
CUP-ONE ALGEBRAS AND 1-MINIMAL MODELS

RICHARD D. PORTER1 AND ALEXANDER I. SUCIU1,2

Abstract. In previous work we introduced the notion of binomial cup-one algebras,
which are differential graded algebras endowed with Steenrod ∪1-products and compat-
ible binomial operations. Given such an R-dga, (A, dA), defined over the ring R = Z or
Zp (for p a prime), with H0(A) = R and with H1(A) a finitely generated, free R-module,
we show that A admits a functorially defined 1-minimal model, ρ : (M(A), d)→ (A, dA),
which is unique up to isomorphism. Furthermore, we associate to this model a pronilpo-
tent group, G(A), which only depends on the 1-quasi-isomorphism type of A. These
constructions, which refine classical notions from rational homotopy theory, allow us to
distinguish spaces with isomorphic (torsion-free) cohomology rings that share the same
rational 1-minimal model, yet whose integral 1-minimal models are not isomorphic.
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1. Introduction

1.1. Overview. In previous work we combined properties of the Steenrod cup-one prod-
ucts of cochains and binomial rings in the cochain complex of a space to define the
algebraic categories of binomial cup-one differential graded algebras over the integers
and over Zp for p a prime. In this paper we define the 1-minimal model for such a dga
(A, d), and prove its key properties; namely, the 1-minimal model of A is a free binomial
cup-one dga unique up to isomorphism, the 1-minimal model determines a group, G(A),
also unique up to isomorphism. If the group is nilpotent, then the cohomology of the
1-minimal model is isomorphic to the cohomology of the group.

Since the cochains of a space with integer or with Zp coefficients are binomial ∪1-dgas, it
follows that invariants of the 1-minimal model give homotopy type invariants of spaces
in the case where A = C∗(X; R) with R equal to Z or Zp. As an application, we define in
Section 12 one such invariant, called n-step equivalence, and exhibit a family of spaces
that can be distinguished using the 1-minimal model over Z, where the corresponding
approach in rational homotopy theory fails to distinguish those spaces.

The reader familiar with rational homotopy theory ([6, 7, 9]), will note that the 1-minimal
models here over Z and over Zp can be viewed as analogues of Sullivan’s 1-minimal
model over the rationals. Hence, techniques from rational homotopy theory have the
potential to serve as a starting point for developing techniques that yield stronger results
over Z and Zp, as shown by the example in Section 12.3.

1.2. Cochain algebras and Steenrod ∪i-products. We start by considering a ∆-set X,
that is, a sequence of sets X = {Xn}n≥0 and maps di : Xn → Xn−1 for each 0 ≤ i ≤ n
such that did j = d j−1di for all i < j. The geometric realization of X, denoted |X|, may be
viewed either as a special kind of CW-complex, or a generalized simplicial complex.

Let A = (C∗(X; R), d) be the cellular cochain complex of |X|, with coefficients in a com-
mutative ring R. Then A is, in fact, a differential graded R-algebra, with multiplication
given by the cup-product of cochains. In [22], Steenrod introduced a whole sequence of
operations, ∪i : Ap ⊗R Aq → Ap+q−i, starting with ∪0 = ∪, the usual cup-product. We are
mainly interested here in the additional structure on the cochain algebra provided by the
∪1-product, which is tied to the differential and the cup product via the Steenrod [22] and
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Hirsch [13] identities,

d(a ∪1 b) = −a ∪ b − b ∪ a + da ∪1 b − a ∪1 db,(1.1)
(a ∪ b) ∪1 c = a ∪ (b ∪1 c) + (a ∪1 c) ∪ b.(1.2)

for all a, b, c ∈ A1.

1.3. Binomial cup-one dgas. We defined in [18] several categories of differential graded
algebras (over R = Z or Zp) with some extra structure, coming from either the cup-one
products, or from a binomial ring structure, or both, bound together by suitable com-
patibility conditions. In Sections 4.3 and 4.4 we recall these notions, with some mild
modifications to better fit the present context.

