TOWARDS AN INTEGRAL VERSION OF RATIONAL HOMOTOPY THEORY

Alexandru Suciu

Northeastern University

The Tenth Congress of Romanian Mathematicians Piteşti, Romania

July 1, 2023

ALEX SUCIU (NORTHEASTERN)

INTEGRAL HOMOTOPY THEORY

Pitești Congress, 2023 1 / 21

RATIONAL HOMOTOPY THEORY

- Homotopy theory is the study of topological spaces up to homotopy equivalence.
- ► Typical examples of homotopy type invariants of a space X are the homology groups H_n(X; Z) and the homotopy groups π_n(X).
- The question whether one can reconstruct the homotopy type of a space from homological data goes back to the beginnings of Algebraic Topology.
- Poincaré realized that homology is not enough: H₁(X; Z) only records the abelianization of π₁(X).
- ► Even for simply-connected spaces, homology by itself fails to detect the Hopf map, $S^3 \rightarrow S^2$.
- But one can reconstitute all the higher homotopy groups of Sⁿ, modulo torsion, from the de Rham algebra of differential forms.

ALEX SUCIU (NORTHEASTERN)

- As founded by Quillen and Sullivan, rational homotopy theory is the study of rational homotopy types of spaces.
- Instead of considering the groups H_n(X; Z) and π_n(X), one considers the groups H_n(X; Q) and π_n(X) ⊗ Q (for n ≥ 2).
- ► These objects are Q-vector spaces, and hence the torsion information is lost, yet this is compensated by the fact that computations are easier in this setting.
- ► To every space X, Sullivan attached in a functorial way a commutative differential graded algebra over Q, denoted A_{PL}(X). This cdga is constructed from piecewise polynomial rational forms.
- It is weakly equivalent (through dgas) with the cochain algebra (C*(X; Q), d) so that, under the resulting identification H*(A_{PL}(X)) ≅ H*(X; Q), the induced homomorphisms in cohomology correspond.

- Given a connected \mathbb{Q} -cdga A, Sullivan constructed a *minimal* model for it, $\rho: \mathcal{M}(A) \to A$, where ρ is a quasi-isomorphism and $\mathcal{M}(A)$ is a cdga obtained by iterated Hirsch extensions, starting from \mathbb{Q} , so that its differential is decomposable.
- These properties uniquely characterize the minimal model of A, up to isomorphism.
- The *q*-minimal models M_q(A) are generated by elements of degrees at most *q*, and the structural morphisms ρ_q: M_q(A) → A are only *q*-quasi-isomorphisms.
- ► A minimal model for a connected space X, denoted M(X), is a minimal model for A_{PL}(X). The isomorphism type of M(X) is uniquely defined by the rational homotopy type of X.
- if *G* is a finitely generated group, the 1-minimal model $\mathcal{M}_1(G) = \mathcal{M}_1(K(G, 1))$ determines and is determined by the Malcev completion $G_{\mathbb{Q}} := \lim_{n \to \infty} (G/\gamma_n(G) \otimes \mathbb{Q}).$

OUTLINE

- In previous work,¹ we combined properties of the Steenrod cup-one products of cochains and those of binomial rings to define the algebraic categories of binomial cup-one differential graded algebras over *R* = Z and over *R* = Z_p, for *p* a prime.
- In current work,² we define the 1-minimal model *ρ*: M₁(A) → A for such a dga (A, d), and prove some of its key properties:
 - *M*₁(*A*) is a free binomial cup-one dga, unique up to isomorphism.
 - $\mathcal{M}_1(A)$ determines a pronilpotent group, G(A), which only depends on the 1-quasi-isomorphism type of A.
- This allows us to distinguish spaces with isomorphic (torsion-free) cohomology rings that share the same rational 1-minimal model, yet whose integral 1-minimal models are not isomorphic.

¹R.D. Porter and A.I. Suciu, *Differential graded algebras, Steenrod cup-one products, binomial operations, and Massey products*, Topology Appl. **313** (2022), Paper No. 107987, 37 pp.

²R.D. Porter and A.I. Suciu, *Cup-one algebras and* 1*-minimal models*, 74 pp., preprint June 2023, arXiv:2306.11849.

