Resonance schemes, Koszul modules, and Hilbert series

Alexandru Suciu

Northeastern University

Topology Seminar

Institute of Mathematics of the Romanian Academy

May 26, 2023

RESONANCE VARIETIES

- Let A^{\bullet} be a graded, graded-commutative, algebra (cga) over a field k of characteristic 0, with multiplication maps $A^i \otimes_k A^j \to A^{i+j}$.
- We assume A is connected $(A^0 = \mathbb{k})$ and of finite-type $(\dim_{\mathbb{k}} A^i < \infty)$.
- For each $a \in A^1$, graded commutativity gives $a^2 = -a^2$, and so $a^2 = 0$.
- We then have a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u$, for all $u \in A^i$.

• The resonance varieties of A are the homogeneous sets

$$\mathcal{R}^{i}(A) = \{ a \in A^{1} \mid H^{i}(A^{\bullet}, \delta_{a}) \neq 0 \}.$$

- $\mathcal{R}^0(A) = \{0\}$
- $\mathcal{R}^1(A) = \{ a \in A^1 \mid \exists \ b \in A^1 \text{ s.t. } a \land b \in K \setminus \{0\} \} \cup \{0\}, \text{ where } K = \ker(A^1 \land A^1 \to A^2).$

THE BGG CORRESPONDENCE

- Fix a k-basis $\{e_1, \ldots, e_n\}$ for A^1 , let $\{x_1, \ldots, x_n\}$ be the dual basis for $A_1 = (A^1)^{\vee}$, and identify $Sym(A_1)$ with $S = \mathbb{k}[x_1, \dots, x_n]$, the coordinate ring of the affine space A^1 .
- The BGG correspondence yields a cochain complex of finitely generated, free S-modules,

$$(A^{\bullet} \otimes_{\Bbbk} S, \delta_{A}) \colon \cdots \longrightarrow A^{i} \otimes_{\Bbbk} S \xrightarrow{\delta_{A}^{i}} A^{i+1} \otimes_{\Bbbk} S \xrightarrow{\delta_{A}^{i+1}} A^{i+2} \otimes_{\Bbbk} S \longrightarrow \cdots,$$
where $\delta_{A}^{i}(u \otimes s) = \sum_{i=1}^{n} e_{i}u \otimes sx_{i}.$

- The specialization of $(A \otimes_{\mathbb{K}} S, \delta_A)$ at $a \in A^1$ coincides with (A, δ_a) .
- $a \in A^1$ belongs to $\mathcal{R}^i(A)$ iff rank $\delta_a^{i-1} + \operatorname{rank} \delta_a^i < b_i(A)$. Hence,

$$\mathcal{R}^{i}(A) = V\left(I_{b_{i}(A)}\left(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\right)\right),$$

where $I_r(\psi)$ is the ideal of $r \times r$ minors of a matrix ψ .

EXAMPLES

• If $E = \bigwedge \mathbb{k}^n$, then L(E) is the usual Koszul complex. E.g., for n = 3:

$$L(E): S \xrightarrow{(x_1 \ x_2 \ x_3)} S^3 \xrightarrow{\begin{pmatrix} -x_2 - x_3 & 0 \\ x_1 & 0 & -x_3 \\ 0 & x_1 & x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_3 \\ -x_2 \\ x_1 \end{pmatrix}} S.$$

Hence, $\mathcal{R}^i(E) = \{0\}$ for $0 \le i \le n$ and empty otherwise.

• If $A = \bigwedge(e_1, e_2, e_3)/\langle e_1 e_2 \rangle$, then

$$L(A): S \xrightarrow{(x_1 \ x_2 \ x_3)} S^3 \xrightarrow{\begin{pmatrix} x_3 & 0 \\ 0 & x_3 \\ -x_1 & -x_2 \end{pmatrix}} S^2.$$

Hence, $\mathcal{R}^1(A) = \{x_3 = 0\}.$

• If $A = \bigwedge (e_1, \dots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$, then

$$L(A): S \xrightarrow{(x_1 x_2 x_3 x_4)} S^4 \xrightarrow{\begin{pmatrix} x_4 & 0 & -x_2 \\ 0 & x_3 & x_1 \\ 0 & -x_2 & x_4 \\ -x_1 & 0 & -x_3 \end{pmatrix}} S^3$$

