
MATH 3150 Solutions to the Midterm Wednesday, October 25, 2023

1. (14 pts) Use the definitions of lim sup, lim inf, and Cauchy sequence to show that if
lim supxn = lim inf xn, then (xn) is a Cauchy sequence.

Solution: From the definition of Cauchy sequence, it suffices to show that given any
ε > 0 there is an N ∈ N such that

|xn − xm| < ε for all n ≥ N and m ≥ N.

Let ε > 0 be given. Let L = lim supxn = lim inf xn. From the definition of limit, it
follows that there are natural numbers N1 ∈ N and N2 ∈ N such that

|vn − L| < ε/2 for all n ≥ N1, and

|un − L| < ε/2 for all n ≥ N2,

where (vn) and (un) are the sequences given in Definition 3 of the Notes for the Midterm.
Let Nmax = max(N1, N2). From the definition of sup and inf it follows that for any
nonempty set S

inf S ≤ x ≤ supS for all x ∈ S

In particular,

xn ∈ [uN , vN ] ⊂ [L− ε/2, L+ ε/2] for all n ≥ Nmax

Hence, for all n ≥ Nmax andm ≥ Nmax, both xn and xm are in the interval [L−ε/2, L+ε/2]
so by the triangle inequality we have

|xn − xm| = |xn − L+ L− xm| ≤ |xn − L|+ |L− xm| < ε/2 + ε/2 = ε,

and the proof is complete.
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2. (13 pts) Let f : R → R be a continuous function, and assume that there is a number
a > 0 with the property that f(x) ≥ a for all x ∈ R. Use the δ–ε definition of continuity
to show that 1/f(x) is continuous for all x ∈ R.

Solution: Let x0 ∈ R, it suffices to show that given any ε > 0 there is a δ > 0 such that∣∣∣∣ 1

f(x0)
− 1

f(x)

∣∣∣∣ < ε for all x ∈ R with |x− x0| < δ.

Since f(x) ≥ a > 0 for all x, we have 0 < 1/f(x) < 1/a for all x, and hence,∣∣∣∣ 1

f(x0)
− 1

f(x)

∣∣∣∣ =

∣∣∣∣f(x)− f(x0)

f(x0)f(x)

∣∣∣∣ ≤ ∣∣∣∣f(x)− f(x0)

a · a

∣∣∣∣ =
1

a2
|f(x)− f(x0)| . (1)

Since f(x) is continuous at x0, there is a δ > 0 such that

|f(x)− f(x0)| < a2ε for all x with |x− x0| < δ. (2)

Combining equations (1) and (2) it follows that that for all x ∈ R with |x− x0| < δ we
have ∣∣∣∣ 1

f(x0)
− 1

f(x)

∣∣∣∣ ≤ 1

a2
|f(x)− f(x0)| <

1

a2
|f(x)− f(x0)| <

a2ε

a2
= ε,

and the proof is complete.
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3. For each series below, determine whether the series converges or diverges. Be sure to
name any tests that you use.

(a) (10 pts)
∞∑
n=1

n3

3n

Solution: Use the ratio test with an = n3/3n.

lim

∣∣∣∣an+1

an

∣∣∣∣ = lim

(
(n+ 1)3

3n+1
· 3n

n3

)
= lim

(
(n+ 1)3

n3
· 3n

3n+1

)
= lim

((
n+ 1

n

)3

· 1

3

)

= lim

((
1 +

1

n

)3

· 1

3

)
= 13 · 1

3
=

1

3
.

Since lim |an+1/an| = 1/3 < 1, the series converges by the ratio test.

(b) (10 pts)
∞∑
n=1

1

n2 + n

Solution:
∑

1/n2 is a p-series with p = 2 > 1, so
∑

1/n2 converges by the p-
series test. Alternatively,

∑
1/n2 converges by the integral test, since

∫∞
1

1/x2 dx
converges.

Since 0 < 1/(n2+n) < 1/n2, it then follows from the comparison test that
∑

1/(n2+
n) converges.
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4. Let (sn) be the sequence with s1 = 11 and sn+1 =
3

4
(sn + 1).

(a) (10 pts) Show that the sequence converges

Solution: The first step is to show by induction that the sequence is decreasing. For
n ≥ 1 let P (n) be the statement that sn+1 < sn. Since s1 = 11, we have that

s2 =
3

4
(11 + 1) =

3

4
· 12 = 9.

Since s2 = 9 < 11 = s1, it follows that P (1) is true.

Now assume by induction that P (n) is true, then

sn+1 < sn so

sn+1 + 1 < sn + 1 hence

3

4
(sn+1 + 1) <

3

4
(sn + 1) that is

sn+2 < sn+1.

