Resonance schemes and Hilbert series for Koszul modules

Alex Suciu

Northeastern University

MIT-Harvard-MSR Combinatorics Seminar

Harvard University

April 26, 2023

ALEX SUCIU

1 Resonance and Koszul modules

- Resonance varieties
- The BGG correspondence
- Koszul modules
- Reduced resonance schemes

2 Resonance in topology and group theory

- Resonance varieties of spaces and groups
- Hyperplane arrangements
- Lower central series and Chen ranks

3 Resonance of simplicial complexes

- Toric complexes and Stanley-Reisner rings
- Square-free modules
- Koszul complexes and reduced resonance
- Right angled Artin groups
- Chen ranks and resonance

RESONANCE VARIETIES

- Let A[•] be a graded, graded-commutative, algebra (cga) over a field k of characteristic 0, with multiplication maps Aⁱ ⊗_k A^j → A^{i+j}.
- We assume A is connected $(A^0 = \Bbbk)$ and of finite-type $(\dim_{\Bbbk} A^i < \infty)$.
- For each $a \in A^1$, graded commutativity gives $a^2 = -a^2$, and so $a^2 = 0$.
- We then have a cochain complex,

$$(A^{\bullet}, \delta_{a}): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u$, for all $u \in A^i$.

- The resonance varieties of A are the homogeneous sets $\mathcal{R}^{i}(A) = \{a \in A^{1} \mid H^{i}(A^{\bullet}, \delta_{a}) \neq 0\}.$
- $\mathcal{R}^{0}(A) = \{0\}$
- $\mathcal{R}^1(A) = \{a \in A^1 \mid \exists b \in A^1 \text{ s.t. } a \land b \in K \setminus \{0\}\} \cup \{0\}$, where $K = \ker(A^1 \land A^1 \to A^2)$.

ALEX SUCIU

THE BGG CORRESPONDENCE

- Fix a k-basis {e₁,..., e_n} for A¹, let {x₁,..., x_n} be the dual basis for A₁ = (A¹)[∨], and identify Sym(A₁) with S = k[x₁,..., x_n], the coordinate ring of the affine space A¹.
- The BGG correspondence yields a cochain complex of finitely generated, free S-modules, L(A) := (A[•] ⊗_k S, δ),

$$\cdots \longrightarrow A^{i} \otimes_{\Bbbk} S \xrightarrow{\delta^{i}_{A}} A^{i+1} \otimes_{\Bbbk} S \xrightarrow{\delta^{i+1}_{A}} A^{i+2} \otimes_{\Bbbk} S \longrightarrow \cdots,$$

where $\delta_A^i(u \otimes s) = \sum_{j=1}^n e_j u \otimes sx_j$.

- The specialization of $(A \otimes_{\Bbbk} S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) .
- $a \in A^1$ belongs to $\mathcal{R}^i(A)$ iff rank $\delta_a^{i-1} + \operatorname{rank} \delta_a^i < b_i(A)$. Hence,

$$\mathcal{R}^{i}(A) = V\Big(I_{b_{i}(A)}\big(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\big)\Big),$$

where $I_r(\psi)$ is the ideal of $r \times r$ minors of a matrix ψ .

EXAMPLES

• If $E = \bigwedge \mathbb{k}^n$, then L(E) is the usual Koszul complex. E.g., for n = 3: $L(E): S \xrightarrow{(x_1 x_2 x_3)} S^3 \xrightarrow{\begin{pmatrix} -x_2 -x_3 & 0 \\ x_1 & 0 & -x_3 \\ 0 & x_1 & x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_3 \\ -x_2 \\ x_1 \end{pmatrix}} S$ Hence, $\mathcal{R}^i(E) = \{0\}$ for $0 \le i \le n$ and empty otherwise.

