
TOWARDS AN INTEGRAL VERSION OF RATIONAL

HOMOTOPY THEORY

Alexandru Suciu

Northeastern University

The Tenth Congress of Romanian Mathematicians
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RATIONAL HOMOTOPY THEORY

RATIONAL HOMOTOPY THEORY

§ Homotopy theory is the study of topological spaces up to
homotopy equivalence.

§ Typical examples of homotopy type invariants of a space X are the
homology groups HnpX ;Zq and the homotopy groups πnpX q.

§ The question whether one can reconstruct the homotopy type of a
space from homological data goes back to the beginnings of
Algebraic Topology.

§ Poincaré realized that homology is not enough: H1pX ;Zq only
records the abelianization of π1pX q.

§ Even for simply-connected spaces, homology by itself fails to
detect the Hopf map, S3 Ñ S2.

§ But one can reconstitute all the higher homotopy groups of Sn,
modulo torsion, from the de Rham algebra of differential forms.
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RATIONAL HOMOTOPY THEORY

§ As founded by Quillen and Sullivan, rational homotopy theory is
the study of rational homotopy types of spaces.

§ Instead of considering the groups HnpX ;Zq and πnpX q, one
considers the groups HnpX ;Qq and πnpX q b Q (for n ě 2).

§ These objects are Q-vector spaces, and hence the torsion
information is lost, yet this is compensated by the fact that
computations are easier in this setting.

§ To every space X , Sullivan attached in a functorial way a
commutative differential graded algebra over Q, denoted APLpX q.
This cdga is constructed from piecewise polynomial rational forms.

§ It is weakly equivalent (through dgas) with the cochain algebra
pC˚pX ;Qq,dq so that, under the resulting identification
H˚pAPLpX qq – H˚pX ;Qq, the induced homomorphisms in
cohomology correspond.
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RATIONAL HOMOTOPY THEORY

§ Given a connected Q-cdga A, Sullivan constructed a minimal
model for it, ρ : MpAq Ñ A, where ρ is a quasi-isomorphism and
MpAq is a cdga obtained by iterated Hirsch extensions, starting
from Q, so that its differential is decomposable.

§ These properties uniquely characterize the minimal model of A,
up to isomorphism.

§ The q-minimal models MqpAq are generated by elements of
degrees at most q, and the structural morphisms ρq : MqpAq Ñ A
are only q-quasi-isomorphisms.

§ A minimal model for a connected space X , denoted MpX q, is a
minimal model for APLpX q. The isomorphism type of MpX q is
uniquely defined by the rational homotopy type of X .

§ if G is a finitely generated group, the 1-minimal model
M1pGq “ M1pK pG,1qq determines and is determined by the
Malcev completion GQ :“ lim

ÐÝnpG{γnpGq b Qq.
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OUTLINE

§ In previous work,1 we combined properties of the Steenrod
cup-one products of cochains and those of binomial rings to
define the algebraic categories of binomial cup-one differential
graded algebras over R “ Z and over R “ Zp, for p a prime.

§ In current work,2 we define the 1-minimal model ρ : M1pAq Ñ A
for such a dga pA,dq, and prove some of its key properties:

‚ M1pAq is a free binomial cup-one dga, unique up to
isomorphism.

‚ M1pAq determines a pronilpotent group, GpAq, which only
depends on the 1-quasi-isomorphism type of A.

§ This allows us to distinguish spaces with isomorphic (torsion-free)
cohomology rings that share the same rational 1-minimal model,
yet whose integral 1-minimal models are not isomorphic.

1R.D. Porter and A.I. Suciu, Differential graded algebras, Steenrod cup-one
products, binomial operations, and Massey products, Topology Appl. 313 (2022),
Paper No. 107987, 37 pp.

2R.D. Porter and A.I. Suciu, Cup-one algebras and 1-minimal models, 74 pp.,
preprint June 2023, arXiv:2306.11849.
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CUP-ONE ALGEBRAS

CUP-ONE ALGEBRAS

§ Let X be ∆-set; that is, a sequence of sets X “ tXnuně0 and maps
di : Xn Ñ Xn´1 (0 ď i ď n) such that didj “ dj´1di for all i ă j .

§ Its geometric realization, |X |, may be viewed either as a special
kind of CW-complex, or a generalized simplicial complex.

§ Let A “ pC˚pX ;Rq,dq be the cellular cochain complex of |X | with
coefficients in a commutative ring R. This is a differential graded
R-algebra, with multiplication given by the cup-product.

