Please print your name

1. (14 pts) Use the definitions of limsup, liminf, and Cauchy sequence to show that if $\limsup x_{n}=\lim \inf x_{n}$, then $\left(x_{n}\right)$ is a Cauchy sequence.
2. (13 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function, and assume that there is a number $a>0$ with the property that $f(x) \geq a$ for all $x \in \mathbb{R}$. Use the $\delta-\epsilon$ definition of continuity to show that $1 / f(x)$ is continuous for all $x \in \mathbb{R}$.
3. For each series below, determine whether the series converges or diverges. Be sure to name any tests that you use.
(a) (10 pts) $\sum_{n=1}^{\infty} \frac{n^{3}}{3^{n}}$
(b) (10 pts) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n}$
4. Let $\left(s_{n}\right)$ be the sequence with $s_{1}=11$ and $s_{n+1}=\frac{3}{4}\left(s_{n}+1\right)$
(a) (10 pts) Show that the sequence converges
(b) (10 pts) Find the limit of the sequence
5. (a) (10 pts) Let $f:[1,4] \rightarrow \mathbb{R}$ be a continuous function such that $f(1)>1$ and $f(4)<2$. Show that there is a number $c \in[1,4]$ such that $f(c)=\sqrt{c}$.
(b) (10 pts) Give an example of a (discontinuous) function $f:[1,4] \rightarrow \mathbb{R}$ such that $f(1)>1$ and $f(4)<2$ for which the equation $f(c)=\sqrt{c}$ has no solution $c \in[1,4]$.
6. (13 pts) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function which is not uniformly continuous on \mathbb{R}. Show that there is a particular $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ such that

$$
\left|x_{n}-y_{n}\right| \rightarrow 0 \quad \text { but } \quad\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon_{0} .
$$