ALEX SUCIU (NORTHEASTERN)

CUP-ONE ALGEBRAS

- ▶ Let X be Δ-set; that is, a sequence of sets $X = \{X_n\}_{n \ge 0}$ and maps $d_i : X_n \to X_{n-1}$ ($0 \le i \le n$) such that $d_i d_j = d_{j-1} d_i$ for all i < j.
- Its geometric realization, |X|, may be viewed either as a special kind of CW-complex, or a generalized simplicial complex.
- Let $A = (C^*(X; R), d)$ be the cellular cochain complex of |X| with coefficients in a commutative ring R. This is a differential graded R-algebra, with multiplication given by the cup-product.
- ▶ In 1947, Steenrod introduced a sequence of operations, \cup_i : $A^p \otimes_R A^q \to A^{p+q-i}$, starting with $\cup_0 = \cup$.
- We focus on the ∪₁-product on A¹, which is tied to the differential and the cup product via the Steenrod and Hirsch identities,

$$d(a \cup_1 b) = -a \cup b - b \cup a + da \cup_1 b - a \cup_1 db,$$

$$(a \cup b) \cup_1 c = a \cup (b \cup_1 c) + (a \cup_1 c) \cup b.$$

▶ A cup-one differential graded algebra is an *R*-dga (*A*, *d*) with a map $\cup_1 : A^1 \otimes_R A^1 \to A^1$ that gives $R \oplus A^1$ the structure of a commutative ring and satisfies the Hirsch identity and

 $d(a \cup_1 b) = -a \cup b - b \cup a + da \cup_1 b + db \cup_1 a - da \circ db, \quad (*)$

for all $a, b \in A^1$ with da, db equal to sums of cup products, with \circ bilinear and $(a_1 \cup a_2) \circ (b_1 \cup b_2) = (a_1 \cup b_1) \cup (a_2 \cup b_2)$.

- ► Note that the role of the cup-one product in a (non-commutative) dga (A, d) is to ensure that H*(A) is commutative.
- ▶ A commutative ring *A* is called a *binomial ring* if *A* is torsion-free as a \mathbb{Z} -module, and has the property that the elements $\binom{a}{n} := a(a-1)\cdots(a-n+1)/n!$ lie in *A* for every $a \in A$ and n > 0.
- An analogous notion holds for \mathbb{Z}_p -algebras.
- These objects come equipped with maps ζ_n: A → A, a ↦ (^a_n), defined for all n > 0 over Z, and only for n p</sub>.

- A cup-one dga (A, d) over R = Z or Z_p is called a *binomial* cup-one algebra if A⁰, with multiplication A⁰ ⊗_R A⁰ → A⁰ given by the cup-product, is a binomial *R*-algebra, and the *R*-submodule R ⊕ A¹ ⊂ A^{≤1}, with multiplication A¹ ⊗_R A¹ → A¹ given by the cup-one product, is an *R*-binomial algebra.
- The main motivating example is the cochain algebra of a space.
- Given a ∆-set X, the cellular cochain algebra C = (C*(X; R), d) is a binomial cup-one dga, with
 - $\cup_1 : C^1 \otimes_R C^1 \to C^1$ given by $(a \cup_1 b)(e) = a(e) \cdot b(e)$.
 - $\circ = \cup_2 : C^2 \otimes_R C^2 \to C^2$ given by $(v \circ w)(s) = v(s) \cdot w(s)$.
 - $\zeta_n(a)(e) = {a(e) \choose n}$ when $R = \mathbb{Z}$ and analogously for $R = \mathbb{Z}_p$.

