bounded monotone sequence of real numbers converges.
Theorem 3. Every subsequence $\left(x_{n_{k}}\right)$ of a convergent sequence $\left(x_{n}\right)$ converges, and $\lim _{k \rightarrow \infty} x_{n_{k}}=$ $\lim _{n \rightarrow \infty} x_{n}$.

Theorem 4 (Bolzano-Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Definition 5 ($\delta-\epsilon$ definition of continuity). Let f be a real-valued function whose domain, $\operatorname{dom}(f)$, is a subset of \mathbb{R}. The function f is continuous at a point $x_{0} \in \operatorname{dom}(f)$ if and only if for each $\epsilon>0$ there exists a $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\epsilon \quad \text { for all } x \in \operatorname{dom}(f) \text { with }\left|x-x_{0}\right|<\delta
$$

Theorem 5 (Extreme Value Theorem). Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f is bounded and it assumes its maximum and minimum values on $[a, b]$.

Theorem 6 (Intermediate Value Theorem). Let $f: I \rightarrow \mathbb{R}$ be a continuous function defined on an interval I. Suppose a, b are two numbers in I such that $a<b$ and suppose y is a real number that lies between $f(a)$ and $f(b)$. Then there is an $x \in(a, b)$ such $f(x)=y$.

Definition 6 (Uniform continuity). Let f be a real-valued function whose domain, $\operatorname{dom}(f)$, is a subset of \mathbb{R}. The function f is uniformly continuous on $\operatorname{dom}(f)$ if and only if for each $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-f(y)|<\epsilon \quad \text { for all } x, y \in \operatorname{dom}(f) \text { with }|x-y|<\delta .
$$

Theorem 7. If $f: S \rightarrow \mathbb{R}$ is uniformly continuous of a set $S \subset \mathbb{R}$, and if $\left(x_{n}\right)$ is a Cauchy sequence in S, then $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence in \mathbb{R}.
Theorem 8. If $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Then f is uniformly continuous on $[a, b]$.