Hence, $\mathcal{R}^1(A) = \{x_1x_2 + x_3x_4 = 0\}.$

Koszul modules

• Set $A_i = (A^i)^{\vee}$ and $\partial_i = (\delta^{i-1})^{\vee}$ and consider the chain complex

$$(A_{\bullet} \otimes_{\Bbbk} S, \partial) \colon \cdots \longrightarrow A_{i+1} \otimes_{\Bbbk} S \xrightarrow{\partial_{i+1}^{A}} A_{i} \otimes_{\Bbbk} S \xrightarrow{\partial_{i}^{A}} A_{i-1} \otimes_{\Bbbk} S \longrightarrow \cdots.$$

• The Koszul modules of A are the graded S-modules

$$W_i(A) := H_i(A_{\bullet} \otimes_{\Bbbk} S).$$

• Setting $E_{\bullet} = \bigwedge A_1$, the first one has presentation

$$(E_3 \oplus K^{\perp}) \otimes_{\mathbb{k}} S \xrightarrow{\partial_3^E + \iota \otimes \mathrm{id}} E_2 \otimes_{\mathbb{k}} S \xrightarrow{} W_1(A),$$
 where $K^{\perp} = \{ \varphi \in A_1 \wedge A_1 = (A^1 \wedge A^1)^{\vee} \mid \varphi \mid_{K} \equiv 0 \} \xrightarrow{\iota} A_1 \wedge A_1 = E_2.$

• The resonance schemes of A are defined as

$$\mathcal{R}_i(A) = \operatorname{Spec}(S/\operatorname{ann} W_i(A)).$$

• The underlying sets, $R_i(A) = \operatorname{supp} W_i(A)$, are related to the resonance varieties by $\bigcup_{i \leq a} R_i(A) = \bigcup_{i \leq a} \mathcal{R}^i(A)$. In particular, $R_1(A) = \mathcal{R}^1(A)$.

- Recall $K = \ker(A^1 \wedge A^1 \to A^2)$.
- Let $L \subseteq A^1$ be a linear subspace. We say:
 - L is isotropic if $L \wedge L \subseteq K$.
 - L is separable if $K \cap \langle L \rangle_E \subseteq L \wedge L$, where $E = \bigwedge A^1$ and $\langle L \rangle_E$ is the ideal of E generated by L.

EXAMPLE

- If K = 0, then every subspace $L \subseteq A^1$ is separable
- If $K = A^1 \wedge A^1$, then every subspace $L \subseteq A^1$ is isotropic, but the only separable subspace is the trivial one.

EXAMPLE

Let
$$A = E/(K)$$
, where $E = \bigwedge(e_1, \dots, e_4)$ and $K = \langle e_1 \wedge e_2, e_1 \wedge e_3 + e_2 \wedge e_4 \rangle$.

Then $\mathcal{R}^1(A) = \langle e_1, e_2 \rangle$ is isotropic but not separable.

REDUCED RESONANCE SCHEMES

- Let $\mathcal{R}^1(A) = L_1 \cup \cdots \cup L_s$ be the decomposition of $\mathcal{R}^1(A) \subset A^1$ into irreducible components.
- Letting $K_j = K \cap (L_j \wedge L_j)$, we define S-modules $W_1^j(A)$ as in (??).
- Assume each component of $\mathcal{R}^1(A)$ is a linear subspace of A^1 .