Thus, by mathematical induction the statement P (n) is true for all n ∈ N. This
completes the proof that the sequence (sn) is decreasing.

Note that if sn > 0, then (3/4)(sn + 1) is also greater than 0. Since s1 = 11 > 0, it
follows by induction that sn > 0 for all n ∈ N.

Thus, the sequence (sn) is decreasing and bounded below by 0. It follows from results
in the text that every decreasing sequence bounded below converges, and hence, the
sequence (sn) converges.

(b) (10 pts) Find the limit of the sequence

Solution: Let L = lim sn. From the results in the text that the limit of a sum is the
sum of the limits and the limit of a product is the product of the limits, we have

lim sn+1 =
3

4
(lim sn + 1)

L =
3

4
(L+ 1)

L =
3L

4
+

3

4

L− 3L

4
=

3

4
L

4
=

3

4
L = 3.
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5. (a) (10 pts) Let f : [1, 4]→ R be a continuous function such that f(1) > 1 and f(4) < 2.
Show that there is a number c ∈ [1, 4] such that f(c) =

√
c.

Solution: First consider the function h : [1, 4] → R given by h(x) =
√
x; we claim

that this function is continuous.

One way to prove this claim is by using known facts from Calculus: the function h
is differentiable (with derivative h′(x) = 1

2
√
x
), and thus, h is continuous.

Another way to establish the claim is to use the ε–δ definition of continuity. Let
ε > 0 and let x0 ∈ [1, 4]. Choose δ =

√
x0ε. Then |x− x0| < δ implies

|
√
x−
√
x0| =

∣∣∣∣(√x−√x0)(√x+
√
x0)√

x+
√
x0

∣∣∣∣
=
|x− x0|√
x+
√
x0

<
δ√

x+
√
x0

=

√
x0ε√

x+
√
x0

<

√
x0ε√
x0

= ε.

Now consider the function g : [1, 4] → R given by g(x) = f(x) −
√
x. Then g is the

difference of two continuous functions, and thus g is also continuous (by properties
of continuous functions from the text). Moreover, note that

g(1) = f(1)−
√

1 = f(1)− 1 > 1− 1 = 0,

g(4) = f(4)−
√

4 = f(4)− 2 < 2− 2 = 0.

Since g is continuous and g(1) > 0 > g(4), the Intermediate Value Theorem guar-
antees there is a number c ∈ [1, 4] such that g(c) = 0, that is, f(c) −

√
c = 0, or

f(c) =
√
c.

(b) (10 pts) Give an example of a (discontinuous) function f : [1, 4] → R such that
f(1) > 1 and f(4) < 2 for which the equation f(c) =

√
c has no solution c ∈ [1, 4].

Solution: Consider the function f : [1, 4]→ R defined by

f(x) =

{
2 if 1 ≤ x < 2

0 if 2 ≤ x ≤ 4.

Clearly, the function f satisfies the hypothesis of the problem; indeed, f(1) = 2 > 1
and f(4) = 0 < 2. Note also that f is not continuous at x = 2, since limx→2− f(x) = 2,
while limx→2+ f(x) = 0. Finally, note that

√
x < 2 = f(x) if 1 ≤ x < 2,

0 = f(x) <
√
x if 2 ≤ x ≤ 4.

Therefore, f(x) 6=
√
x for 1 ≤ x ≤ 4; that is, the equation f(c) =

√
c has no solution

c ∈ [1, 4].
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6. (13 pts) Suppose f : R→ R is a function which is not uniformly continuous on R. Show
that there is a particular ε0 > 0 and two sequences (xn) and (yn) such that

|xn − yn| → 0 but |f(xn)− f(yn)| ≥ ε0.

Solution: By definition, a function f : R → R is uniformly continuous on R if the
following condition is satisfied: for all ε > 0 there exists a δ > 0 such that |f(x)−f(y)| < ε
for all x, y ∈ R with |x− y| < δ.

Thus, a function f : R → R is not uniformly continuous on R if the following condition
is satisfied: there exists ε0 > 0 such that

for all δ > 0, there exist x, y ∈ R with |x− y| < δ but |f(x)− f(y)| ≥ ε0.

For each n ∈ N, let us take δ = 1/n in the above display, and let xn, yn ∈ R the
corresponding numbers, such that |xn − yn| < 1/n, yet |f(xn)− f(yn)| ≥ ε0.

Since 0 < |xn−yn| < 1/n and the sequence (1/n) converges to 0, the sequence (|xn−yn|)
must also converge to 0, by the Squeeze Theorem for sequences. In other words, |xn −
yn| → 0.

To recap, we have found sequences (xn) and (yn) such that |xn − yn| → 0 but |f(xn) −
f(yn)| ≥ ε0, and so we are done.