FREE BINOMIAL CUP-ONE ALGEBRAS

- When *R* = ℤ, consider the ring Int(ℤ^X) = {*q* ∈ ℚ[X] | *q*(ℤ^X) ⊆ ℤ} of integrally-valued polynomials with variables in a set X.
- This is a binomial ring, generated by the polynomials $\binom{X}{n} = \prod_{x \in X} \binom{X}{n_x}$ with $n_x \in \mathbb{Z}_{\geq 0}$.
- We define the *free binomial cup-one graded algebra*, $T = T_R^*(X)$, to be the tensor algebra on \mathfrak{m}_X , the maximal ideal at 0 in $Int(\mathbb{Z}^X)$.
- When $R = \mathbb{Z}_p$, an analogous definition applies.
- In either case, we have R-linear maps
 - \cup_1 : $T^1 \otimes T^1 \rightarrow T^1$, given by $a \cup_1 b = ab$;

•
$$\circ: T^2 \otimes T^2 \to T^2$$
, given by
 $(a_1 \otimes a_2) \circ (b_1 \otimes b_2) = (a_1b_1) \otimes (a_2b_2).$

Let $d: T_R(X) \to T_R(X)$ be a degree-one map satisfying the $\cup_1 - d$ formula (*) and the Leibniz rule. Then $d^2(x) = 0$ for all $x \in X$ if and only if $d^2(u) = 0$ for all $u \in T_R(X)$, in which case $(T_R(X), d)$ is a binomial cup-one dga.

- In particular, the map sending each x ∈ X to 0 extends to a differential d₀: T_R(X) → T_R(X), making (T_R(X), d₀) into a binomial cup-one dga.
- d_0 is compatible with the binomial structure on $T_R(X)$:

$$d_{\mathbf{0}}(\zeta_{n}(x)) = -\sum_{\ell=1}^{n-1} \zeta_{\ell}(x) \otimes \zeta_{n-\ell}(x),$$

for all $n \ge 1$ when $R = \mathbb{Z}$ and for $1 \le n \le p - 1$ when $R = \mathbb{Z}_p$.

- More generally, given a set map *τ* : X → T²_R(X), we define a binary operation, μ_τ : M × M → M, on the *R*-module M = M(X, R) of all functions from X to the ring R = Z or Z_ρ.
- Letting $\Delta^{(2)}(M_{\tau})$ be the 2-dim Δ -set associated to the magma $M_{\tau} = (M, \mu_{\tau})$, we define a degree-preserving, *R*-linear map,

$$\psi = \psi_{\mathbf{X},\mu} \colon \mathsf{T}_{R}^{\leq 2}(\mathbf{X}) \to C^{*}(\Delta^{(2)}(M_{\tau}); R).$$

- ► This map is a monomorphism which commutes with cup products, cup-one products, and the o maps.
- Using the embedding ψ, we show that there is a unique extension of τ to an *R*-linear map d_τ: T_R(X) → T_R(X) that satisfies the Leibniz rule and the ∪₁−d formula.

ALEX SUCIU (NORTHEASTERN)

INTEGRAL HOMOTOPY THEORY

Pitești Congress, 2023 11 / 21

- We focus on the case when M_{τ} is a semigroup (we then say τ is *admissible*), and consider the associated cell complex, $\Delta(M_{\tau})$.
- ▶ In that case, the map ψ extends uniquely to an inclusion ψ : (T(**X**), d_{τ}) $\hookrightarrow C^*(\Delta(M_{\tau}); R)$ that satisfies $\psi \circ d_{\tau} = d_{\Delta} \circ \psi$.
- It then follows that d_{τ}^2 is the zero map. To summarize:

Theorem

If the map $\tau: \mathbf{X} \to \mathsf{T}^2(\mathbf{X})$ is admissible, then $d_{\tau}^2 \equiv 0$ and the map $\mathsf{T}^1(\mathbf{X}) \to C^1(\Delta(M_{\tau}); R)$ given by $q \mapsto (\mathbf{a} \mapsto q(\mathbf{a}))$ extends uniquely to a monomorphism $\psi: (\mathsf{T}(\mathbf{X}), d_{\tau}) \hookrightarrow (C^*(\Delta(M_{\tau}); R), d_{\Delta})$ of binomial cup-one dgas.

