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OUTLINE

@ RESONANCE AND KOSZUL MODULES
@ Resonance varieties
@ The BGG correspondence
@ Koszul modules
@ Reduced resonance schemes

e RESONANCE IN TOPOLOGY AND GROUP THEORY
@ Resonance varieties of spaces and groups
@ Resonance and Chen ranks

© RESONANCE OF STANLEY—REISNER RINGS
@ Square-free modules
@ Toric complexes
Koszul modules of simplicial complexes
Resonance of simplicial complexes
Cohen—Macaulay complexes and propagation
Resonance of graphs
Regularity and Hilbert series
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RESONANCE AND KOSZUL MODULES RESONANCE VARIETIES

RESONANCE VARIETIES

@ Let A® be a graded, graded-commutative, algebra (cga) over a field k
of characteristic 0, with multiplication maps A’ @, A/ — A'*/.
@ We assume A is connected (A° = k) and of finite-type (dimy A" < o).

2:

@ For each a € A!, graded commutativity gives a a°, and so a°> = 0.

@ We then have a cochain complex,

b _ g2 %

(A%,5,): A0 a1
with differentials 6 (u) = a- u, for all ue A"
@ The resonance varieties of A are the homogeneous sets
RI(A) = {ae A' | H/(A®,5,) # 0}.

o RO(A) = {0}; R*A) ={ae Al |Ibe Al st. an be K\{0}} u {0},
where K = ker(A! A Al — A?),
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REsONANCE AND KoszuL mMobuLEs THE BGG CORRESPONDENCE

THE BGG CORRESPONDENCE

o Fix a k-basis {e1,...,e,} for AL, let {x1,...,x,} be the dual basis for
A; = (A1)Y, and identify Sym(A1) with S = k[xi, ..., x,], the
coordinate ring of the affine space A

@ The BGG correspondence yields a cochain complex of finitely
generated, free S-modules, L(A) := (A* ®k S, 9),
. Sy g AR
> AR S AT R S L AT kS ——=---,

where 4 (u®s) = 216U @ sX.
e The specialization of (A®y S,d) at a € A coincides with (A, d,).
o ac Al belongs to R/(A) iff rank 6:~1 + rank §), < b;(A). Hence,

RIA) = V() (95 ©6%)),

where /,(1)) is the ideal of r x r minors of a matrix .
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RESONANCE AND Ko0SZUL MODULES KoszuL MODULES

KOSzZULL MODULES

@ The Koszul modules of A: the graded S-modules W;(A) = H;(L(A)).

@ Setting E® = /\Al, the first one has presentation

v 53)Y +1®id v
(B @Kk )@ s V% v s wa(a), (%)
where

Kt={peAnAr= (A" A AY)Y | ok =0} 5 Ay n A= B2

@ The resonance schemes of A are defined by the annihilator ideals of
these S-modules:

Ri(A) = Spec(S/Ann W;(A)).

o The underlying sets, R;(A) = supp W;(A) c A%, are related to the
resonance varieties by:

U Ri(A) = U RI(A).
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RESONANCE AND Ko0SZUL MODULES KoszuL MODULES
@ Recall K = ker(Al A Al — A2),

o Let L = A! be a linear subspace. We say:
e Lis isotropic if LA L < K.

o L is separable if K n{Lyg € L A L, where E = A\ Al and (L)g is
the ideal of E generated by L.

EXAMPLE

o If K =0, then every subspace L = A! is separable
o If K= Al A Al, then every subspace L = A! is isotropic, but the only
separable subspace is the trivial one.

EXAMPLE
Let A= E/(K), where E = A(e1,...,es) and

K={e1 nexelne+e A e

Then RY(A) = ey, &) is isotropic but not separable.
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RESONANCE AND KOSZUL MODULES REDUCED RESONANCE SCHEMES

REDUCED RESONANCE SCHEMES

o Let RY(A) = Ly U --- U Lg be the decomposition of R!(A) = Al into
irreducible components.

o Letting Kj = K n (Lj A Lj), we define S-modules W{(A) as in (*).
o Assume each component of R(A) is a linear subspace of A.

THEOREM (AFRS)

(1) If each L; is separable, then the projectivized resonance scheme is
reduced and its components are disjoint.