• If $A = \bigwedge (e_1, e_2, e_3) / \langle e_1 e_2 \rangle$, then $L(A) : S \xrightarrow{(x_1 x_2 x_3)} S^3 \xrightarrow{\begin{pmatrix} x_3 & 0 \\ 0 & x_3 \\ -x_1 & -x_2 \end{pmatrix}} S^2 .$ Hence, $\mathcal{R}^1(A) = \{x_3 = 0\}.$

• If $A = \bigwedge (e_1, \ldots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$, then

$$L(A): S \xrightarrow{(x_1 \ x_2 \ x_3 \ x_4)} S^4 \xrightarrow{\begin{pmatrix} x_4 & 0 & -x_2 \\ 0 & x_3 & x_1 \\ 0 & -x_2 & x_4 \\ -x_1 & 0 & -x_3 \end{pmatrix}} S^3.$$

Hence, $\mathcal{R}^1(A) = \{x_1x_2 + x_3x_4 = 0\}.$

KOSZUL MODULES

- The Koszul modules of A: the graded S-modules $W_i(A) = H_i(L(A))$.
- Setting $E^{\bullet} = \bigwedge A^1$, the first one has presentation

$$\begin{pmatrix} E^{3^{\vee}} \oplus K^{\perp} \end{pmatrix} \otimes_{\Bbbk} S \xrightarrow{(\delta_{E}^{3})^{\vee} + \iota \otimes \mathsf{id}} E^{2^{\vee}} \otimes_{\Bbbk} S \longrightarrow W_{1}(A), \quad (*)$$
where
$$K^{\perp} = \{ \varphi \in A_{1} \land A_{1} = (A^{1} \land A^{1})^{\vee} \mid \varphi_{K} \equiv 0 \} \stackrel{\iota}{\longleftrightarrow} A_{1} \land A_{1} = E^{2^{\vee}}.$$

• The *resonance schemes* of *A* are defined by the annihilator ideals of these *S*-modules:

$$\mathcal{R}^{i}(A) = \operatorname{Spec}(S/\operatorname{ann} W_{i}(A)).$$

• The underlying sets, $\mathsf{R}^{i}(A) = \operatorname{supp} W_{i}(A) \subset A^{1}$, are related to the resonance varieties by:

$$\bigcup_{i \leqslant q} \mathsf{R}^{i}(A) = \bigcup_{i \leqslant q} \mathcal{R}^{i}(A).$$

• In particular, $\mathsf{R}^1(A) = \mathcal{R}^1(A)$.

- Recall $K = \ker(A^1 \wedge A^1 \to A^2)$.
- Let $L \subseteq A^1$ be a linear subspace. We say:
 - *L* is *isotropic* if $L \wedge L \subseteq K$.
 - *L* is separable if $K \cap \langle L \rangle_E \subseteq L \wedge L$, where $E = \bigwedge A^1$ and $\langle L \rangle_E$ is the ideal of *E* generated by *L*.

EXAMPLE

- If K = 0, then every subspace $L \subseteq A^1$ is separable
- If $K = A^1 \wedge A^1$, then every subspace $L \subseteq A^1$ is isotropic, but the only separable subspace is the trivial one.

EXAMPLE

Let
$$A = E/(K)$$
, where $E = \bigwedge (e_1, \dots, e_4)$ and
 $K = \langle e_1 \land e_2, e_1 \land e_3 + e_2 \land e_4 \rangle$.
Then $\mathcal{R}^1(A) = \langle e_1, e_2 \rangle$ is isotropic but not separable.

REDUCED RESONANCE SCHEMES

- Let $\mathcal{R}^1(A) = L_1 \cup \cdots \cup L_s$ be the decomposition of $\mathcal{R}^1(A) \subset A^1$ into irreducible components.
- Letting $K_j = K \cap (L_j \wedge L_j)$, we define S-modules $W_1^j(A)$ as in (*).
- Assume each component of $\mathcal{R}^1(A)$ is a linear subspace of A^1 .