A cup-one differential graded algebra is an R-dga (A, d) with a cup-one product map
∪1 : A1 ⊗R A1 → A1 that gives R⊕A1 the structure of a commutative ring and satisfies the
Hirsch identity, as well as the following “∪1– d formula,”

(1.3) d(a ∪1 b) = −a ∪ b − b ∪ a + da ∪1 b + db ∪1 a − da ◦ db,

for all a, b ∈ A1 with da, db equal to sums of cup products, where the map ◦ is bilinear and
satisfies (a1∪a2)◦(b1∪b2) = (a1∪1 b1)∪(a2∪1 b2). The significance of the ∪1– d formula
is that it expresses the differentials of cup-one products of elements in A1 in terms of the
differentials of the factors and cup-one products of elements in A1, as opposed to formula
(1.1), which involves cup-one products of elements in A2 with elements in A1. Moreover,
as shown in [18], if A = C∗(X; R) is a cochain algebra, Steenrod’s formula (1.1) restricts
to formula (1.3) for elements a, b ∈ A1 with da and db equal to sums of cup products.

In Section 5, we add extra structure to these algebras. A commutative ring A is called a
binomial ring if A is torsion-free as a Z-module, and has the property that the elements(

a
n

)
B a(a − 1) · · · (a − n + 1)/n! lie in A for every a ∈ A and every n > 0. An analogous

notion holds for Zp-algebras. These objects come equipped with maps ζn : A → A,
a 7→

(
a
n

)
, defined for all n > 0 over Z, and only for n < p over Zp.

Now consider a cup-one dga (A, d) over R = Z or Zp. Such an object is called a binomial
cup-one algebra if A0, with multiplication A0 ⊗R A0 → A0 given by the cup-product, is a
binomial R-algebra, and the R-submodule R⊕ A1 ⊂ A≤1, with multiplication A1 ⊗R A1 →

A1 given by the cup-one product, is an R-binomial algebra.

Our main motivating example is the cochain algebra of a space. In Theorem 5.13 we
show that, for any ∆-set X, the cellular cochain algebra C = (C∗(X; R), d) is a binomial
cup-one dga, with maps C1⊗RC1 → C1 given by (a∪1b)(e) = a(e)·b(e) for all 1-simplices
e and with the ◦ map equal to Steenrod’s ∪2 product, with ◦ = ∪2 : C2 ⊗R C2 → C2

given by (v ◦ w)(s) = v(s) · w(s) for all 2-simplices s, and with binomial maps given by
ζn(a)(e) =

(
a(e)

n

)
when R = Z and analogously for R = Zp.
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1.4. Free binomial cup-one dgas. These structures allow us to define in Section 6 the
free binomial cup-one graded algebra, T = T∗R(X), on a set X. When R = Z, the starting
point is the ring Int(ZX) = {q ∈ Q[X] | q(ZX) ⊆ Z} of integrally-valued polynomials with
variables in X. This is a binomial ring, generated by the polynomials

(
X
n

)
=

∏
x∈X

(
x

nx

)
with nx equal to the non-negative integers. We define T to be the tensor algebra on mX,
the maximal ideal at 0 in Int(ZX). When R = Zp, an analogous definition applies, with
suitable modifications. In either case, we have R-linear maps ∪1 : T1

⊗T1
→ T1, given

by a∪1 b = ab and ◦ : T2
⊗T2

→ T2 given by (a1⊗a2)◦ (b1⊗b2) = (a1b1)⊗ (a2b2). Using
the binomial structure on T1, we show that the map sending each x ∈ X to 0 extends
to a linear map d0 : T1

→ T2. In turn, d0 extends to a differential on the whole tensor
algebra by the graded Leibniz rule, and (TR(X), d0) is then a binomial cup-one dga. The
key result that allows us to construct the differential d0 is Theorem 6.7, which reads as
follows.

Theorem 1.1. Let d : TR(X)→ TR(X) be a degree-one map satisfying the ∪1– d formula
and the Leibniz rule. Then d2(x) = 0 for all x ∈ X if and only if d2(u) = 0 for all
u ∈ TR(X), in which case (TR(X), d) is a binomial cup-one dga.

Taking d(x) = 0 for all x ∈ 0 yields the differential d0 from above. As shown in [18], this
differential is compatible with the binomial structure on TR(X); more precisely,

(1.4) d0(ζn(x)) = −
n−1∑
ℓ=1

ζℓ(x) ⊗ ζn−ℓ(x),

for all x ∈ X, and for all n ≥ 1 when R = Z and for 1 ≤ n ≤ p − 1 when R = Zp. As
an application of the methods developed here, we give in Theorem 7.10 a quicker, more
conceptual proof of this result.

1.5. Differentials defined by admissible maps. A key thread in our paper involves the
correspondence (described in Section 2) between a magma, that is, a set M with a binary
operation µ : M ×M → M, and a certain 2-dimensional ∆-set, ∆(2)(M). In the case when
µ is associative, that is, (M, µ) is a semigroup, this 2-complex extends to an infinite-
dimensional cell complex ∆(M), whose n-simplices are given by ordered n-tuples of
elements in M. Moreover, if (M, µ) is a group, then ∆(M) is the cell complex of the bar
construction applied to M; that is, an Eilenberg–MacLane classifying space for M.