(2) If the projectivized resonance scheme is reduced and each L; are
isotropic, then all its components are separable and disjoint.

(3) If each L; is separable, then dim[W1(A)]q = >5;_; dim[ W] (A)]q.
(4) If each L; is separable and isotropic, then

dim[Wa(A)]q = > (g +1) (" - dim Lf).

O qg+2
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RESONANCE IN TOPOLOGY AND GROUP THEORY RESONANCE VARIETIES OF SPACES AND GROUPS

RESONANCE VARIETIES OF SPACES AND GROUPS

@ The resonance varieties of a connected, finite-type CW-complex X are
those of its cohomology algebra:

RI(X) == R'(H*(X,k)) and R;(X) :== R;i(H*(X,k)).
e RY(X) depends only on G = 71(X).

@ The geometry of these varieties provides obstructions to the formality
of X (or the 1-formality of G). E.g., if G is 1-formal, then all
components of R*(G) are linear (Dimca—Papadima-S. 2009).

o They allow to distinguish between various classes of groups, such as
Kahler groups, quasi-projective groups, hyperplane arrangement
groups, 3-manifold groups, and right-angled Artin groups.

@ Through their connections with other types of cohomology jump loci
(characteristic varieties, BNSR invariants), they inform on the
homological and geometric finiteness properties of spaces and groups.
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RESONANCE IN TOPOLOGY AND GROUP THEORY RESONANCE AND CHEN RANKS

RESONANCE AND CHEN RANKS

Let G be a finitely-generated group. Define:
@ LCSseriess G =Gy >G>+ =G=---, where Gy 1 =[Gy, G].
e LCS quotients: gr, (G) = Gi/Gk+1 (f.g. abelian groups).

o Associated graded Lie algebra: gr(G) = D~ gr(G), with Lie
bracket [, |: gr, x gry — gry,, induced by group commutator.

o Chen Lie algebra: gr(G/G"), where G' =[G, G], G" =[G, G'].
o Chen ranks: 0,(G) = rankgr,(G/G").

ExampLE (K.-T. CHEN 1951)

Let F, be the free group of rank n > 2. Then #; = n and
Ok = (k —1)(""572) for k > 2.
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RESONANCE IN TOPOLOGY AND GROUP THEORY RESONANCE AND CHEN RANKS

ExXAMPLE (COHEN-S. 1995)

Let P, be the pure braid group on n > 2 strings. Then 61 = (3), 6> = (3),
and 0, = (k — )("H) for k = 3.

o Let Wi(G) := Wi(H<?(G,k)) be the (first) Koszul module of G,
viewed as a graded module over S = k[xi, ..., x|, where n = b1 (G).

THEOREM (PAPADIMA-S. 2004)
If G is 1-formal, then 0,(G) = dimy[Wi(G)]x—2 for all k = 2

THEOREM (COHEN-SCHENCK 2015, AFRS 2023)

Let G be a 1-formal group, and assume R*(G) has linear components

Ly,...,Ls which are separable and isotropic. Then, for all k » 0,
° k+dimL; —2
=Y (k-1 J :
0k(G) J;( )( K >

o
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RESONANCE OF STANLEY—REISNER RINGS SQUARE-FREE MODULES

SQUARE-FREE MODULES

o Consider the standard N"-multigrading on S = k[xq, ..., x,], defined
by deg(x;) = e; € N”, where ¢; = (0,...,1,...,0).

e Fora=(a1,...,an) €N, set Supp(a) :={i | a; > 0}.

DEFINITION (YANAGAWA 2000)

An N"-graded S-module M is called square-free if for any a € N” and any
i € Supp(a), the multiplication map x;: My — M, is an isomorphism.

@ Anideal / € S is a square-free module < [ is a square-free
monomial ideal <= S// is a square-free module.

@ A free N"-graded S-module is square-free if and only it is generated in
square-free multidegrees.
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RESONANCE OF STANLEY—REISNER RINGS SQUARE-FREE MODULES

PROPOSITION

If f: M — N is a morphism of N"-graded S-modules, and M and N are
square-free modules, then ker(f) and coker(f) are also square-free.
Moreover, if 0 — M — M — M"” — 0 is an exact sequence of N"-graded
S-modules, and M’" and M" are square-free, then so is M.

