1. Given a number x_{n} with $x_{n} \geq-13$ set $x_{n+1}=\sqrt{x_{n}+13}$.
(a) (10 pts) Show by mathematical induction that if $x_{1}=-13$, then $x_{n+1}>x_{n}$ for all integers $n \geq 1$.
(b) (10 pts) Show by mathematical induction that if $x_{1}=12$, then $x_{n+1}<x_{n}$ for all integers $n \geq 1$.
2. (20 pts) Use the Rational Zeros Theorem to find all rational solutions, if any, to the equation

$$
p(x)=3 x^{4}+x^{3}+4 x^{2}+2 x-4=0 .
$$

Explain your reasoning.
3. Determine whether the following numbers are rational or irrational. In each case, explain your reasoning.
(a) $(10 \mathrm{pts}) \sqrt{6+\sqrt{5}}$.
(b) $(10 \mathrm{pts}) \sqrt{6+2 \sqrt{5}}-\sqrt{5}$.
4. (20 pts) Let x be a real number. Show that if $|x-1|<1$, then $\left|x^{2}-1\right|<3$.
5. (20 pts) Given nonempty subsets A and B of \mathbb{R}, with $A \cap B$ not equal to the empty set, prove directly from the definition of inf and sup that

$$
\inf A \leq \inf (A \cap B) \leq \sup A
$$