Properties of the cellular cochain algebras (C∗(∆(M); R), d∆) are used in Section 7 to
derive properties of differential graded algebras in our category of binomial ∪1-dgas, as
follows. Given a set X and a set map τ : X → T2

R(X), we start by defining a binary
operation, µτ : M × M → M, on the R-module M = M(X,R) of all functions from X
to the ring R = Z or Zp. Letting ∆(2)(Mτ) be the 2-dimensional ∆-set associated to the
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magma Mτ = (M, µτ), we define a degree-preserving, R-linear map,

(1.5) ψ = ψX,µ : T≤2
R (X) C∗(∆(2)(Mτ); R).

This map sends 1 ∈ T0
R(X) = R to the unit 0-cochain; a polynomial q ∈ T1

R(X) = mX to
the 1-cochain whose value on a 1-simplex a : X → R is q(a); and a tensor q⊗ q′ ∈ T2

R(X)
to the 2-cochain whose value on a 2-simplex (a, a′) is q(a) · q′(a′). We then show in
Lemma 7.1 that the map ψ is monomorphism that commutes with cup products, cup-one
products, and the ◦ maps. Using the embedding ψ, we show in Theorem 7.3 that there is
a unique extension of the map τ : X → T2

R(X) to an R-linear map dτ : TR(X) → TR(X)
that satisfies the Leibniz rule and the ∪1– d formula.

To make further headway, we focus on the case when Mτ is a semigroup (we then say τ is
admissible), and consider the associated cell complex, ∆(Mτ). We then show in Theorem
7.6 that the map ψ extends uniquely to an inclusion ψ : (T(X), dτ) ↪→ C∗(∆(Mτ); R) that
satisfies ψ ◦ dτ = d∆ ◦ ψ, from which it follows that d2

τ is the zero map. These results can
be summarized as follows.

Theorem 1.2. If the map τ : X → T2(X) is admissible, then d2
τ ≡ 0 and the map

T1(X) → C1(∆(Mτ); R) given by q 7→ (a 7→ q(a)) extends uniquely to a monomorphism
ψX : (T(X), dτ) ↪→ (C∗(∆(Mτ); R), d∆) of binomial cup-one dgas.

1.6. Hirsch extensions. In Section 8 we continue laying out the groundwork for the
construction of 1-minimal models for ∪1-dgas over the ring R = Z or Zp. The first step
in the construction is a free binomial ∪1-dga of the form (TR(X), d0) with X a finite set of
n elements. In this case, the map τ : X → T2

R(X) is the zero map, and the corresponding
R-module, M = Mτ, is isomorphic to Rn. Using a spectral sequence argument, we prove
in Theorem 8.9 that the map ψX : (TR(X), d0) → C∗(B(Rn); R) induces an isomorphism
on cohomology.

As in rational homotopy theory, Hirsch extensions of free binomial ∪1-dgas are the ba-
sic building blocks for constructing 1-minimal models. An inclusion i : (TR(X), d) →
(TR(X ∪ Y), d̄) is called a Hirsch extension if d̄(y) is a cocycle in T2

R(X) for all y ∈ Y. As
shown in Theorem 8.2, there is a bijection between maps of sets from Y to cocycles in
T2

R(X) and Hirsch extensions of this sort.

Assume now that X =
⋃

i≥1 Xi with each Xi a finite set and X1 , ∅. An R-dga T =
(TR(X), d) is called a colimit of Hirsch extensions if the differential d restricts to differ-
entials dn on TR(Xn) such that d1(x) = 0 for all x ∈ X1 and each dga (TR(Xn+1), dn+1) is
a Hirsch extension of (TR(Xn), dn). To such a colimit of Hirsch extensions, T, we asso-
ciate in Lemma 8.11 a pronilpotent group, GT, together with a ∪1-dga map, ψT : T →
C∗(B(GT); R), which induces an isomorphism on H1. Moreover, as shown in Theorem
8.12, if ψT is a quasi-isomorphism and 0 → F → G

π
−→ G → 1 is a central extension

of groups with F a finitely generated, free R-module, then there is a Hirsch extension
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i : T ↪→ T such that G = GT , the diagram

(1.6)
T C∗(BG; R)

T C∗(BG; R)

ψT

ψT

i B(π)∗

commutes, and the map ψT is also a quasi-isomorphism.