COROLLARY

Let M be an N"-graded square-free S-module. Then all the modules in the
minimal free N"-graded resolution of M are square-free.

COROLLARY

If F is a bounded complex of free, square-free S-modules, then the
homology modules of F are also square-free.

ProprosITION (AFRSS 2023)

If M is an N"-graded, square-free S-module, then its annihilator is a
square-free monomial ideal. In particular, Ann M is a radical ideal.
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RESONANCE OF STANLEY—REISNER RINGS  TORIC COMPLEXES

TORIC COMPLEXES AND STANLEY-REISNER RINGS

o Let A < 2"l be a simplicial complex on vertex set [n] = {1,...,n}.

Let Ta be the subcomplex of the n-torus T" obtained by deleting the
cells corresponding to the missing simplices of A.

@ Tp is a connected, formal CW-complex of dimension dim(A) + 1. It is
a K(G,1) if and only if A is a flag complex.

The fundamental group Gr = 71(Ta) is the RAAG associated to the
graph I = AW = (V,E),
Gr={veV |[v,w]=1if{v,w}eE).

o (Papadima—S. 2006) The associated graded Lie algebra gr(Gr) has
(quadratic) presentation

gr(Gr) = Lie(V)/([v,w] = 0if {v,w} € E).
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RESONANCE OF STANLEY—REISNER RINGS  TORIC COMPLEXES

o Moreover, gr(Gr/G{') is torsion-free, with ranks given by #; = |V| and

- t
D 0th = Qr <H>

k=2
where Qr(t) = X2, ¢j(T)t/ is the “cut polynomial™ of T, with

() = 2 bo(T'w)-

WcV: |W|=j

o (Kim—Roush 1980, Charney—Davis 1995) The cohomology algebra
H*(Ta;k) is the exterior Stanley—Reisner ring

k(D) = AV"/(es | 0 ¢ ),

where
e V =Kk", with basis v1,..., v,.
e VY = Homg(V, k), with dual basis ey, ..., e,.
0o e, =€y Ao nej foro={n,...,is} < [n]
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RESONANCE OF STANLEY—REISNER RINGS KoszUL MODULES OF SIMPLICIAL COMPLEXES

KO0OSZUL MODULES OF SIMPLICIAL COMPLEXES
o Let K, = L(/\V) be the Koszul complex of xi, ..., x,, whose i-th free
S-module is K; = A\'V ®x S.

@ Set deg(v;) = e; € N". Then K, is a complex of N"-graded,
square-free S-modules.

e For a simplicial complex A on vertex set [n] we have L(k(A)) = K2,
where K2 is the subcomplex of K, whose i-th module K# is the free
S-module generated by {v, | 0 € A}.

o We let W;(A) := H;(KS) be the Koszul modules of A.

ProprosITION (AFRSS 2023)
Each Koszul module W;(A) is an N"-graded, square-free S-module. J

@ Proof: K2 is a bounded complex of free, square-free S-modules; thus,
its homology modules are also square-free.
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RESONANCE OF STANLEY—REISNER RINGS RESONANCE OF SIMPLICIAL COMPLEXES

RESONANCE OF SIMPLICIAL COMPLEXES

@ We define the resonance varieties of a simplicial complex A as
R'(A) = R(Ta) = R'(k(A))
o Likewise, we set R;(A) = R;(k(A)).
THEOREM (PAPADIMA-S. 2006/2009)

Let A be a simplicial complex on vertex set V = [n|. The resonance
varieties of /A are finite unions of coordinate subspaces of V'V = k",

RI(A) = U kW
_wev
doeAv\w, Hi_1-|5|(Ikay, (0).k)#0

9

where

@ Ay is the induced simplicial subcomplex on vertex set W C V.
o lka,, (o) is the link in Ay of a simplex o € A.

o kW is the coordinate subspace of k" spanned by {e; | i € W}.
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RESONANCE OF STANLEY—REISNER RINGS RESONANCE OF SIMPLICIAL COMPLEXES

THEOREM (AFRSS 2023)

For each i > 1, the scheme structure on the support resonance locus
Ri(A) is reduced. Moreover, the decomposition into irreducible
components is given by

Ri(A) = U k™.
WCV maximal with
H=1(Awk)#0

@ Whereas the schemes R;(A) are always reduced, the corresponding
jump resonance loci R'(A) are not necessarily reduced (with the
Fitting scheme structure), even when / = 1.

