- 1. Given a number x_n with $x_n \ge -13$ set $x_{n+1} = \sqrt{x_n + 13}$.
 - (a) (10 pts) Show by mathematical induction that if $x_1 = -13$, then $x_{n+1} > x_n$ for all integers $n \ge 1$.

Solution: For $n \in \mathbb{N}$, let P(n) be the statement that $x_{n+1} > x_n$. By the Principle of Mathematical Induction, it follows that to show P(n) is true for all $n \in \mathbb{N}$ it suffices to show that

- (1) P(1) is true and
- (2) If P(n) is true, then P(n + 1) is true.

To prove item (1), note that since $x_1 = -13$, we have that

$$x_2 = \sqrt{x_1 + 13} = \sqrt{-13 + 13} = \sqrt{0} = 0$$

Thus, $x_2 = 0 > -13 = x_1$, and hence, P(1) is true. The next step is to prove item (2). Assume P(k) is true for some $k \in \mathbb{N}$, then

$$x_{k+1} < x_k$$

$$x_{k+1} + 13 < x_k + 13$$

$$\sqrt{x_{k+1} + 13} < \sqrt{x_k + 13}$$

$$x_{k+2} < x_{k+1}$$

From the last line, it follows that P(k + 1) is true and the proof of item (2) is complete. The result that P(n) is true for all $n \in \mathbb{N}$ now follows by mathematical induction.

(b) (10 pts) Show by mathematical induction that if $x_1 = 12$, then $x_{n+1} < x_n$ for all integers $n \ge 1$.

Solution: For $n \in \mathbb{N}$, let S(n) be the statement that $x_{n+1} < x_n$. By the Principle of Mathematical Induction, it follows that to show S(n) is true for all $n \in \mathbb{N}$ it suffices to show that

- (3) S(1) is true and
- (4) If S(n) is true, then S(n + 1) is true.

To prove item (3), note that since $x_1 = 12$, we have that

$$x_2 = \sqrt{12 + 13} = \sqrt{25} = 5$$

Thus, $x_2 = 5 < 12 = x_1$, and hence, S(1) is true. The next step is to prove item (4). Assume S(k) is true for some $k \in \mathbb{N}$, then

$$x_{k+1} > x_k$$

$$x_{k+1} + 13 > x_k + 13$$

$$\sqrt{x_{k+1} + 13} > \sqrt{x_k + 13}$$

$$x_{k+2} > x_{k+1}$$

From the last line, it follows that S(k + 1) is true and the proof of item (4) is complete. The result that S(n) is true for all $n \in \mathbb{N}$ now follows by mathematical induction.

2. (20 pts) Use the Rational Zeros Theorem to find all rational solutions, if any, to the equation

$$p(x) = 3x^4 + x^3 + 4x^2 + 2x - 4 = 0.$$

Explain your reasoning.

Solution: From the Rational Zeros Theorem it follows that if x is a rational number x = p/q with p(x) = 0, then p divides 4 and q divides 3. Thus $p = \pm 1, \pm 2, \pm 4$ and $q = \pm 1, \pm 3$. The table below lists the possible values for x and the corresponding value of p(x) rounded to 2 decimal places.

x	p(x)	x	p(x)
1	6	-1	0
1/3	-2.82	-1/3	-4.22
2	72	-2	48
2/3	0	-2/3	-3.26
4	900	-4	756
4/3	17.63	-4/3	7.56

It follows that x = 2/3 and x = -1 are the only rational numbers x for which p(x) = 0.

3. Determine whether the following numbers are rational or irrational. In each case, explain your reasoning.

(a) (10 pts) $\sqrt{6 + \sqrt{5}}$.

Solution: Write $r = \sqrt{6} + \sqrt{5}$. Squaring both sides, we obtain:

$$r^{2} = 6 + \sqrt{5}$$

$$r^{2} - 6 = \sqrt{5}$$

$$(r^{2} - 6)^{2} = 5$$

$$(r^{2})^{2} - 2 \cdot 6 \cdot r^{2} + 6^{2} = 5$$

$$r^{4} - 12r^{2} + 31 = 0.$$

This computation shows that *r* is a root of the polynomial $P(x) = x^4 - 12x + 31$. Now suppose *r* is rational, and write r = p/q, with $p, q \in \mathbb{Z}, q \neq 0$, and gcd(p,q) = 1. Then, by the Rational Zeroes Theorem, *p* divides 31 and *q* divides 1. It follows that $p \in \{\pm 1, \pm 31\}$ and $q = \pm 1$; therefore, $r = \pm 1$ or $r = \pm 31$. But

$$(\pm 1)^4 - 12 \cdot (\pm 1)^2 + 31 = 1 - 12 + 31 = 20 \neq 0$$

$$(\pm 31)^4 - 12 \cdot (\pm 31)^2 + 31 = 923,521 - 11,532 + 31 = 912,020 \neq 0,$$

showing that none of these numbers is a root of the polynomial P(x). This contradiction invalidates our assumption that the number $r = \sqrt{6 + \sqrt{5}}$ is rational. Therefore, we have shown that *r* is irrational.