THEOREM (AFRS)

- (1) If each L_j is separable, then the projectivized resonance scheme is reduced and its components are disjoint.
- (2) If the projectivized resonance scheme is reduced and each L_j are isotropic, then all its components are separable and disjoint.
- (3) If each L_j is separable, then $\dim[W_1(A)]_q = \sum_{j=1}^s \dim[W_1^i(A)]_q$.
- (4) If each L_j is separable and isotropic, then

$$\dim[W_1(A)]_q = \sum_{j=1}^s (q+1) \binom{q+\dim L_j}{q+2}.$$

RESONANCE VARIETIES OF SPACES AND GROUPS

- The resonance varieties of a connected, finite-type CW-complex X are those of its cohomology algebra: Rⁱ(X) := Rⁱ(H[●](X, k)).
- $\mathcal{R}^1(X)$ depends only on $G = \pi_1(X)$.
- The geometry of these varieties provides obstructions to the formality of X (or 1-formality of G).
- They allow to distinguish between various classes of groups, such as
 - Kähler groups
 - Quasi-projective groups
 - Arrangement groups
 - 3-manifold groups
 - Right-angled Artin groups
- Through their connections with other types of cohomology jump loci (characteristic varieties, Bieri-Neumann-Strebel-Renz invariants), they also inform on the homological and geometric finiteness properties of spaces and groups.

HYPERPLANE ARRANGEMENTS

- Let A be a complex hyperplane arrangement, with complement M(A). Then A = H[●](M, k) is the Orlik–Solomon algebra of A.
- The components of the varieties $\mathcal{R}^{i}(\mathcal{M}(\mathcal{A}))$ are linear subspaces of $\mathcal{A}^{1} = \Bbbk^{|\mathcal{A}|}$, which depend solely on the intersection lattice $L(\mathcal{A})$.
- The components L₁,..., L_s of R¹(M(A)) admit an explicit combinatorial description, in terms of "multinets" on L(A).
- Moreover, each linear subspace L_j ⊂ A¹ is *isotropic* (i.e., ab = 0 ∈ A², for every a, b ∈ L_j), and L_i ∩ L_j = {0} for i ≠ j.
- It is not known whether the above properties hold for the resonance varieties of the OS-algebra of a non-realizable matroid.

LOWER CENTRAL SERIES

Let G be a finitely-generated group. Define:

- LCS series: $G = G_1 \triangleright G_2 \triangleright \cdots \triangleright G_k \triangleright \cdots$, where $G_{k+1} = [G_k, G]$.
- LCS quotients: $gr_k(G) = G_k/G_{k+1}$ (f.g. abelian groups).
- LCS ranks: $\phi_k(G) = \operatorname{rank} \operatorname{gr}_k(G)$.
- Associated graded Lie algebra: gr(G) = ⊕_{k≥1} gr_k(G), with Lie bracket [,]: gr_k × gr_ℓ → gr_{k+ℓ} induced by group commutator.
- Chen Lie algebra: gr(G/G''), where G' = [G, G], G'' = [G', G'].

• Chen ranks: $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$ ($\theta_k \leq \phi_k$, equality for $k \leq 3$).

RESONANCE AND CHEN RANKS

EXAMPLE (WITT, MAGNUS, CHEN)

Let $G = F_n$ (free group of rank n). Then:

• $\operatorname{gr}(F_n) = \operatorname{Lie}_n$ (free Lie algebra of rank *n*) is torsion free, with LCS ranks $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{k/d}$, where μ is Möbius function.

• $\operatorname{gr}(F_n/F_n'')$ is torsion-free, $\theta_1 = n$ and $\theta_k = (k-1)\binom{n+k-2}{k}$ for $k \ge 2$.

THEOREM (PAPADIMA-S. 2004)

If G is 1-formal, then $\theta_k(G) = \dim_k W_{k-2}(G)$.

