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© RESONANCE AND KOSZUL MODULES
@ Resonance varieties
@ The BGG correspondence
@ Koszul modules
@ Reduced resonance schemes

e RESONANCE IN TOPOLOGY AND GROUP THEORY
@ Resonance varieties of spaces and groups
@ Hyperplane arrangements
@ Lower central series and Chen ranks

@© RESONANCE OF SIMPLICIAL COMPLEXES
@ Toric complexes and Stanley—Reisner rings
@ Square-free modules
@ Koszul complexes and reduced resonance
@ Right angled Artin groups
@ Chen ranks and resonance
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RESONANCE VARIETIES
o Let A® be a graded, graded-commutative, algebra (cga) over a field k

of characteristic 0, with multiplication maps A’ @, A/ — A'*/,
@ We assume A is connected (A% = k) and of finite-type (dimy A" < o).

For each a € A', graded commutativity gives a°> = —a?, and so a*> = 0.

We then have a cochain complex,

60 51 2
(A%,6,): AV Doqr %o g2

with differentials 6 (u) = a- u, for all ue A

The resonance varieties of A are the homogeneous sets

RI(A) = {ae Al | H'(A*,6,) # 0}.

RO(A) = {0}
o RYA)={ac Al |Ibe Al st. an be K\{0}} U {0}, where
K = ker(A1 A AL A2),
——TT



THE BGG CORRESPONDENCE

o Fix a k-basis {e1,...,e,} for AL, let {x1,...,x,} be the dual basis for
A; = (A1)Y, and identify Sym(A;) with S = k[xi, ..., x,], the
coordinate ring of the affine space A

@ The BGG correspondence yields a cochain complex of finitely
generated, free S-modules, L(A) := (A* ®k S, 9),

. oy gt
= AR S AT R S L A2 @ S

where 0, (u®s) = 27 ju® sx;.
o The specialization of (A®y S,d) at a € Al coincides with (A, d,).
o ac Al belongs to R/(A) iff rank 67 + rank 6/ < b;(A). Hence,
RI(A) = V(’m(A) (64" @62\)),
where /(1)) is the ideal of r x r minors of a matrix .
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EXAMPLES
o If E = AKk”" then L(E) is the usual Koszul complex. E.g., for n = 3:

—x2 —x3 0 x

(553 L ()
L(E): S 3 n s
Hence, R'(E) = {0} for 0 < i < n and empty otherwise.

o If A= A(e1, e, e3)/{e1er), then
(13
3 —X1 —X2

(X1 x2 x3)

S.

(x1 X2 X3)

L(A): S S S2.

Hence, R(A) = {x3 = 0}.

o If A= Ale1,...,eq)/{e1€3, €264, €16 + €364, then
xa 0 —xp
0 x3 x1

( 0 —x2 x4 )
4 \—Xx1 0 —x3
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L(A): s aee) g s3

Hence, Rl(A) = {X1X2 + X3Xq4 = 0}




KOSZUL MODULES
@ The Koszul modules of A: the graded S-modules W;(A) = H;(L(A)).

o Setting E* = /\A!, the first one has presentation

3v 1 (63) +1®id ov "
(B @K @S ———— B @S — Wi(A), (*)

where
Kt ={pe A n A = (AL A ALY | o =0} <45 Ay A Ay = E27.

@ The resonance schemes of A are defined by the annihilator ideals of
these S-modules:
R'(A) = Spec(S/ann W;(A)).

@ The underlying sets, R'(A) = supp W;(A) = Al, are related to the
resonance varieties by:

R4 = R (A)

i<q iI<q

e In particular, RY(A) = RY(A).
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o Recall K = ker(Al A Al — A2?),

o Let L = A! be a linear subspace. We say:
e Lis isotropic if LA L < K.

o L is separable if K n{Lyg € L A L, where E = A\ Al and (L)g is
the ideal of E generated by L.

EXAMPLE
o If K =0, then every subspace L = A! is separable

o If K = Al A Al, then every subspace L = Al is isotropic, but the only
separable subspace is the trivial one.

EXAMPLE

Let A= E/(K), where E = A(e1,...,es) and
K=< e1 nexyernes+e ey

Then RY(A) = (e, &) is isotropic but not separable.
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REDUCED RESONANCE SCHEMES
o Let R'(A) = L; U --- U Ls be the decomposition of R'(A) < Al into
irreducible components.

@ Letting Kj = K n (Lj A L;j), we define S-modules W{(A) as in (*).
@ Assume each component of R(A) is a linear subspace of Al.

THEOREM (AFRS)

(1) If each L; is separable, then the projectivized resonance scheme is
reduced and its components are disjoint.

(2) If the projectivized resonance scheme is reduced and each L; are
isotropic, then all its components are separable and disjoint.

(3) If each L; is separable, then dim[W1(A)]q = Y7_; dim[ W] (A)],.
(4) If each L; is separable and isotropic, then

q + dim Lj)
dim[ Wy (A Z ( .
e qg+2

o
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RESONANCE VARIETIES OF SPACES AND GROUPS

@ The resonance varieties of a connected, finite-type CW-complex X are
those of its cohomology algebra: R'(X) := R'(H*(X,k)).

e RY(X) depends only on G = 71(X).