In work in progress [19], we build on this correspondence between colimits of Hirsch ex-
tensions and sequences of central extensions of groups. Results include the relationship
between finite colimits of Hirsch extensions and nilmanifolds. For the cochain algebra
A = C∗(Y; R) of a path-connected space Y , we describe a concrete relationship between
the group GT and the fundamental group π1(Y), where T is a colimit of Hirsch extensions
together with a 1-quasi-isomorphism ρ : T → C∗(Y; R); that is, (T, ρ) is a 1-minimal
model for C∗(Y; R).

1.7. 1-minimal models. In Sections 9 and 10 (which form the core of this work), we
develop these ideas into a theory of 1-minimal models over a ring R equal to Z or Zp.

A key technical tool is provided by the following lifting criterion (Theorem 9.4). Let
f : A → A′ be a surjective 1-quasi-isomorphism between binomial cup-one R-dgas and
let φ : T → A′ be a morphism from a colimit of Hirsch extensions to A′. There is then a
morphism φ̂ : T→ A such that f ◦ φ̂ = φ.

Now let (A, d) be a binomial cup-one R-dga. A 1-minimal model for A is a colimit of
Hirsch extensionsMn = (TR(Xn), dn), together with morphisms ρn : Mn → A compatible
with the Hirsch extensions ofMn intoMn+1. Additionally, the map H1(ρ1) : H1(M1)→
H1(A) is required to be an isomorphism; in particular, X1 corresponds to a basis for
H1(A). For n ≥ 1, the set Xn+1 is a basis for the free submodule ker(H2(ρn)) ⊂ H2(Mn)
given by the cohomology classes of the 2-cocycles dn+1(x) with x ∈ Xn+1.

In Theorems 9.8 and 10.3 we show that every binomial cup-one dga admits (under some
mild finiteness assumptions) a 1-minimal model, unique up to isomorphism. These re-
sults may be summarized, as follows.

Theorem 1.3. Let (A, dA) be a binomial cup-one dga over R = Z or Zp, with p a prime.
Assume H0(A) = R and H1(A) is a finitely generated, free R-module. Then,

(1) There is a 1-minimal model,M = (TR(X), d), for A, and a structural morphism,
ρ : M→ A, that is a 1-quasi-isomorphism.

(2) Given 1-minimal models, ρ : M→ A and ρ′ : M′ → A, there is an isomorphism
f : M→M′ and a dga homotopy Φ : M→ A ⊗R C∗([0, 1]; R) from ρ to ρ′ ◦ f .
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In the case when (A, dA) admits an augmentation, that is, a dga morphism ε : A → R,
the isomorphism f from above is unique (in the category of augmented dgas). More
precisely, we prove in Theorems 9.10 and 10.8 that A has an augmented 1-minimal
model, M, such that the structural morphism is an augmentation-preserving 1-quasi-
isomorphism. Moreover, given augmented 1-minimal models, ρ : M→ A and ρ′ : M′ →

A, there is a unique augmentation-preserving isomorphism f : M → M′ such that ρ is
augmentation-preserving homotopic to ρ′ ◦ f .

1.8. Compatibility of integer and rational 1-minimal models. In Section 11 we show
that the integer 1-minimal model of a space Y tensored with the rationals is weakly
equivalent as a dga to the 1-minimal model for Y in rational homotopy theory.

The algebra of polynomial forms with rational coefficients on a standard simplex was
used by Sullivan in [25] to define the algebra APL(Y) of compatible polynomial forms on
the singular simplices of a space Y; this algebra is a commutative dga over the rationals.
The properties of the 1-minimal model of a cdga overQ are analogous to—and in fact are
the motivation for—the properties we use to define the 1-minimal model for a binomial
cup-one dga over Z or Zp.

In addition to the Sullivan algebra APL(Y) and the singular cochain algebra C∗(Y;Q),
there is a dga over the rationals CA(Y) with the property proved in [6] that for topo-
logical spaces Y , there are natural quasi-isomorphisms C∗(Y;Q) → CA(Y) ← APL(Y).
Consequently, APL(Y) is weakly equivalent (as a dga) to C∗(Y;Q). The following result,
Theorem 11.4, shows that weak equivalence extends to 1-minimal models.

Theorem 1.4. Let Y be a connected topological space with H1(Y;Z) finitely generated.
Then the 1-minimal model for C∗(Y;Z) tensored with the rationals is weakly equivalent
as a differential graded algebra to the 1-minimal model in rational homotopy theory for
APL(Y).

