
MATH 3150 Problem Set 1 Fall 2023

1. Given a number xn with xn ≥ −13 set xn+1 =
√

xn + 13.
(a) (10 pts) Show by mathematical induction that if x1 = −13, then xn+1 > xn for all integers

n ≥ 1.
Solution: For n ∈ N, let P(n) be the statement that xn+1 > xn. By the Principle of Math-
ematical Induction, it follows that to show P(n) is true for all n ∈ N it suffices to show
that

(1) P(1) is true and

(2) If P(n) is true, then P(n + 1) is true.

To prove item (1), note that since x1 = −13, we have that

x2 =
√

x1 + 13 =
√
−13 + 13 =

√
0 = 0

Thus, x2 = 0 > −13 = x1, and hence, P(1) is true. The next step is to prove item (2).
Assume P(k) is true for some k ∈ N, then

xk+1 < xk

xk+1 + 13 < xk + 13√
xk+1 + 13 <

√
xk + 13

xk+2 < xk+1

From the last line, it follows that P(k+ 1) is true and the proof of item (2) is complete. The
result that P(n) is true for all n ∈ N now follows by mathematical induction.

(b) (10 pts) Show by mathematical induction that if x1 = 12, then xn+1 < xn for all integers
n ≥ 1.
Solution: For n ∈ N, let S (n) be the statement that xn+1 < xn. By the Principle of Math-
ematical Induction, it follows that to show S (n) is true for all n ∈ N it suffices to show
that

(3) S (1) is true and

(4) If S (n) is true, then S (n + 1) is true.

To prove item (3), note that since x1 = 12, we have that

x2 =
√

12 + 13 =
√

25 = 5

Thus, x2 = 5 < 12 = x1, and hence, S (1) is true. The next step is to prove item (4). Assume
S (k) is true for some k ∈ N, then

xk+1 > xk

xk+1 + 13 > xk + 13√
xk+1 + 13 >

√
xk + 13

xk+2 > xk+1
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From the last line, it follows that S (k+ 1) is true and the proof of item (4) is complete. The
result that S (n) is true for all n ∈ N now follows by mathematical induction.

2. (20 pts) Use the Rational Zeros Theorem to find all rational solutions, if any, to the equation

p(x) = 3x4 + x3 + 4x2 + 2x − 4 = 0.

Explain your reasoning.
Solution: From the Rational Zeros Theorem it follows that if x is a rational number x = p/q
with p(x) = 0, then p divides 4 and q divides 3. Thus p = ±1,±2,±4 and q = ±1,±3. The
table below lists the possible values for x and the corresponding value of p(x) rounded to 2
decimal places.

x p(x) x p(x)

1 6 −1 0

1/3 −2.82 −1/3 −4.22

2 72 −2 48

2/3 0 −2/3 −3.26

4 900 −4 756

4/3 17.63 −4/3 7.56

It follows that x = 2/3 and x = −1 are the only rational numbers x for which p(x) = 0.
3. Determine whether the following numbers are rational or irrational. In each case, explain your

reasoning.

(a) (10 pts)
√

6 +
√

5.

Solution: Write r =
√

6 +
√

5. Squaring both sides, we obtain:

r2 = 6 +
√

5

r2 − 6 =
√

5

(r2 − 6)2 = 5

(r2)2 − 2 · 6 · r2 + 62 = 5

r4 − 12r2 + 31 = 0.

This computation shows that r is a root of the polynomial P(x) = x4 − 12x + 31.
Now suppose r is rational, and write r = p/q, with p, q ∈ Z, q , 0, and gcd(p, q) = 1.
Then, by the Rational Zeroes Theorem, p divides 31 and q divides 1. It follows that
p ∈ {±1,±31} and q = ±1; therefore, r = ±1 or r = ±31. But

(±1)4 − 12 · (±1)2 + 31 = 1 − 12 + 31 = 20 , 0

(±31)4 − 12 · (±31)2 + 31 = 923, 521 − 11, 532 + 31 = 912, 020 , 0,
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showing that none of these numbers is a root of the polynomial P(x). This contradiction

invalidates our assumption that the number r =
√

6 +
√

5 is rational. Therefore, we have
shown that r is irrational.

(b) (10 pts)
√

6 + 2
√

5 −
√

5.
Solution: First note that

(1 +
√

5)2 = 12 + 2
√

5 + (
√

5)2 = 1 + 2
√

5 + 5 = 6 + 2
√

5.