THEOREM (COHEN-SCHENCK 2015, AFRS)

Let G be a 1-formal group, and assume $\mathcal{R}^1(G)$ has linear components L_1, \ldots, L_s which are separable and isotropic. Then, for all $k \gg 0$,

$$\theta_k(G) = \sum_{j=1}^s (k-1) \binom{k+\dim L_j-2}{k}.$$

TORIC COMPLEXES

- Let $\Delta \subseteq 2^{[n]}$ be a simplicial complex on vertex set $[n] = \{1, \ldots, n\}$.
- Let T_Δ be the subcomplex of the *n*-torus Tⁿ obtained by deleting the cells corresponding to the missing simplices of Δ.
- T_{Δ} is a connected, formal CW-complex of dimension dim $(\Delta) + 1$.
- (Kim–Roush 1980, Charney–Davis 1995) The cohomology algebra H[•](T_△; k) is the exterior Stanley–Reisner ring

$$\Bbbk \langle \Delta \rangle = \bigwedge V^{\vee} / (e_{\sigma} \mid \sigma \notin \Delta),$$

where

•
$$V = \mathbb{k}^n$$
, with basis v_1, \ldots, v_n .
• $V^{\vee} = \operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, with dual basis e_1, \ldots, e_n .
• $e_{\sigma} = e_{i_1} \wedge \cdots \wedge e_{i_s}$ for $\sigma = \{i_1, \ldots, i_s\} \subseteq [n]$.

RESONANCE OF SIMPLICIAL COMPLEXES

• (Papadima-S. 2006/2009) The resonance varieties

$$\mathcal{R}^{i}(\Delta) \coloneqq \mathcal{R}^{i}(\mathcal{T}_{\Delta}) = \mathcal{R}^{i}(\Bbbk \langle \Delta \rangle)$$

are finite unions of coordinate subspaces of V^{\vee} :

$$\mathcal{R}^{i}(\Delta) = \bigcup_{\substack{\mathsf{W} \subseteq [n] \\ \exists \sigma \in \Delta_{[n] \setminus \mathsf{W}}, \ \widetilde{\mathcal{H}}_{i-1-|\sigma|}(\mathsf{lk}_{\Delta_{\mathsf{W}}}(\sigma), \Bbbk) \neq 0}} \Bbbk^{\mathsf{W}},$$

where

- Δ_W is the induced simplicial subcomplex on vertex set $W \subseteq [n]$.
- $lk_{\Delta_W}(\sigma)$ is the link of a simplex $\sigma \subset \Delta$ in Δ_W .
- \mathbb{k}^{W} is the coordinate subspace of \mathbb{k}^{n} spanned by $\{\mathbf{e}_{i} \mid i \in \mathsf{W}\}$.

• (Denham–S.–Yuzvinsky 2017) Suppose Δ is Cohen–Macaulay over \Bbbk $(\widetilde{H}^{\bullet}(lk(\sigma), \Bbbk)$ is concentrated in degree dim $\Delta - |\sigma|$, for all $\sigma \in \Delta$). Then resonance propagates: $\mathcal{R}^{1}(\Delta) \subseteq \mathcal{R}^{2}(\Delta) \subseteq \cdots \subseteq \mathcal{R}^{\dim \Delta + 1}(\Delta)$.

Alex Suciu

RESONANCE OF GRAPHS

• If Γ is a (simple) graph on *n* vertices, then:

$$\mathcal{R}^1(\Gamma) = \bigcup_{\substack{\mathsf{W} \subseteq [n]\\ \Gamma_\mathsf{W} \text{ disconnected}}} \Bbbk^\mathsf{W}.$$

- The irreducible components of $\mathcal{R}^1(\Gamma)$ are the coordinate subspaces \Bbbk^W , maximal among those for which Γ_W is disconnected.
- The codimension of $\mathcal{R}^1(\Gamma)$ equals the connectivity of Γ . In particular, if Γ is disconnected, then $\mathcal{R}^1(\Gamma) = \Bbbk^n$.

PROPOSITION (AFRS)

Let Γ be a connected graph, let Γ' be a maximally disconnected full subgraph, and let L' be the corresponding component of $\mathcal{R}^1(\Gamma)$. Then:

- L' is isotropic if and only if Γ' is discrete.
- L' is separable if and only if $\Gamma = \Gamma' * \Gamma''$.