@ The geometry of these varieties provides obstructions to the formality
of X (or 1-formality of G).

o They allow to distinguish between various classes of groups, such as
o Kahler groups
@ Quasi-projective groups
o Arrangement groups
@ 3-manifold groups
@ Right-angled Artin groups
@ Through their connections with other types of cohomology jump loci
(characteristic varieties, Bieri-Neumann—Strebel-Renz invariants),
they also inform on the homological and geometric finiteness
properties of spaces and groups.
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HYPERPLANE ARRANGEMENTS

o Let A be a complex hyperplane arrangement, with complement M(A).
Then A = H*(M, k) is the Orlik-Solomon algebra of A.

@ The components of the varieties R/ (M(.A)) are linear subspaces of
Al = kIl which depend solely on the intersection lattice L(.A).

@ The components Li,. .., Ls of R}(M(A)) admit an explicit
combinatorial description, in terms of “multinets” on L(A).

@ Moreover, each linear subspace L; = Al is isotropic (i.e., ab =0 € A?,
for every a,be L;), and L; n L; = {0} for i # j.

@ It is not known whether the above properties hold for the resonance
varieties of the OS-algebra of a non-realizable matroid.
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LOWER CENTRAL SERIES

Let G be a finitely-generated group. Define:
o LCSseriess G =G >G> >Gg>---, where Gy 1 =[Gy, G].

o LCS quotients: gr, (G) = Gi/Gk+1 (f.g. abelian groups).

LCS ranks: ¢x(G) = rankgr,(G).

o Associated graded Lie algebra: gr(G) = D~ gr(G), with Lie
bracket [, |: gr, x gry — gry,, induced by group commutator.

o Chen Lie algebra: gr(G/G"), where G' =[G, G|, G" =[G, G'].

Chen ranks: 0,(G) = rankgr, (G/G") (0x < ¢k, equality for k < 3).
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RESONANCE AND CHEN RANKS

EXAMPLE (WITT, MAGNUS, CHEN)
Let G = F, (free group of rank n). Then:
e gr(F,) = Lie, (free Lie algebra of rank n) is torsion free, with LCS
ranks ¢k (Fp) = %Zd“(u(d)nk/d, where 1 is Mobius function.

e gr(F,/F) is torsion-free, #1 = n and ) = (k — 1)("”;_2) for k = 2.

o

THEOREM (PAPADIMA-S. 2004)
If G is 1-formal, then 6, (G) = dimy Wy_2(G).

THEOREM (COHEN-SCHENCK 2015, AFRS)

Let G be a 1-formal group, and assume R*(G) has linear components

Ly,...,Ls which are separable and isotropic. Then, for all k > 0,
z k+dimL; —2
0k(G) = k—1 J .
(6= 3 (Y

V.
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TORIC COMPLEXES

o Let A < 20"l be a simplicial complex on vertex set [n] = {1,...,n}.

@ Let T be the subcomplex of the n-torus T" obtained by deleting the
cells corresponding to the missing simplices of A.

@ Tp is a connected, formal CW-complex of dimension dim(A) + 1.

@ (Kim—Roush 1980, Charney—Davis 1995) The cohomology algebra
H*(Ta;k) is the exterior Stanley—Reisner ring

k(A) = \V"/(es | 0 ¢ A),

where
e V =Kk", with basis vq,..., v,.
e V'V = Homy(V, k), with dual basis ey, ..., €.
@ e, =¢y A Aeg foro={i,... is} <[n].
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RESONANCE OF SIMPLICIAL COMPLEXES
e (Papadima—S. 2006/2009) The resonance varieties

RI(D) =R(Ta) = R'(kA))
are finite unions of coordinate subspaces of V' V:

RI(A) = U kY,

Wc(n]

JoeApw, Hi—1-|o|(Ikayy, () k)#0
where
e Ayy is the induced simplicial subcomplex on vertex set W < [n].
o lka,, (o) is the link of a simplex 0 < A in Aw.
o k" is the coordinate subspace of k” spanned by {e; | i € W}.

o (Denham-S.—Yuzvinsky 2017) Suppose A is Cohen—Macaulay over k
(H*(Ik(0),k) is concentrated in degree dim A — |o|, for all o € A).
Then resonance propagates: RY(A) € R?(A) < --- < RIMAFL(A),
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RESONANCE OF GRAPHS
e If [ is a (simple) graph on n vertices, then:

RM= | &

Wcln]
I'w disconnected

@ The irreducible components of R(I) are the coordinate subspaces

kW maximal among those for which Ny is disconnected.

@ The codimension of R(T") equals the connectivity of I". In particular,
if [ is disconnected, then RY(T") = k".

PrOPOSITION (AFRS)

Let T be a connected graph, let " be a maximally disconnected full
subgraph, and let L' be the corresponding component of R* (). Then:

e L’ is isotropic if and only if ' is discrete.
o L' is separable if and only if [ =T"xT".