§ In 1947, Steenrod introduced a sequence of operations,
Yi : Ap bR Aq Ñ Ap`q´i , starting with Y0 “ Y.

§ We focus on the Y1-product on A1, which is tied to the differential
and the cup product via the Steenrod and Hirsch identities,

dpa Y1 bq “ ´a Y b ´ b Y a ` da Y1 b ´ a Y1 db,
pa Y bq Y1 c “ a Y pb Y1 cq ` pa Y1 cq Y b.
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CUP-ONE ALGEBRAS

§ A cup-one differential graded algebra is an R-dga pA,dq with a
map Y1 : A1 bR A1 Ñ A1 that gives R ‘ A1 the structure of a
commutative ring and satisfies the Hirsch identity and

dpa Y1 bq “ ´a Y b ´ b Y a ` da Y1 b ` db Y1 a ´ da ˝ db, (*)

for all a,b P A1 with da,db equal to sums of cup products, with ˝

bilinear and pa1 Y a2q ˝ pb1 Y b2q “ pa1 Y1 b1q Y pa2 Y1 b2q.

§ Note that the role of the cup-one product in a (non-commutative)
dga pA,dq is to ensure that H˚pAq is commutative.

§ A commutative ring A is called a binomial ring if A is torsion-free
as a Z-module, and has the property that the elements
`a

n

˘

:“ apa ´ 1q ¨ ¨ ¨ pa ´ n ` 1q{n! lie in A for every a P A and n ą 0.

§ An analogous notion holds for Zp-algebras.

§ These objects come equipped with maps ζn : A Ñ A, a ÞÑ
`a

n

˘

,
defined for all n ą 0 over Z, and only for n ă p over Zp.
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CUP-ONE ALGEBRAS

§ A cup-one dga pA,dq over R “ Z or Zp is called a binomial
cup-one algebra if A0, with multiplication A0 bR A0 Ñ A0 given by
the cup-product, is a binomial R-algebra, and the R-submodule
R ‘ A1 Ă Aď1, with multiplication A1 bR A1 Ñ A1 given by the
cup-one product, is an R-binomial algebra.

§ The main motivating example is the cochain algebra of a space.

§ Given a ∆-set X , the cellular cochain algebra C “ pC˚pX ;Rq,dq is
a binomial cup-one dga, with

‚ Y1 : C1 bR C1 Ñ C1 given by pa Y1bqpeq “ apeq ¨ bpeq.

‚ ˝ “ Y2 : C2 bR C2 Ñ C2 given by pv ˝ wqpsq “ vpsq ¨ wpsq.

‚ ζnpaqpeq “
`apeq

n

˘

when R “ Z and analogously for R “ Zp.
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FREE BINOMIAL CUP-ONE ALGEBRAS

FREE BINOMIAL CUP-ONE ALGEBRAS

§ When R “ Z, consider the ring IntpZX q “ tq P QrX s | qpZX q Ď Zu

of integrally-valued polynomials with variables in a set X .

§ This is a binomial ring, generated by the polynomials
`X

n

˘

“
ś

xPX
` x

nx

˘

with nx P Zě0.

§ We define the free binomial cup-one graded algebra, T “ T˚
RpX q,

to be the tensor algebra on mX , the maximal ideal at 0 in IntpZX q.

§ When R “ Zp, an analogous definition applies.

§ In either case, we have R-linear maps
‚ Y1 : T1

b T1
Ñ T1, given by a Y1 b “ ab;

‚ ˝ : T2
b T2

Ñ T2, given by
pa1 b a2q ˝ pb1 b b2q “ pa1b1q b pa2b2q.

ALEX SUCIU (NORTHEASTERN) INTEGRAL HOMOTOPY THEORY PITEŞTI CONGRESS, 2023 9 / 21



FREE BINOMIAL CUP-ONE ALGEBRAS

THEOREM

Let d : TRpX q Ñ TRpX q be a degree-one map satisfying the Y1– d
formula (*) and the Leibniz rule. Then d2pxq “ 0 for all x P X if and
only if d2puq “ 0 for all u P TRpX q, in which case pTRpX q,dq is a
binomial cup-one dga.

§ In particular, the map sending each x P X to 0 extends to a
differential d0 : TRpX q Ñ TRpX q, making pTRpX q,d0q into a
binomial cup-one dga.