THEOREM (AFRS)

- (1) If each L_j is separable, then the projectivized resonance scheme is reduced and its components are disjoint.
- (2) If the projectivized resonance scheme is reduced and each L_j are isotropic, then all its components are separable and disjoint.
- (3) If each L_j is separable, then $\dim[W_1(A)]_q = \sum_{j=1}^s \dim[W_1^j(A)]_q$.
- (4) If each L_i is separable and isotropic, then

$$\dim[W_1(A)]_q = \sum_{j=1}^s (q+1) \binom{q+\dim L_j}{q+2}.$$

RESONANCE VARIETIES OF SPACES AND GROUPS

- The resonance varieties of a connected, finite-type CW-complex X are those of its cohomology algebra: $\mathcal{R}^i(X) := \mathcal{R}^i(H^{\bullet}(X, \mathbb{k}))$.
- $\mathcal{R}^1(X)$ depends only on $G = \pi_1(X)$.
- The geometry of these varieties provides obstructions to the formality of X (or 1-formality of G).
- They allow to distinguish between various classes of groups, such as
 - Kähler groups
 - Quasi-projective groups
 - Arrangement groups
 - 3-manifold groups
 - Right-angled Artin groups
- Through their connections with other types of cohomology jump loci (characteristic varieties, Bieri-Neumann-Strebel-Renz invariants), they also inform on the homological and geometric finiteness properties of spaces and groups.

HYPERPLANE ARRANGEMENTS

- Let \mathcal{A} be a complex hyperplane arrangement, with complement $M(\mathcal{A})$. Then $A = H^{\bullet}(M, \mathbb{k})$ is the Orlik–Solomon algebra of \mathcal{A} .
- The components of the varieties $\mathcal{R}^i(M(\mathcal{A}))$ are linear subspaces of $A^1 = \mathbb{k}^{|\mathcal{A}|}$, which depend solely on the intersection lattice $L(\mathcal{A})$.
- The components L_1, \ldots, L_s of $\mathcal{R}^1(M(\mathcal{A}))$ admit an explicit combinatorial description, in terms of "multinets" on $L(\mathcal{A})$.
- Moreover, each linear subspace $L_j \subset A^1$ is isotropic (i.e., $ab = 0 \in A^2$, for every $a, b \in L_j$), and $L_i \cap L_j = \{0\}$ for $i \neq j$.
- It is not known whether the above properties hold for the resonance varieties of the OS-algebra of a non-realizable matroid.

LOWER CENTRAL SERIES

Let *G* be a finitely-generated group. Define:

- LCS series: $G = G_1 \rhd G_2 \rhd \cdots \rhd G_k \rhd \cdots$, where $G_{k+1} = [G_k, G]$.
- LCS quotients: $gr_k(G) = G_k/G_{k+1}$ (f.g. abelian groups).
- LCS ranks: $\phi_k(G) = \operatorname{rank} \operatorname{gr}_k(G)$.
- Associated graded Lie algebra: $gr(G) = \bigoplus_{k \geqslant 1} gr_k(G)$, with Lie bracket $[\,,\,]: gr_k \times gr_\ell \to gr_{k+\ell}$ induced by group commutator.
- Chen Lie algebra: gr(G/G''), where G' = [G, G], G'' = [G', G'].
- Chen ranks: $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$ ($\theta_k \leqslant \phi_k$, equality for $k \leqslant 3$).

RESONANCE AND CHEN RANKS

EXAMPLE (WITT, MAGNUS, CHEN)

Let $G = F_n$ (free group of rank n). Then:

- $\operatorname{gr}(F_n) = \operatorname{Lie}_n$ (free Lie algebra of rank n) is torsion free, with LCS ranks $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{k/d}$, where μ is Möbius function.
- $gr(F_n/F_n'')$ is torsion-free, $\theta_1 = n$ and $\theta_k = (k-1)\binom{n+k-2}{k}$ for $k \geqslant 2$.

THEOREM (PAPADIMA-S. 2004)

If G is 1-formal, then $\theta_k(G) = \dim_{\mathbb{k}}[W_1(G)]_{k-2}$.

