Midterm

Please print your name _____

1. (14 pts) Use the definitions of $\limsup x_n$, $\lim x_n$, \lim

2. (13 pts) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function, and assume that there is a number a > 0 with the property that $f(x) \ge a$ for all $x \in \mathbb{R}$. Use the $\delta - \epsilon$ definition of continuity to show that 1/f(x) is continuous for all $x \in \mathbb{R}$.

3. For each series below, determine whether the series converges or diverges. Be sure to name any tests that you use.

(a) (10 pts)
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n}$$

(b) (10 pts)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

- 4. Let (s_n) be the sequence with $s_1 = 11$ and $s_{n+1} = \frac{3}{4}(s_n + 1)$
 - (a) (10 pts) Show that the sequence converges

(b) (10 pts) Find the limit of the sequence

5. (a) (10 pts) Let $f: [1,4] \to \mathbb{R}$ be a continuous function such that f(1) > 1 and f(4) < 2. Show that there is a number $c \in [1,4]$ such that $f(c) = \sqrt{c}$.

(b) (10 pts) Give an example of a (discontinuous) function $f: [1,4] \to \mathbb{R}$ such that f(1) > 1 and f(4) < 2 for which the equation $f(c) = \sqrt{c}$ has no solution $c \in [1,4]$.

6

6. (13 pts) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function which is *not* uniformly continuous on \mathbb{R} . Show that there is a particular $\epsilon_0 > 0$ and two sequences (x_n) and (y_n) such that

 $|x_n - y_n| \to 0$ but $|f(x_n) - f(y_n)| \ge \epsilon_0.$