(b) (10 pts) $\sqrt{6} + 2\sqrt{5} - \sqrt{5}$.

Solution: First note that

$$(1 + \sqrt{5})^2 = 1^2 + 2\sqrt{5} + (\sqrt{5})^2 = 1 + 2\sqrt{5} + 5 = 6 + 2\sqrt{5}.$$

Therefore,

$$\sqrt{6+\sqrt{5}} - \sqrt{5} = \sqrt{(1+\sqrt{5})^2} - \sqrt{5} = 1 + \sqrt{5} - \sqrt{5} = 1,$$

and this is a rational number (in fact, a natural number).

4. (20 pts) Let x be a real number. Show that if |x - 1| < 1, then $|x^2 - 1| < 3$.

Solution: We have

$$|x^2 - 1| = |(x - 1)(x + 1)| = |x - 1| \cdot |x + 1|$$

By assumption, |x - 1| < 1. This inequality is equivalent to -1 < x - 1 < 1, or 0 < x < 2, or 1 < x + 1 < 3. Since -3 < 1, we get -3 < x + 1 < 3, which is equivalent to

$$|x+1| < 3.$$

Putting things together, we find:

$$|x^2 - 1| = |x - 1| \cdot |x + 1|$$

< 1 \cdot 3
= 3,

which shows that $|x^2 - 1| < 3$.

5. (20 pts) Given nonempty subsets *A* and *B* of \mathbb{R} , with $A \cap B$ not equal to the empty set, prove directly from the definition of inf and sup that

$$\inf A \le \inf (A \cap B) \le \sup A$$

Solution: Recall the following: A number ℓ is the *greatest lower bound of a set* S if $\ell \leq s$ for all $s \in S$ and if $b > \ell$, then b is not a lower bound for S; that is, given $b > \ell$ there is an element $s \in S$ with s < b

The inf of a set is the greatest lower bound of the set if the set is bounded below and $-\infty$ if the set is not bounded below.

Similarly, a number *u* is the *least upper bound of a set S* if $u \ge s$ for all $s \in S$ and if b < u, then *b* is not an upper bound for *S*. The sup of a set is the least upper bound of the set if the set is bounded above and $+\infty$ if the set is not bounded above.

As a first step to proving

(1)

$$\inf A \le \inf(A \cap B) \le \sup A$$

consider the case where A is a bounded set. Let L be a lower bound for A, and let U be an upper bound for A. Then

$$L \le a \le U$$
 for all $a \in A$

Since every element in $A \cap B$ is an element in A, it follows from equation (1) that

(2)
$$L \le c \le U$$
 for all $c \in A \cap B$

Note that by definition $\inf A$ is a lower bound for A and $\sup A$ is an upper bound for A. Hence the equation

(3)
$$\inf A \le c \le \sup A \quad \text{for all } c \in A \cap B$$

is the special case of equation (2) with $L = \inf A$ and $U = \sup A$.

The next step is to show that $\inf A \leq \inf(A \cap B)$. The proof is by contradiction. Suppose that $\inf A > \inf(A \cap B)$. Since $\inf(A \cap B) < \inf A$, it follows from the definition $\inf(A \cap B)$ that there is an element $c \in A \cap B$ with $c < \inf A$. Note c is an element in A so we have an element $c \in A$ with $c < \inf A$. This contradicts the property that the $\inf A$ is a lower bound for A. So the proof that $\inf A \leq \inf(A \cap B)$ is complete.

The proof that $\inf(A \cap B) \leq \sup A$ also follows by contradiction. Suppose that $\inf(A \cap B) > \sup A$. Let $e \in A \cap B$, then from the definition of \inf , it follows that $e \geq \inf(A \cap B)$. Since *e* is an element in *A*, we have $e \geq \inf(A \cap B) > \sup A$. This contradicts the property that $\sup A$ is an upper bound for *A*.

This completes the proof that

$\inf A \le \inf (A \cap B) \le \sup A$

in the case where *A* is bounded. Note that the proof that $\inf A \leq \inf(A \cap B)$ used the assumption that *A* is bounded below but did not use the assumption that *A* is bounded above. Similarly, the proof that $\inf(A \cap B) \leq \sup A$ used the assumption that *A* is bounded above but did not use the assumption that is *A* is bounded below.

If A is not bounded below and is bounded above, then $\inf A \leq \inf(A \cap B)$ follows since $\inf A = -\infty$, and the inequality $\inf(A \cap B) \leq \sup A$ follows from the argument above.

If A is not bounded above and is bounded below, then $\inf(A \cap B) \leq \sup A$ follows since $\sup A = +\infty$, and the inequality $\inf A \leq \inf(A \cap B)$ follows from the argument in the case where A is bounded.

If A is not bounded below and not bounded above, then the inequality $\inf A \le \inf(A \cap B) \le \sup A$ follows since $\inf A = -\infty$ and $\sup A = +\infty$.

This completes the proof that $\inf A \leq \inf(A \cap B) \leq \sup A$.