THEOREM (COHEN-SCHENCK 2015, AFRS)

Let G be a 1-formal group, and assume $\mathcal{R}^1(G)$ has linear components L_1, \ldots, L_s which are separable and isotropic. Then, for all $k \gg 0$,

$$\theta_k(G) = \sum_{j=1}^s (k-1) \binom{k+\dim L_j-2}{k}.$$

TORIC COMPLEXES

- Let $\Delta \subseteq 2^{[n]}$ be a simplicial complex on vertex set $[n] = \{1, \dots, n\}$.
- Let T_{Δ} be the subcomplex of the *n*-torus T^n obtained by deleting the cells corresponding to the missing simplices of Δ .
- T_{Δ} is a connected, formal CW-complex of dimension $\dim(\Delta) + 1$.
- (Kim–Roush 1980, Charney–Davis 1995) The cohomology algebra $H^{\bullet}(T_{\Delta}; \mathbb{k})$ is the exterior Stanley–Reisner ring

$$\mathbb{k}\langle\Delta\rangle = \bigwedge V^{\vee}/(e_{\sigma} \mid \sigma \notin \Delta),$$

where

- $V = \mathbb{k}^n$, with basis v_1, \ldots, v_n .
- $V^{\vee} = \operatorname{Hom}_{\mathbb{K}}(V, \mathbb{K})$, with dual basis e_1, \ldots, e_n .
- $e_{\sigma} = e_{i_1} \wedge \cdots \wedge e_{i_s}$ for $\sigma = \{i_1, \ldots, i_s\} \subseteq [n]$.

RESONANCE OF SIMPLICIAL COMPLEXES

• (Papadima-S. 2006/2009) The resonance varieties

$$\mathcal{R}^i(\Delta) \coloneqq \mathcal{R}^i(T_\Delta) = \mathcal{R}^i(\Bbbk \langle \Delta \rangle)$$

are finite unions of coordinate subspaces of V^{\vee} :

$$\mathcal{R}^i(\Delta) = \bigcup_{\substack{\mathsf{W} \subseteq [n]\\ \exists \sigma \in \Delta_{[n] \setminus \mathsf{W}}, \ \widetilde{H}_{i-1-|\sigma|}(\mathsf{Ik}_{\Delta_{\mathsf{W}}}(\sigma), \mathbb{k}) \neq 0}} \mathbb{k}^{\mathsf{W}},$$

where

- Δ_W is the induced simplicial subcomplex on vertex set $W \subseteq [n]$.
- $lk_{\Delta_W}(\sigma)$ is the link of a simplex $\sigma \subset \Delta$ in Δ_W .
- \mathbb{k}^{W} is the coordinate subspace of \mathbb{k}^n spanned by $\{e_i \mid i \in \mathsf{W}\}$.
- (Denham–S.–Yuzvinsky 2017) Suppose Δ is Cohen–Macaulay over \Bbbk ($\widetilde{H}^{\bullet}(lk(\sigma), \Bbbk)$ is concentrated in degree dim $\Delta |\sigma|$, for all $\sigma \in \Delta$). Then resonance propagates: $\mathcal{R}^{1}(\Delta) \subseteq \mathcal{R}^{2}(\Delta) \subseteq \cdots \subseteq \mathcal{R}^{\dim \Delta + 1}(\Delta)$.

RESONANCE OF GRAPHS

• If Γ is a (simple) graph on n vertices, then:

$$\mathcal{R}^1(\Gamma) = \bigcup_{\substack{W \subseteq [n] \\ \Gamma_W \text{ disconnected}}} \Bbbk^W.$$

- The irreducible components of $\mathcal{R}^1(\Gamma)$ are the coordinate subspaces \Bbbk^W , maximal among those for which Γ_W is disconnected.
- The codimension of $\mathcal{R}^1(\Gamma)$ equals the connectivity of Γ . In particular, if Γ is disconnected, then $\mathcal{R}^1(\Gamma) = \mathbb{k}^n$.

PROPOSITION (AFRS)

Let Γ be a connected graph, let Γ' be a maximally disconnected full subgraph, and let L' be the corresponding component of $\mathcal{R}^1(\Gamma)$. Then:

- L' is isotropic if and only if Γ' is discrete.
- L' is separable if and only if $\Gamma = \Gamma' * \Gamma''$.

Hence, isotropic implies separable for the resonance varieties of graphs.

SQUARE-FREE MODULES

- Consider the standard \mathbb{N}^n -multigrading on $S = \mathbb{k}[x_1, \dots, x_n]$, defined by $\deg(x_i) = e_i \in \mathbb{N}^n$, where $e_i = (0, \dots, 1, \dots, 0)$.
- For $a = (a_1, \ldots, a_n) \in \mathbb{N}$, set $Supp(a) := \{i \mid a_i > 0\}$.