§ d0 is compatible with the binomial structure on TRpX q:

d0pζnpxqq “ ´

n´1
ÿ

ℓ“1

ζℓpxq b ζn´ℓpxq,

for all n ě 1 when R “ Z and for 1 ď n ď p ´ 1 when R “ Zp.
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FREE BINOMIAL CUP-ONE ALGEBRAS

§ More generally, given a set map τ : X Ñ T2
RpX q, we define a

binary operation, µτ : M ˆ M Ñ M, on the R-module M “ MpX ,Rq

of all functions from X to the ring R “ Z or Zp.

§ Letting ∆p2qpMτ q be the 2-dim ∆-set associated to the magma
Mτ “ pM, µτ q, we define a degree-preserving, R-linear map,

ψ “ ψX ,µ : Tď2
R pX q Ñ C˚p∆p2qpMτ q;Rq.

§ This map is a monomorphism which commutes with cup products,
cup-one products, and the ˝ maps.

§ Using the embedding ψ, we show that there is a unique extension
of τ to an R-linear map dτ : TRpX q Ñ TRpX q that satisfies the
Leibniz rule and the Y1– d formula.
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FREE BINOMIAL CUP-ONE ALGEBRAS

§ We focus on the case when Mτ is a semigroup (we then say τ is
admissible), and consider the associated cell complex, ∆pMτ q.

§ In that case, the map ψ extends uniquely to an inclusion
ψ : pTpX q,dτ q ãÑ C˚p∆pMτ q;Rq that satisfies ψ ˝ dτ “ d∆ ˝ ψ.

§ It then follows that d2
τ is the zero map. To summarize:

THEOREM

If the map τ : X Ñ T2
pX q is admissible, then d2

τ ” 0 and the map
T1

pX q Ñ C1p∆pMτ q;Rq given by q ÞÑ pa ÞÑ qpaqq extends uniquely to a
monomorphism ψ : pTpX q,dτ q ãÑ pC˚p∆pMτ q;Rq,d∆q of binomial
cup-one dgas.
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HIRSCH EXTENSIONS

HIRSCH EXTENSIONS

§ Hirsch extensions of free binomial Y1-dgas are the basic building
blocks for constructing 1-minimal models.

§ An inclusion i : pTRpX q,dq Ñ pTRpX Y Y q, d̄q is called a Hirsch
extension if d̄pyq is a cocycle in T2

RpX q for all y P Y .

§ There is a bijection between maps of sets from Y to cocycles in
T2

RpX q and Hirsch extensions of this sort.

§ Assume that X “
Ť

iě1 X i with each X i a finite set and X 1 ‰ H.
Write X n

“ X 1 Y ¨ ¨ ¨ Y X n.

§ A dga T “ pTRpX q,dq is called a colimit of Hirsch extensions if d
restricts to differentials dn on TRpX n

q such that d1|X 1 “ 0 and each
dga pTRpX n`1

q,dn`1q is a Hirsch extension of pTRpX n
q,dnq.
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HIRSCH EXTENSIONS

§ To each colimit of Hirsch extensions, T, we associate a
pronilpotent group, GT, together with a Y1-dga map,
ψT : T Ñ C˚pBpGTq;Rq, which induces an iso on H1.

§ If T is a finite sequence of Hirsch extensions over R “ Z, there is
a nilmanifold NpTq with π1pNpTqq “ GT. Moreover, every
nilmanifold is of the form NpTq, for some T.

EXAMPLE

For an integer k ě 1, let Tpkq “ pTZpx1, x2, x1,2q,dq, with dxi “ 0 and
dx1,2 “ ´kx1 b x2. Then GTpkq is the Heisenberg group of upper
triangular matrices of the form

¨

˝

1 a1 a1,2{k
0 1 a2
0 0 1

˛

‚

with a1,a2,a1,2 P Z.
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HIRSCH EXTENSIONS

THEOREM

Let T “ pTRpX q,dq be a colimit of Hirsch extensions, let G “ GT be the
corresponding pronilpotent group, and assume the map
ψT : TRpX q Ñ C˚pBG;Rq is a quasi-isomorphism. Moreover, let
π : BG Ñ BG be the fibration corresponding to a central extension of
groups, 0 Ñ F Ñ G Ñ G Ñ 1, with F a finitely generated, free
R-module. Then

§ There is a Hirsch extension i : T ãÑ T “ pTRpX Y Y q, d̄q such that
G “ GT .

§ The diagram below commutes

T C˚pBG;Rq

T C˚pBG;Rq .

ψT

ψT

i π˚

§ The map ψT is a quasi-isomorphism.
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1-MINIMAL MODELS

1-MINIMAL MODELS

§ Let pA,dq be a binomial cup-one R-dga.