EXAMPLE
Let ' be a path on 4 vertices. Then

Fitto(Wi (1)) = (x2) N (x3) N (x1, %2, X3, Xa)

is not reduced, although Ann(W;(T)) = (x2) N (x3) is reduced. Therefore,
the Fitting scheme structure on R*(I") has an embedded component at 0.
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RESONANCE OF STANLEY—REISNER RINGS ~COHEN—MACAULAY COMPLEXES AND PROPAGATION

COHEN-MACAULAY COMPLEXES AND PROPAGATION

o A simplicial complex A of dimension d is Cohen—Macaulay (over k) if
H*(lk(o); k) is concentrated in degree d — |o|, for all o € A.

THEOREM (DENHAM-S.-YUZVINSKY 2017)

If A is Cohen—Macaulay over k, then the resonance of A propagates:

RYA) < R*(A) € --- < RITH(A).

@ In general, though, the resonance varieties do not always propagate.

ExXAMPLE (PAPADIMA-S. 2009)

Let A be the disjoint union of two edges. Then R}(A) = k*, whereas

R2(A) = k? U k2, the union of two transversal coordinate planes. Thus,
RYU(A) & R2(A).
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RESONANCE OF STANLEY—REISNER RINGS ~COHEN—MACAULAY COMPLEXES AND PROPAGATION

e If A is Cohen—Macaulay, it follows that R/(A) = Uj<i Ri(A).

QUESTION

Suppose A is Cohen—Macaulay. Do the support resonance varieties R;(A)
propagate? Or, equivalently in this case, is R'(A) = R;(A)?

@ For an arbitrary A, the support resonance varieties may fail to
propagate, and we may well have R'(A) # R;(A) for some i > 1.

EXAMPLE

Let A be the disjoint union of two edges. Then R1(A) = R} (A) = k* but
Ro(A) = & whereas, as we saw earlier, R?(A) = k? U k?. Thus,

R1(A) & Ra(A) and Ro(A) # R3(A).
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RESONANCE OF STANLEY—REISNER RINGS RESONANCE OF GRAPHS

RESONANCE OF GRAPHS

e If I' is a (simple) graph on n vertices, then:

RYT) = J =™

Wc[n]
Iw disconnected

e The irreducible components of RY(I") are the coordinate subspaces
k"W, maximal among those for which 'y is disconnected.

e The codimension of R*(I") equals the connectivity of . In particular,
if I is disconnected, then R(I") = k".

ProprosITION (AFRS 2023)

Let T be a connected graph, let " be a maximally disconnected full
subgraph, and let L' be the corresponding component of R*(I'). Then:
e L' is isotropic if and only if T is discrete.
o L' is separable if and only if T =T« T".

Hence, isotropic implies separable for the resonance varieties of graphs.
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RESONANCE OF STANLEY—REISNER RINGS REGULARITY AND HILBERT SERIES

REGULARITY AND HILBERT SERIES

@ The next result gives upper bounds on the Castelnuovo—Mumford

regularity and the projective dimension of the Koszul modules of a
simplicial complex A.

ProprosITION (AFRSS 2023)

If A has n vertices, then W;(A) has regularity at most n and projective

dimension at most n — i — 1. Moreover, if [ is a graph and n > 4, then
reg Wi (') < n—4.

@ These bounds are sharp. E.g., if [ = C, is a cycle on n > 4 vertices,
then pdim Wr = n—2 and reg Wy = n — 4.
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RESONANCE OF STANLEY—REISNER RINGS REGULARITY AND HILBERT SERIES

e We also compute in (AFRSS 2023) the (multigraded) Hilbert series of
the Koszul modules of a simplicial complex A.

THEOREM

@ For any i = 1 and any square-free multi-index b, there are natural
isomorphisms of vector spaces

[Wi(A)], = | Torfy (k. k[A])]b > AN By k) = A (D),
where A, = Agppy and |b| = by + -+ + by,
@ Moreover,

tb

Ddim [Wi(A) 2= > dimg(Hi_1(Abi k) .
aeNn . bGN"f HjeSupp(b)(]' - t:/)
square-Tree
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