HIRSCH EXTENSIONS

- ► Hirsch extensions of free binomial U1-dgas are the basic building blocks for constructing 1-minimal models.
- ▶ An inclusion $i: (T_R(X), d) \rightarrow (T_R(X \cup Y), \bar{d})$ is called a *Hirsch* extension if $\bar{d}(y)$ is a cocycle in $T_R^2(X)$ for all $y \in Y$.
- There is a bijection between maps of sets from **Y** to cocycles in $T_R^2(\mathbf{X})$ and Hirsch extensions of this sort.
- ► Assume that $X = \bigcup_{i \ge 1} X_i$ with each X_i a finite set and $X_1 \neq \emptyset$. Write $X^n = X_1 \cup \cdots \cup X_n$.
- A dga T = (T_R(X), d) is called a *colimit of Hirsch extensions* if d restricts to differentials d_n on T_R(Xⁿ) such that d₁|_{X₁} = 0 and each dga (T_R(Xⁿ⁺¹), d_{n+1}) is a Hirsch extension of (T_R(Xⁿ), d_n).

- ► To each colimit of Hirsch extensions, T, we associate a pronilpotent group, G_T , together with a \cup_1 -dga map, ψ_T : T $\rightarrow C^*(B(G_T); R)$, which induces an iso on H^1 .
- If T is a finite sequence of Hirsch extensions over R = Z, there is a nilmanifold N(T) with π₁(N(T)) = G_T. Moreover, every nilmanifold is of the form N(T), for some T.

EXAMPLE

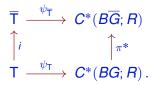
For an integer $k \ge 1$, let $T(k) = (T_{\mathbb{Z}}(x_1, x_2, x_{1,2}), d)$, with $dx_i = 0$ and $dx_{1,2} = -kx_1 \otimes x_2$. Then $G_{T(k)}$ is the Heisenberg group of upper triangular matrices of the form

$$\begin{pmatrix} 1 & a_1 & a_{1,2}/k \\ 0 & 1 & a_2 \\ 0 & 0 & 1 \end{pmatrix}$$

with $a_1, a_2, a_{1,2} \in \mathbb{Z}$.

Let $T = (T_R(X), d)$ be a colimit of Hirsch extensions, let $G = G_T$ be the corresponding pronilpotent group, and assume the map $\psi_T : T_R(X) \to C^*(BG; R)$ is a quasi-isomorphism. Moreover, let $\pi : B\overline{G} \to BG$ be the fibration corresponding to a central extension of groups, $0 \to F \to \overline{G} \to G \to 1$, with F a finitely generated, free R-module. Then

- There is a Hirsch extension $i: T \hookrightarrow \overline{T} = (T_R(X \cup Y), \overline{d})$ such that $\overline{G} = G_{\overline{T}}$.
- The diagram below commutes



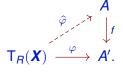
• The map $\psi_{\overline{T}}$ is a quasi-isomorphism.

1-MINIMAL MODELS

- Let (A, d) be a binomial cup-one R-dga.
- ► A 1-minimal model for *A* is a colimit, $\mathcal{M} = (\mathsf{T}_R(\mathbf{X}), d)$, of Hirsch extensions $\mathcal{M}_n = (\mathsf{T}_R(\mathbf{X}^n), d_n)$, together with morphisms $\rho_n : \mathcal{M}_n \to A$ compatible with the Hirsch extensions $\mathcal{M}_n \hookrightarrow \mathcal{M}_{n+1}$.
- The map H¹(ρ₁): H¹(M₁) → H¹(A) is required to be an isomorphism; in particular, X₁ corresponds to a basis for H¹(A).
- ► For $n \ge 1$, the set X_{n+1} is a basis for the free submodule $\ker(H^2(\rho_n)) \subset H^2(\mathcal{M}_n)$ given by the cohomology classes of the 2-cocycles $d_{n+1}(x)$ with $x \in X_{n+1}$.

LEMMA

Let (A, d_A) and $(A', d_{A'})$ be binomial cup-one *R*-dgas over $R = \mathbb{Z}$ or \mathbb{Z}_p , let $f: A \to A'$ be a surjective 1-quasi-isomorphism, and let $\varphi: (\mathsf{T}_R(\mathbf{X}), d) \to (A', d_{A'})$ be a morphism. There is then a lift $\hat{\varphi}$,



THEOREM

Let (A, d_A) be a binomial cup-one *R*-dga. Assume $H^0(A) = R$ and $H^1(A)$ is a finitely generated, free *R*-module. Then,

- There is a 1-minimal model, M = (T_R(X), d), and a structural morphism, ρ: M → A, that is a 1-quasi-isomorphism.
- Given 1-minimal models, ρ: M → A and ρ': M' → A, there is an isomorphism f: M → M' and a dga homotopy
 Φ: M → A⊗_R C*([0, 1]; R) from ρ to ρ' ∘ f.