Hence, isotropic implies separable for the resonance varieties of graphs.

SQUARE-FREE MODULES

- Consider the standard Nⁿ-multigrading on S = k[x₁,..., x_n], defined by deg(x_i) = e_i ∈ Nⁿ, where e_i = (0,...,1,...,0).
- For $a = (a_1, \ldots, a_n) \in \mathbb{N}$, set $Supp(a) := \{i \mid a_i > 0\}$.

DEFINITION (YANAGAWA 2000)

An \mathbb{N}^n -graded *S*-module *M* is called *square-free* if for any $a \in \mathbb{N}^n$ and any $i \in \text{Supp}(a)$, the multiplication map $x_i \colon M_a \to M_{a+e_i}$ is an isomorphism.

- An ideal *I* ⊆ *S* is a square-free module → *I* is a square-free monomial ideal → *S/I* is a square-free module.
- A free ℕⁿ-graded *S*-module is square-free if and only it is generated in square-free multidegrees.

PROPOSITION

If $f: M \to N$ is a morphism of \mathbb{N}^n -graded S-modules, and M and N are square-free modules, then ker(f) and coker(f) are also square-free. Moreover, if $0 \to M' \to M \to M'' \to 0$ is an exact sequence of \mathbb{N}^n -graded S-modules, and M' and M'' are square-free, then so is M.

COROLLARY

Let M be an \mathbb{N}^n -graded square-free S-module. Then all the modules in the minimal free \mathbb{N}^n -graded resolution of M are square-free.

COROLLARY

If F is a bounded complex of free square-free S-modules, then the homology modules of F are also square-free.

THEOREM (AFRSS)

If M is an \mathbb{N}^n -graded, square-free S-module, then its annihilator is a square-free monomial ideal. In particular, ann M is a radical ideal.

ALEX SUCIU

Koszul complexes and reduced resonance

- Fix a basis v₁,..., v_n for V, and let K_● = L(∧V) be the Koszul complex of x₁,..., x_n, whose *i*-th free S-module is K_i = ∧ⁱV ⊗_k S.
- Set $deg(v_i) = e_i \in \mathbb{N}^n$. Then K_• is a complex of \mathbb{N}^n -graded square-free *S*-modules.
- For a simplicial complex Δ on vertex set [n] we have L(k⟨Δ⟩) = K^Δ_•, where K^Δ_• is the subcomplex of K_• whose *i*-th module K^Δ_i is the free S-module generated by {v_σ | σ ∈ Δ}.

PROPOSITION

For each i > 0, the Koszul module $W_i(\Delta) = H_i(\mathsf{K}^{\Delta}_{\bullet})$ is an \mathbb{N}^n -graded, square-free S-module.

By definition, the *i*-th resonance scheme *Rⁱ*(Δ) is the affine subscheme of V[∨] defined by the annihilator of W_i(Δ).

COROLLARY

The resonance schemes $\mathcal{R}^{i}(\Delta)$ are reduced.

• As an application, we obtain upper bounds on the Castelnuovo-Mumford regularity and the projective dimension of the Koszul modules of any simplicial complex Δ on *n* vertices.

PROPOSITION

 $W_i(\Delta)$ has regularity at most n and projective dimension at most n - i - 1. Moreover, if Δ is a graph and $n \ge 4$, then reg $W_1(\Delta) \le n - 4$.

• We also compute the Hilbert series of the Koszul modules $W_i(\Delta)$.

