Problem Set 3

Be sure to include your reasoning in your answers to the following questions.

1. (a) (10 pts) Let (s_n) be a sequence such that

$$|s_{n+1} - s_n| < \frac{1}{n^{3/2}}$$
 for all $n \in \mathbb{N}$

Prove that (s_n) is a Cauchy sequence and hence a convergent sequence.

(b) (10 pts) Let (s_n) be a sequence such that

$$|s_{n+1} - s_n| < \frac{1}{n^{2/3}}$$
 for all $n \in \mathbb{N}$

Show by means of an example that the sequence (s_n) may **not** converge.

- 2. Consider the sequence (x_n) with terms $x_n = (1 1/n)\cos(n\pi/4)$.
 - (a) (10 pts) Write out the first 10 terms in this sequence
 - (b) (10 pts) Give an example of a monotonic subsequence of (x_n) .
 - (c) (10 pts) Give the lim sup x_n and lim inf x_n
- 3. (10 pts) Let (x_n) be a sequence with $\lim x_{2n} = 1$ and $\lim x_{2n+1} = 5$. Show that every convergent subsequence of x_n converges to either 1 or 5.
- 4. (10 pts) Let (x_n) and (y_n) be two bounded sequences of non-negative numbers. Show that $\liminf(x_ny_n) \ge \liminf(x_n) \cdot \liminf(y_n)$.
- 5. For each of the following series, determine whether the series converges or diverges. Justify your answers.
 - (a) (10 pts) $\sum \frac{1}{n \ln(n)^3}$

(b) (10 pts)
$$\sum_{n=2}^{\infty} \frac{n^2 + 2n + 7}{2^n - 1}$$

(c) (10 pts) $\sum (1 + 2/n)^n$