Hence, isotropic implies separable for the resonance varieties of graphs.

v

ALEX Sucru 2RIV LTS VN I A AU IRV ool HARVARD APRIL 26, 2023 15 /23




SQUARE-FREE MODULES

o Consider the standard N”-multigrading on S = k[xi, ..., x,], defined
by deg(x;) = e; € N", where ¢; = (0,...,1,...,0).

e Fora=(a1,...,an) €N, set Supp(a) :={i | a; > 0}.

DEFINITION (YANAGAWA 2000)

An N"-graded S-module M is called square-free if for any a € N” and any
i € Supp(a), the multiplication map x;: My — M, is an isomorphism.

@ Anideal /| € S is a square-free module <= | is a square-free
monomial ideal <= S// is a square-free module.

@ A free N"-graded S-module is square-free if and only it is generated in
square-free multidegrees.
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PROPOSITION

If f: M — N is a morphism of N"-graded S-modules, and M and N are
square-free modules, then ker(f) and coker(f) are also square-free.
Moreover, if 0 - M’ — M — M"” — 0 is an exact sequence of N"-graded
S-modules, and M' and M" are square-free, then so is M.

COROLLARY

Let M be an N"-graded square-free S-module. Then all the modules in the
minimal free N"-graded resolution of M are square-free.

COROLLARY

If F is a bounded complex of free square-free S-modules, then the
homology modules of F are also square-free.

THEOREM (AFRSS)

If M is an N"-graded, square-free S-module, then its annihilator is a
square-free monomial ideal. In particular, ann M is a radical ideal.
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KOSZUL COMPLEXES AND REDUCED RESONANCE

o Fix a basis vi,..., v, for V, and let K, = L(/\V) be the Koszul
complex of x1,. .., x,, whose i-th free S-module is K; = A\'V ® S.

@ Set deg(v;) = e; € N™. Then K, is a complex of N"-graded square-free
S-modules.

e For a simplicial complex A on vertex set [n] we have L(k(A)) = K£,
where K2 is the subcomplex of K, whose i-th module K£ is the free
S-module generated by {v, | 0 € A}.

PROPOSITION

For each i > 0, the Koszul module W;(A) = H;(K2) is an N"-graded,
square-free S-module.

o By definition, the i-th resonance scheme R/(A) is the affine
subscheme of V' defined by the annihilator of W;(A).

COROLLARY

The resonance schemes R'(A) are reduced.
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@ As an application, we obtain upper bounds on the Castelnuovo—
Mumford regularity and the projective dimension of the Koszul
modules of any simplicial complex A on n vertices.

PROPOSITION

W;(A) has regularity at most n and projective dimension at most n — i — 1.
Moreover, if A is a graph and n = 4, then reg Wi (A) < n— 4.

@ We also compute the Hilbert series of the Koszul modules W;(A).

THEOREM
- N
Didim [Wi(A). 17 = > dimg Hi(Apk) () :
11—t
aeN beN"

b square-free

where Ay, = ASupp(b) and |b| =by + -+ bp.
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RIGHT ANGLED ARTIN GROUPS

@ The fundamental group Gr = m1(Ta) is the RAAG associated to the
graph T = A0 = (V,E),
Gr=<{veV|[v,w]=1if{v,w}eE).

e Moreover, K(Gr,1) = Ta,, where Ar is the flag complex of T
o (Kim—Makar-Limanov—Neggers—Roush 1980, Droms 1987)
r%r/<:)Gr§Gr/.

o (Papadima—S. 2006) The associated graded Lie algebra gr(Gr) has
(quadratic) presentation

gr(Gr) = Lie(V)/([v, w] = 0 if {v,w} € E).

o (Duchamp—Krob 1992, PS06) The lower central series quotients of Gr
are torsion-free, with ranks ¢, given by

0
szl(l B tk)¢k = Pr(_t)a
where Pr(t) = 3,-, fc(Ar)t" is the clique polynomial of T.
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CHEN RANKS
o (PS 06) gr(Gr/G/) is torsion-free, with ranks given by ¢; = |V| and

- t
k=2 N
o Here Qr(t) =22, cj(MN)t/ is the “cut polynomial" of T, with

(M= > bo(Tw).

WcV: |W|=j

EXAMPLE
Let ' be a pentagon and " a square with edge attached to a vertex. Then:
® Pr=Pr =1+5t+5t% and so ¢4 (Gr) = ¢x(Gr), for all k > 1

o Qr =5t%+5¢t3 but Qr = 5t% + 53 + t*, and so 0, (Gr) # 0x(Gr),
for k > 4.
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EXAMPLE
Let I and " be the two graphs above. Both have

P(t)=1+6t+9t>+4t>, and Q(t) = t*(6+ 8t + 3t2).

Thus, Gr and Gr/ have the same LCS and Chen ranks.
Each resonance variety has 3 components, of codimension 2:

RN =kBUk® Uk®, RY)=k® Uk® UK®.
Yet the two varieties are not isomorphic, since

dim(kB Ak A k®) =3, but dim(k® A k® k) = 2.

o
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