Be sure to include your reasoning in your answers to the following questions.

1. (a) (10 pts) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<\frac{1}{n^{3 / 2}} \quad \text { for all } n \in \mathbb{N}
$$

Prove that $\left(s_{n}\right)$ is a Cauchy sequence and hence a convergent sequence.
(b) (10 pts) Let $\left(s_{n}\right)$ be a sequence such that

$$
\left|s_{n+1}-s_{n}\right|<\frac{1}{n^{2 / 3}} \quad \text { for all } n \in \mathbb{N}
$$

Show by means of an example that the sequence $\left(s_{n}\right)$ may not converge.
2. Consider the sequence $\left(x_{n}\right)$ with terms $x_{n}=(1-1 / n) \cos (n \pi / 4)$.
(a) (10 pts) Write out the first 10 terms in this sequence
(b) (10 pts) Give an example of a monotonic subsequence of $\left(x_{n}\right)$.
(c) (10 pts) Give the $\lim \sup x_{n}$ and $\lim \inf x_{n}$
3. (10 pts) Let $\left(x_{n}\right)$ be a sequence with $\lim x_{2 n}=1$ and $\lim x_{2 n+1}=5$. Show that every convergent subsequence of x_{n} converges to either 1 or 5 .
4. (10 pts) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two bounded sequences of non-negative numbers. Show that $\lim \inf \left(x_{n} y_{n}\right) \geq \liminf \left(x_{n}\right) \cdot \liminf \left(y_{n}\right)$.
5. For each of the following series, determine whether the series converges or diverges. Justify your answers.
(a) $(10 \mathrm{pts}) \sum \frac{1}{n \ln (n)^{3}}$
(b) $(10 \mathrm{pts}) \sum_{n=2}^{\infty} \frac{n^{2}+2 n+7}{2^{n}-1}$
(c) $(10 \mathrm{pts}) \sum(1+2 / n)^{n}$