§ A 1-minimal model for A is a colimit, M “ pTRpX q,dq, of Hirsch
extensions Mn “ pTRpX n

q,dnq, together with morphisms
ρn : Mn Ñ A compatible with the Hirsch extensions Mn ãÑ Mn`1.

§ The map H1pρ1q : H1pM1q Ñ H1pAq is required to be an
isomorphism; in particular, X 1 corresponds to a basis for H1pAq.

§ For n ě 1, the set X n`1 is a basis for the free submodule
kerpH2pρnqq Ă H2pMnq given by the cohomology classes of the
2-cocycles dn`1pxq with x P X n`1.

ALEX SUCIU (NORTHEASTERN) INTEGRAL HOMOTOPY THEORY PITEŞTI CONGRESS, 2023 16 / 21



1-MINIMAL MODELS

LEMMA

Let pA,dAq and pA1,dA1q be binomial cup-one R-dgas over R “ Z or Zp,
let f : A Ñ A1 be a surjective 1-quasi-isomorphism, and let
φ : pTRpX q,dq Ñ pA1,dA1q be a morphism. There is then a lift pφ,

A

TRpX q A1.

f

φ

pφ

THEOREM

Let pA,dAq be a binomial cup-one R-dga. Assume H0pAq “ R and
H1pAq is a finitely generated, free R-module. Then,

§ There is a 1-minimal model, M “ pTRpX q,dq, and a structural
morphism, ρ : M Ñ A, that is a 1-quasi-isomorphism.

§ Given 1-minimal models, ρ : M Ñ A and ρ1 : M1 Ñ A, there is an
isomorphism f : M Ñ M1 and a dga homotopy
Φ: M Ñ A bR C˚pr0,1s;Rq from ρ to ρ1 ˝ f .
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1-MINIMAL MODELS

§ In the case when pA,dAq admits an augmentation, that is, a dga
morphism ε : A Ñ R, the isomorphism f is unique (in the category
of augmented dgas).

§ More precisely, A has an augmented 1-minimal model, M, such
that the structural morphism ρ : M Ñ A is an
augmentation-preserving 1-quasi-isomorphism.

§ Moreover, given augmented 1-minimal models, ρ : M Ñ A and
ρ1 : M1 Ñ A, there is a unique augmentation-preserving
isomorphism f : M Ñ M1 such that ρ is augmentation-preserving
homotopic to ρ1 ˝ f .

THEOREM

Let Y be a connected topological space with H1pY ;Zq finitely
generated. Then the 1-minimal model for C˚pY ;Zq tensored with Q is
weakly equivalent as a dga to Sullivan’s 1-minimal model for APLpY q.
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n-STEP EQUIVALENCE

n-STEP EQUIVALENCE

§ If a morphism φ : A Ñ A1 induces an isomorphism in Hď2, then for
each n ě 1 there is an isomorphism fn : Mn Ñ M1

n such that

H2pMnq H2pM1
nq

H2pAq H2pA1q .

H2pfnq

H2pρnq H2pρ1
nq

H2pφq

§ We say that A and A1 are n-step equivalent if there are
isomorphisms fn : Mn Ñ M1

n and en : H2pAq Ñ H2pA1q such that
the diagram commutes with H2pφq replaced by en.

§ If A and A1 are n-step equivalent, then the cokernels of the
homomorphisms H2pρnq and H2pρ1

nq are isomorphic, and hence
have isomorphic torsion subgroups.

§ Given a space X with n-th step in the 1-minimal model given by
pMn, ρnq, we define κnpX q :“ TorspcokerH2pρnqq.
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n-STEP EQUIVALENCE

THEOREM

Let X and X 1 be two connected ∆-complexes with first and second
integral cohomology groups finitely generated. Then,

§ If π1pX q – π1pX 1q, then κnpX q – κ1
npX q for all n ě 1.

§ If κnpX q fl κ1
npX q for some n ě 1, then the cochain algebras

C˚pX ;Zq and C˚pX 1;Zq are not n-step equivalent.

§ We apply this result to a sequence of links in the three-sphere,
tLpnquně1, the first term of which is the Borromean rings.

§ Set X pnq “ S3zLpnq. We show that κ2pX pnqq “ Zn ‘ Zn.

§ Hence, X pnq and X pmq are not 2-step equivalent for n ‰ m.

§ On the other hand, APLpX pnqq and APLpX pmqq are 2-step equivalent
for all n,m ą 0.
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n-STEP EQUIVALENCE

1

2
......

n

L1 L2L3

FIGURE: Generalized Borromean Rings
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