MATH 3150 Problem Set 1 Fall 2023

1. Given a number x, with x,, > —13 set x,.; = Vx, + 13.

(a) (10 pts) Show by mathematical induction that if x; = —13, then x,,; > x, for all integers
n>1.

Solution: For n € N, let P(n) be the statement that x,,; > x,. By the Principle of Math-
ematical Induction, it follows that to show P(n) is true for all n € N it suffices to show
that

(1) P(1) is true and
(2) If P(n) is true, then P(n + 1) is true.

To prove item (1), note that since x; = —13, we have that

xn=4x+13=V-13+13=V0=0

Thus, x, = 0 > —13 = xy, and hence, P(1) is true. The next step is to prove item (2).
Assume P(k) is true for some k € N, then

Xi+1 < X
Xeep + 13 < x+ 13

VX +13 < y/x + 13

X2 < Xg+1

From the last line, it follows that P(k + 1) is true and the proof of item (2) is complete. The
result that P(n) is true for all n € N now follows by mathematical induction.

(b) (10 pts) Show by mathematical induction that if x; = 12, then x,,; < x, for all integers
n>1.

Solution: For n € N, let S (n) be the statement that x,.; < x,. By the Principle of Math-
ematical Induction, it follows that to show S (n) is true for all n € N it suffices to show
that

(3) S(1) is true and
(4) If S(n) is true, then S (n + 1) is true.

To prove item (3), note that since x; = 12, we have that
v»=V12+13=V25=5

Thus, x, =5 < 12 = x;, and hence, S (1) is true. The next step is to prove item (4). Assume
S (k) is true for some k € N, then

Xk+1 > Xk
Xee1 + 13 > x + 13

VX + 13> yx + 13

Xi+2 > Xk+1
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From the last line, it follows that S (k + 1) is true and the proof of item (4) is complete. The
result that S (n) is true for all » € N now follows by mathematical induction.

2. (20 pts) Use the Rational Zeros Theorem to find all rational solutions, if any, to the equation
p(x) = 3xt+ X +4x% +2x—-4=0.

Explain your reasoning.

Solution: From the Rational Zeros Theorem it follows that if x is a rational number x = p/gq
with p(x) = 0, then p divides 4 and ¢ divides 3. Thus p = +1,+2,+4 and ¢ = =1, +3. The
table below lists the possible values for x and the corresponding value of p(x) rounded to 2
decimal places.

x | py) x| plx)

1 6 -1 0
1/3|-2.82| -1/3|-4.22
2 |72 -2 |48
2/310 -2/3 1 -3.26

4 1900 -4 1756
4/3 | 17.63 | -4/3 | 7.56

It follows that x = 2/3 and x = —1 are the only rational numbers x for which p(x) = 0.
3. Determine whether the following numbers are rational or irrational. In each case, explain your
reasoning.

(a) (10 pts) /6 + V5.

Solution: Write r = /6 + V5. Squaring both sides, we obtain:

P?=6+V5
P2 -6=15
(r’—-6)y=5

ryY-2-6-r+6" =5
r* =121 +31 =0.

This computation shows that r is a root of the polynomial P(x) = x* — 12x + 31.
Now suppose r is rational, and write r = p/q, with p,q € Z, g # 0, and gcd(p,q) = 1.
Then, by the Rational Zeroes Theorem, p divides 31 and ¢ divides 1. It follows that
p € {x1,+31} and g = £1; therefore, r = =1 or r = £31. But
(xD*—12- (1) +31=1-12+31=20%0
(£3D)* — 12 - (£31)*> +31 = 923,521 — 11,532 + 31 = 912,020 # 0,
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6]

showing that none of these numbers is a root of the polynomial P(x). This contradiction

invalidates our assumption that the number r = /6 + /5 is rational. Therefore, we have
shown that r is irrational.

(b) (10 pts) /6 + 25 — V5.

Solution: First note that
A+ V52 =12+2V5+ (V52 =1+2V5+5=6+25.

Therefore,

V6+ V5-V5=4/0+ V52 - V5=1+V5-V5=1,

and this is a rational number (in fact, a natural number).

. (20 pts) Let x be a real number. Show that if [x — 1| < 1, then |x2 - 1| < 3.

Solution: We have
[ =1 =1 = D+ D= lx = 1] - |x + 1]

By assumption, |x — 1| < 1. This inequality is equivalentto -1 <x—1 < 1,0r0 < x < 2, or
I <x+1<3.Since -3 < 1, we get =3 < x + 1 < 3, which is equivalent to

|x+ 1] < 3.
Putting things together, we find:
| =1 =lx— 1] x+ 1
<1-3
=3,

which shows that |x2 - 1| < 3.

. (20 pts) Given nonempty subsets A and B of R, with A N B not equal to the empty set, prove

directly from the definition of inf and sup that
infA <inf(AN B) <supA

Solution: Recall the following: A number ¢ is the greatest lower bound of a set S if € < s for
all s € S and if b > ¢, then b is not a lower bound for S ; that is, given b > ¢ there is an element
seS withs <b

The inf of a set is the greatest lower bound of the set if the set is bounded below and —oo if
the set is not bounded below.

Similarly, a number u is the least upper bound of a set S if u > sforall s € § and if b < u,
then b is not an upper bound for S. The sup of a set is the least upper bound of the set if the set
is bounded above and +oo if the set is not bounded above.

As a first step to proving

infA <inf(AN B) <supA

consider the case where A is a bounded set. Let L be a lower bound for A, and let U be an
upper bound for A. Then

L<a<U forallae A
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Since every element in A N B is an element in A, it follows from equation (1) that
2) L<c<U foralceANB

Note that by definition inf A is a lower bound for A and sup A is an upper bound for A. Hence
the equation

3) infA<c<supA forallceANB

is the special case of equation (2) with L = inf A and U = sup A.

The next step is to show that inf A < inf(A N B). The proof is by contradiction. Suppose that
inf A > inf(A N B). Since inf(A N B) < inf A, it follows from the definition inf(A N B) that there
is an element ¢ € A N B with ¢ < inf A. Note ¢ is an element in A so we have an element c € A
with ¢ < inf A. This contradicts the property that the inf A is a lower bound for A. So the proof
that inf A < inf(A N B) is complete.

The proof that inf(A N B) < sup A also follows by contradiction. Suppose that inf(A N B) >
supA. Let e € A N B, then from the definition of inf, it follows that e > inf(A N B). Since e is
an element in A,we have e > inf(A N B) > sup A. This contradicts the property that sup A is an
upper bound for A.

This completes the proof that

infA <inf(AN B) <supA

in the case where A is bounded. Note that the proof that inf A < inf(A N B) used the assumption
that A is bounded below but did not use the assumption that A is bounded above. Similarly, the
proof that inf(A N B) < sup A used the assumption that A is bounded above but did not use the
assumption that is A is bounded below.

If A is not bounded below and is bounded above, then inf A < inf(A N B) follows since
inf A = —oo, and the inequality inf(A N B) < sup A follows from the argument above.

If A is not bounded above and is bounded below, then inf(A N B) < sup A follows since
supA = +oo, and the inequality inf A < inf(A N B) follows from the argument in the case where
A is bounded.

If A is not bounded below and not bounded above, then the inequality inf A < inf(A N B) <
sup A follows since inf A = —co and sup A = +oo.

This completes the proof that inf A < inf(A N B) < sup A.