DEFINITION (YANAGAWA 2000)

An \mathbb{N}^n -graded S-module M is called square-free if for any $\mathbf{a} \in \mathbb{N}^n$ and any $i \in \operatorname{Supp}(\mathbf{a})$, the multiplication map $x_i \colon M_\mathbf{a} \to M_{\mathbf{a}+\mathbf{e}_i}$ is an isomorphism.

- An ideal $I \subseteq S$ is a square-free module $\iff I$ is a square-free monomial ideal $\iff S/I$ is a square-free module.
- A free \mathbb{N}^n -graded S-module is square-free if and only it is generated in square-free multidegrees.

PROPOSITION

If $f: M \to N$ is a morphism of \mathbb{N}^n -graded S-modules, and M and N are square-free modules, then $\ker(f)$ and $\operatorname{coker}(f)$ are also square-free. Moreover, if $0 \to M' \to M \to M'' \to 0$ is an exact sequence of \mathbb{N}^n -graded S-modules, and M' and M'' are square-free, then so is M.

COROLLARY

Let M be an \mathbb{N}^n -graded square-free S-module. Then all the modules in the minimal free \mathbb{N}^n -graded resolution of M are square-free.

COROLLARY

If F is a bounded complex of free square-free S-modules, then the homology modules of F are also square-free.

THEOREM (AFRSS)

If M is an \mathbb{N}^n -graded, square-free S-module, then its annihilator is a square-free monomial ideal. In particular, ann M is a radical ideal.

Koszul complexes and reduced resonance

- Fix a basis v_1, \ldots, v_n for V, and let $K_{\bullet} = (\bigwedge V) \otimes_{\mathbb{k}} S$ be the Koszul complex of x_1, \ldots, x_n , whose i-th free S-module is $K_i = \bigwedge^i V \otimes_{\mathbb{k}} S$.
- Set $\deg(v_i) = e_i \in \mathbb{N}^n$. Then K_{\bullet} is a complex of \mathbb{N}^n -graded square-free S-modules.
- For a simplicial complex Δ on vertex set [n] we have $\mathbb{k}\langle\Delta\rangle\otimes_{\mathbb{k}}S=\mathsf{K}_{\bullet}^{\Delta}$, where $\mathsf{K}_{\bullet}^{\Delta}$ is the subcomplex of K_{\bullet} whose i-th module K_{i}^{Δ} is the free S-module generated by $\{v_{\sigma}\mid\sigma\in\Delta\}$.

PROPOSITION

For each i > 0, the Koszul module $W_i(\Delta) = H_i(\mathsf{K}^\Delta_\bullet)$ is an \mathbb{N}^n -graded, square-free S-module.

• By definition, the *i*-th resonance scheme $\mathcal{R}^i(\Delta)$ is the affine subscheme of V^{\vee} defined by the annihilator of $W_i(\Delta)$.

COROLLARY

The resonance schemes $\mathcal{R}^i(\Delta)$ are reduced.

• As an application, we obtain upper bounds on the Castelnuovo–Mumford regularity and the projective dimension of the Koszul modules of any simplicial complex Δ on n vertices.

PROPOSITION

 $W_i(\Delta)$ has regularity at most n and projective dimension at most n-i-1. Moreover, if Δ is a graph and $n \ge 4$, then reg $W_1(\Delta) \le n-4$.

• We also compute the Hilbert series of the Koszul modules $W_i(\Delta)$.

THEOREM

$$\sum_{a \in \mathbb{N}} \dim_{\mathbb{k}} [W_i(\Delta)]_a t^a = \sum_{\substack{b \in \mathbb{N}^n \\ b \text{ square-free}}} \dim_{\mathbb{k}} \widetilde{H}_{i-1}(\Delta_b; \mathbb{k}) \left(\frac{t}{1-t}\right)^{|b|},$$

where
$$\Delta_b = \Delta_{Supp(b)}$$
 and $|b| = b_1 + \cdots + b_n$.