Therefore, √
6 +
√

5 −
√

5 =
√

(1 +
√

5)2 −
√

5 = 1 +
√

5 −
√

5 = 1,

and this is a rational number (in fact, a natural number).
4. (20 pts) Let x be a real number. Show that if |x − 1| < 1, then

∣∣∣x2 − 1
∣∣∣ < 3.

Solution: We have ∣∣∣x2 − 1
∣∣∣ = |(x − 1)(x + 1)| = |x − 1| · |x + 1|

By assumption, |x − 1| < 1. This inequality is equivalent to −1 < x − 1 < 1, or 0 < x < 2, or
1 < x + 1 < 3. Since −3 < 1, we get −3 < x + 1 < 3, which is equivalent to

|x + 1| < 3.

Putting things together, we find:∣∣∣x2 − 1
∣∣∣ = |x − 1| · |x + 1|
< 1 · 3
= 3,

which shows that
∣∣∣x2 − 1

∣∣∣ < 3.
5. (20 pts) Given nonempty subsets A and B of R, with A ∩ B not equal to the empty set, prove

directly from the definition of inf and sup that

inf A ≤ inf(A ∩ B) ≤ sup A

Solution: Recall the following: A number ℓ is the greatest lower bound of a set S if ℓ ≤ s for
all s ∈ S and if b > ℓ, then b is not a lower bound for S ; that is, given b > ℓ there is an element
s ∈ S with s < b

The inf of a set is the greatest lower bound of the set if the set is bounded below and −∞ if
the set is not bounded below.

Similarly, a number u is the least upper bound of a set S if u ≥ s for all s ∈ S and if b < u,
then b is not an upper bound for S . The sup of a set is the least upper bound of the set if the set
is bounded above and +∞ if the set is not bounded above.

As a first step to proving

inf A ≤ inf(A ∩ B) ≤ sup A

consider the case where A is a bounded set. Let L be a lower bound for A, and let U be an
upper bound for A. Then

(1) L ≤ a ≤ U for all a ∈ A
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Since every element in A ∩ B is an element in A, it follows from equation (1) that

(2) L ≤ c ≤ U for all c ∈ A ∩ B

Note that by definition inf A is a lower bound for A and sup A is an upper bound for A. Hence
the equation

(3) inf A ≤ c ≤ sup A for all c ∈ A ∩ B

is the special case of equation (2) with L = inf A and U = sup A.
The next step is to show that inf A ≤ inf(A∩ B). The proof is by contradiction. Suppose that

inf A > inf(A∩ B). Since inf(A∩ B) < inf A, it follows from the definition inf(A∩ B) that there
is an element c ∈ A ∩ B with c < inf A. Note c is an element in A so we have an element c ∈ A
with c < inf A. This contradicts the property that the inf A is a lower bound for A. So the proof
that inf A ≤ inf(A ∩ B) is complete.

The proof that inf(A ∩ B) ≤ sup A also follows by contradiction. Suppose that inf(A ∩ B) >
sup A. Let e ∈ A ∩ B, then from the definition of inf, it follows that e ≥ inf(A ∩ B). Since e is
an element in A,we have e ≥ inf(A ∩ B) > sup A. This contradicts the property that sup A is an
upper bound for A.

This completes the proof that

inf A ≤ inf(A ∩ B) ≤ sup A

in the case where A is bounded. Note that the proof that inf A ≤ inf(A∩B) used the assumption
that A is bounded below but did not use the assumption that A is bounded above. Similarly, the
proof that inf(A ∩ B) ≤ sup A used the assumption that A is bounded above but did not use the
assumption that is A is bounded below.

If A is not bounded below and is bounded above, then inf A ≤ inf(A ∩ B) follows since
inf A = −∞, and the inequality inf(A ∩ B) ≤ sup A follows from the argument above.

If A is not bounded above and is bounded below, then inf(A ∩ B) ≤ sup A follows since
sup A = +∞, and the inequality inf A ≤ inf(A∩B) follows from the argument in the case where
A is bounded.

If A is not bounded below and not bounded above, then the inequality inf A ≤ inf(A ∩ B) ≤
sup A follows since inf A = −∞ and sup A = +∞.

This completes the proof that inf A ≤ inf(A ∩ B) ≤ sup A.


