Definition 1. A sequence (s_n) converges to the number *S* if given any $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $|s_n - S| < \epsilon$ for all $n \ge N$.

Definition 2. A number U is called the *least upper bound or* sup of a set S if

(1) $s \le U$ for all $s \in S$, and

(2) If *L* is any number with L < U, then there is an element $s \in S$ with L < s.

Completeness Axiom. Every nonempty subset *S* of the real numbers \mathbb{R} that is bounded above has a least upper bound.

Definition 3. Given a sequence (x_n) and $N \in \mathbb{N}$, let $v_N = \sup\{x_n : n \ge N\}$. Then (v_N) is a decreasing sequence, and hence, has a limit. We define $\limsup x_n$ to be the limit of the sequence (v_N) . Set $u_N = \inf\{x_n : n \ge N\}$. Then (u_N) is an increasing sequence, and hence, has a limit. We define

Set $u_N = \inf\{x_n : n \ge N\}$. Then (u_N) is an increasing sequence, and hence, has a limit. We define $\liminf x_n$ to be the limit of the sequence (u_N) . Moreover, $u_N \le v_N$ for all $N \in \mathbb{N}$.

Definition 4. A sequence (x_n) is called a *Cauchy sequence* if given any $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $|s_m - s_n| < \epsilon$ for all $n \ge N$ and $m \ge N$.

Theorem 1. Every Cauchy sequence is bounded. A sequence of real numbers is a Cauchy sequence if and only if it is convergent.

Theorem 2. Every bounded monotone sequence of real numbers converges.

Theorem 3. Every subsequence (x_{n_k}) of a convergent sequence (x_n) converges, and $\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n$.

Theorem 4 (Bolzano–Weierstrass). Every bounded sequence of real numbers has a convergent subsequence.

Definition 5 ($\delta - \epsilon$ definition of continuity). Let *f* be a real-valued function whose domain, dom(*f*), is a subset of \mathbb{R} . The function *f* is *continuous* at a point $x_0 \in \text{dom}(f)$ if and only if for each $\epsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x) - f(x_0)| < \epsilon$ for all $x \in \text{dom}(f)$ with $|x - x_0| < \delta$.

Theorem 5 (Extreme Value Theorem). Let $f: [a, b] \to \mathbb{R}$ be a continuous function. Then f is bounded and it assumes its maximum and minimum values on [a, b].

Theorem 6 (Intermediate Value Theorem). Let $f: I \to \mathbb{R}$ be a continuous function defined on an interval *I*. Suppose *a*, *b* are two numbers in *I* such that a < b and suppose *y* is a real number that lies between f(a) and f(b). Then there is an $x \in (a, b)$ such f(x) = y.

Definition 6 (Uniform continuity). Let f be a real-valued function whose domain, dom(f), is a subset of \mathbb{R} . The function f is *uniformly continuous* on dom(f) if and only if for each $\epsilon > 0$ there exists a $\delta > 0$ such that

 $|f(x) - f(y)| < \epsilon$ for all $x, y \in \text{dom}(f)$ with $|x - y| < \delta$.

Theorem 7. If $f: S \to \mathbb{R}$ is uniformly continuous of a set $S \subset \mathbb{R}$, and if (x_n) is a Cauchy sequence in *S*, then $(f(x_n))$ is a Cauchy sequence in \mathbb{R} .

Theorem 8. If $f: [a, b] \to \mathbb{R}$ be a continuous function. Then f is uniformly continuous on [a, b].