RIGHT ANGLED ARTIN GROUPS

• The fundamental group $G_{\Gamma}=\pi_1(T_{\Delta})$ is the RAAG associated to the graph $\Gamma=\Delta^{(1)}=(\mathsf{V},\mathsf{E})$,

$$G_{\Gamma} = \langle v \in V \mid [v, w] = 1 \text{ if } \{v, w\} \in E \rangle.$$

- Moreover, $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- (Kim-Makar-Limanov-Neggers-Roush 1980, Droms 1987)

$$\Gamma\cong\Gamma'\Longleftrightarrow G_{\Gamma}\cong G_{\Gamma'}.$$

• (Papadima–S. 2006) The associated graded Lie algebra $gr(G_{\Gamma})$ has (quadratic) presentation

$$gr(G_{\Gamma}) = Lie(V)/([v, w] = 0 \text{ if } \{v, w\} \in E).$$

• (Duchamp–Krob 1992, PS06) The lower central series quotients of G_{Γ} are torsion-free, with ranks ϕ_k given by

$$\prod\nolimits_{k=1}^{\infty}(1-t^k)^{\phi_k}=P_{\Gamma}(-t),$$

where $P_{\Gamma}(t) = \sum_{k \geq 0} f_k(\Delta_{\Gamma}) t^k$ is the clique polynomial of Γ .

CHEN RANKS

ullet (PS 06) $\operatorname{gr}(\mathit{G}_{\Gamma}/\mathit{G}''_{\Gamma})$ is torsion-free, with ranks given by $heta_1=|\mathsf{V}|$ and

$$\sum_{k=2}^{\infty} \theta_k t^k = Q_{\Gamma} \left(\frac{t}{1-t} \right).$$

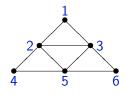
• Here $Q_{\Gamma}(t) = \sum_{j \geqslant 2} c_j(\Gamma) t^j$ is the "cut polynomial" of Γ , with

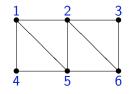
$$c_j(\Gamma) = \sum_{\mathsf{W} \subset \mathsf{V} \colon |\mathsf{W}| = j} \tilde{b}_0(\Gamma_\mathsf{W}).$$

EXAMPLE

Let Γ be a pentagon and Γ' a square with edge attached to a vertex. Then:

- $P_{\Gamma} = P_{\Gamma'} = 1 + 5t + 5t^2$, and so $\phi_k(G_{\Gamma}) = \phi_k(G_{\Gamma'})$, for all $k \ge 1$.
- $Q_{\Gamma} = 5t^2 + 5t^3$ but $Q_{\Gamma'} = 5t^2 + 5t^3 + t^4$, and so $\theta_k(G_{\Gamma}) \neq \theta_k(G_{\Gamma'})$, for $k \geq 4$.





EXAMPLE

Let Γ and Γ' be the two graphs above. Both have

$$P(t) = 1 + 6t + 9t^2 + 4t^3$$
, and $Q(t) = t^2(6 + 8t + 3t^2)$.

Thus, G_{Γ} and $G_{\Gamma'}$ have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2:

$$\mathcal{R}^1(\Gamma) = \Bbbk^{\overline{23}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{35}}, \qquad \mathcal{R}^1(\Gamma') = \Bbbk^{\overline{15}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{26}}.$$

Yet the two varieties are not isomorphic, since

$$\text{dim}(\Bbbk^{\overline{23}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{35}}) = 3, \quad \text{but} \quad \text{dim}(\Bbbk^{\overline{15}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{26}}) = 2.$$

REFERENCES

- M. Aprodu, G. Farkas, C. Raicu, A. Suciu, Reduced resonance schemes and Chen ranks, arxiv:2303.07855.
- M. Aprodu, G. Farkas, C. Raicu, A. Sammartano, A. Suciu, Higher resonance schemes and Koszul modules of simplicial complexes, arxiv:2309.00609.
- M. Aprodu, G. Farkas, C. Raicu, A. Suciu,

 An effective proof of the Chen ranks conjecture, in preparation.