THEOREM

whe

$$\sum_{a \in \mathbb{N}} \dim_{\mathbb{K}} [W_i(\Delta)]_a t^a = \sum_{\substack{b \in \mathbb{N}^n \\ b \text{ square-free}}} \dim_{\mathbb{K}} \widetilde{H}_i(\Delta_b; \mathbb{K}) \left(\frac{t}{1-t}\right)^{|\mathcal{O}|},$$

re $\Delta_b = \Delta_{\text{Supp}(b)}$ and $|b| = b_1 + \dots + b_n.$

. 161

RIGHT ANGLED ARTIN GROUPS

- The fundamental group $G_{\Gamma} = \pi_1(T_{\Delta})$ is the RAAG associated to the graph $\Gamma = \Delta^{(1)} = (V, E)$, $G_{\Gamma} = \langle v \in V \mid [v, w] = 1 \text{ if } \{v, w\} \in E \rangle.$
- Moreover, $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- (Kim–Makar-Limanov–Neggers–Roush 1980, Droms 1987) $\Gamma \cong \Gamma' \iff G_{\Gamma} \cong G_{\Gamma'}.$
- (Papadima–S. 2006) The associated graded Lie algebra ${\rm gr}(G_{\Gamma})$ has (quadratic) presentation

$$gr(\mathit{G}_{\Gamma}) = Lie(V)/([\mathit{v},\mathit{w}] = 0 \text{ if } \{\mathit{v},\mathit{w}\} \in E).$$

• (Duchamp–Krob 1992, PS06) The lower central series quotients of G_{Γ} are torsion-free, with ranks ϕ_k given by

$$\prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = P_{\Gamma}(-t),$$

where $P_{\Gamma}(t) = \sum_{k \ge 0} f_k(\Delta_{\Gamma}) t^k$ is the clique polynomial of Γ .

CHEN RANKS

• (PS 06) $\operatorname{gr}(G_{\Gamma}/G_{\Gamma}'')$ is torsion-free, with ranks given by $\theta_1 = |V|$ and

$$\sum_{k=2}^{\infty} \theta_k t^k = Q_{\Gamma} \left(\frac{t}{1-t} \right)$$

• Here $Q_{\Gamma}(t) = \sum_{j \ge 2} c_j(\Gamma) t^j$ is the "cut polynomial" of Γ , with

$$c_j(\Gamma) = \sum_{\mathsf{W}\subset\mathsf{V}\colon|\mathsf{W}|=j} \tilde{b}_0(\Gamma_\mathsf{W}).$$

EXAMPLE

Let Γ be a pentagon and Γ' a square with edge attached to a vertex. Then:

- $P_{\Gamma} = P_{\Gamma'} = 1 + 5t + 5t^2$, and so $\phi_k(G_{\Gamma}) = \phi_k(G_{\Gamma'})$, for all $k \ge 1$.
- $Q_{\Gamma} = 5t^2 + 5t^3$ but $Q_{\Gamma'} = 5t^2 + 5t^3 + t^4$, and so $\theta_k(G_{\Gamma}) \neq \theta_k(G_{\Gamma'})$, for $k \ge 4$.

EXAMPLE

Let Γ and Γ' be the two graphs above. Both have

$$P(t) = 1 + 6t + 9t^2 + 4t^3$$
, and $Q(t) = t^2(6 + 8t + 3t^2)$.

Thus, G_{Γ} and $G_{\Gamma'}$ have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2:

$$\mathcal{R}^1(\Gamma) = \Bbbk^{\overline{23}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{35}}, \qquad \mathcal{R}^1(\Gamma') = \Bbbk^{\overline{15}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{26}}.$$

Yet the two varieties are not isomorphic, since

$$\mathsf{dim}(\Bbbk^{\overline{23}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{35}}) = 3, \quad \mathsf{but} \quad \mathsf{dim}(\Bbbk^{\overline{15}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{26}}) = 2$$

- M. Aprodu, G. Farkas, C. Raicu, A. Suciu, Reduced resonance schemes and Chen ranks, <u>arxiv:2303.07855</u>.
- M. Aprodu, G. Farkas, C. Raicu, A. Sammartano, A. Suciu, *Higher resonance schemes and Koszul modules of simplicial complexes*, <u>arxiv:2309.00609</u>.
- M. Aprodu, G. Farkas, C. Raicu, A. Suciu, *An effective proof of the Chen ranks conjecture*, in preparation.