ALEX SUCIU (NORTHEASTERN)

- ▶ In the case when (A, d_A) admits an augmentation, that is, a dga morphism $\varepsilon: A \to R$, the isomorphism *f* is unique (in the category of augmented dgas).
- More precisely, A has an augmented 1-minimal model, M, such that the structural morphism ρ: M → A is an augmentation-preserving 1-quasi-isomorphism.
- Moreover, given augmented 1-minimal models, ρ: M → A and ρ': M' → A, there is a *unique* augmentation-preserving isomorphism f: M → M' such that ρ is augmentation-preserving homotopic to ρ' ∘ f.

Let Y be a connected topological space with $H^1(Y; \mathbb{Z})$ finitely generated. Then the 1-minimal model for $C^*(Y; \mathbb{Z})$ tensored with \mathbb{Q} is weakly equivalent as a dga to Sullivan's 1-minimal model for $A_{PL}(Y)$.

*n***-**STEP EQUIVALENCE

If a morphism φ: A → A' induces an isomorphism in H^{≤2}, then for each n ≥ 1 there is an isomorphism f_n: M_n → M'_n such that

$$\begin{array}{ccc} H^{2}(\mathcal{M}_{n}) & \xrightarrow{H^{2}(f_{n})} & H^{2}(\mathcal{M}'_{n}) \\ \\ H^{2}(\rho_{n}) & & \downarrow H^{2}(\rho'_{n}) \\ & H^{2}(\mathcal{A}) & \xrightarrow{H^{2}(\varphi)} & H^{2}(\mathcal{A}') \,. \end{array}$$

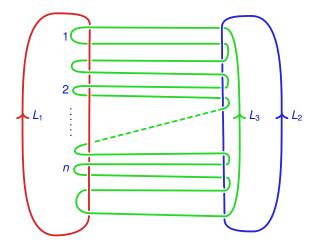
- We say that A and A' are *n*-step equivalent if there are isomorphisms f_n: M_n → M'_n and e_n: H²(A) → H²(A') such that the diagram commutes with H²(φ) replaced by e_n.
- If A and A' are n-step equivalent, then the cokernels of the homomorphisms H²(ρ_n) and H²(ρ'_n) are isomorphic, and hence have isomorphic torsion subgroups.

• Given a space X with *n*-th step in the 1-minimal model given by (\mathcal{M}_n, ρ_n) , we define $\kappa_n(X) := \text{Tors}(\text{coker } H^2(\rho_n))$.

ALEX SUCIU (NORTHEASTERN)

Let X and X' be two connected \triangle -complexes with first and second integral cohomology groups finitely generated. Then,

- If $\pi_1(X) \cong \pi_1(X')$, then $\kappa_n(X) \cong \kappa'_n(X)$ for all $n \ge 1$.
- If κ_n(X) ≇ κ'_n(X) for some n ≥ 1, then the cochain algebras C*(X; ℤ) and C*(X'; ℤ) are not n-step equivalent.
- We apply this result to a sequence of links in the three-sphere, $\{L(n)\}_{n \ge 1}$, the first term of which is the Borromean rings.
- Set $X(n) = S^3 \setminus L(n)$. We show that $\kappa_2(X(n)) = \mathbb{Z}_n \oplus \mathbb{Z}_n$.
- ▶ Hence, X(n) and X(m) are not 2-step equivalent for $n \neq m$.
- On the other hand, $A_{PL}(X(n))$ and $A_{PL}(X(m))$ are 2-step equivalent for all n, m > 0.



*n***-STEP EQUIVALENCE**

FIGURE: Generalized Borromean Rings

ALEX SUCIU (NORTHEASTERN)