As we shall see next, although the 1-minimal model for C∗(Y;Z) is weakly equivalent
over Q to the (rational) 1-minimal model for APL(Y), the integral version does contain
more refined information than its rational version.

1.9. n-step equivalence and triple Massey products. Given a positive integer n, we
define in Section 12 the relation of n-step equivalence on the set of augmented binomial
cup-one dgas (A, d) over Z for which H0(A) = Z, H1(A) is finitely generated and torsion-
free, and H2(A) is finitely generated. We then construct an infinite family of spaces for
which elements in the family can be distinguished using the 1-minimal model over Z,
but the same approach in rational homotopy theory fails to distinguish among the spaces
in the family.

The definition of n-step equivalence is motivated as follows. If a morphism φ : A → A′

induces isomorphisms of cohomology groups in degrees up to 2, then for each n ≥ 1 there
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is an isomorphism of the nth-step in the respective 1-minimal models, fn : Mn → M
′
n,

such that the following diagram commutes

(1.7)
H2(Mn) H2(M′

n)

H2(A) H2(A′) .

H2( fn)

H2(ρn) H2(ρ′n)

H2(φ)

Note that the horizontal arrows in (1.7) are isomorphisms. We say that A and A′ are n-
step equivalent if there are isomorphisms fn : Mn → M

′
n and en : H2(A) → H2(A′) such

that the diagram (1.7) commutes with H2(φ) replaced by en.

If A and A′ are n-step equivalent, then the cokernels of the homomorphisms H2(ρn)
and H2(ρ′n) are isomorphic, and hence have isomorphic torsion subgroups. Given a
space X with nth-step in the 1-minimal model given by (Mn, ρn), we define κn(X) =
Tors(coker H2(ρn)). The following result (proved in Theorem 12.4) relates the invariant
κn(X) of the n-step equivalence class of C∗(X;Z) to the fundamental group of X.

Theorem 1.5. Let X and X′ be two connected ∆-complexes with first and second integral
cohomology groups finitely generated. Then,

(1) If π1(X) � π1(X′), then κn(X) � κ′n(X) for all n ≥ 1.
(2) If κn(X) � κ′n(X) for some n ≥ 1, then the cochain algebras C∗(X;Z) and C∗(X′;Z)

are not n-step equivalent.

We apply this result to an infinite family of links in the three-sphere, {L(n)}n≥1, the first
term of which is the well-known Borromean rings. Set X(n) equal to the complement
of L(n) in S 3. In Proposition 12.5, we show that κ2(X(n)) = Zn ⊕ Zn, so by part (2) of
Theorem 1.5, X(n) and X(m) are not 2-step equivalent for n , m. We also show that the
Sullivan algebras APL(X(n)) and APL(X(m)) are 2-step equivalent for all positive integers
n and m.

In the proof of Proposition 12.5, the cokernel of H2(ρ2) is given by triple Massey products
of cohomology classes in H1(X(n);Z). This framework provides the context for defining
restricted Massey products, which is a particular case of a more general construction
that will be developed in [20]. The theory of generalized Massey products continues
the program initiated in [17] and is being developed more fully in [19, 20], along with
further applications to topological spaces, including complements of complex hyperplane
arrangements.

2. Delta-sets, magmas, and cochain algebras

2.1. ∆-sets and ∆-complexes. We start the section by reviewing the notion of a ∆-
complex, in the sense of Rourke and Sanderson [21]; see also Hatcher [12] and Friedman
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[8]. We will view such a complex as the geometric realization of the corresponding ∆-set,
cf. [8].

An (abstract) n-simplex ∆n is simply a finite ordered set, (0, 1, . . . , n). The face maps
di : ∆n → ∆n−1, given by omitting the i-th element in the set, satisfy did j = d j−1di when-
ever 0 ≤ i < j ≤ n. The geometric realization of the simplex, |∆n|, is the convex hull of
n+ 1 affinely independent vectors in Rn+1, endowed with the subspace topology; the face
maps induce continuous maps, di : |∆n| → |∆|n−1.

More generally, a ∆-set consists of a sequence of sets X = {Xn}n≥0 and maps di : Xn →

Xn−1 for each 0 ≤ i ≤ n such that did j = d j−1di whenever i < j. This is the generalization
of the notion of ordered (abstract) simplicial complex, where the sets Xn are the sets of
n-simplices and the maps di are the face maps. We refer to X(n) = {Xi}

n
i=0 as the n-skeleton

of the ∆-set, and say that X(n) has dimension (at most) n.

The geometric realization of a ∆-set X is the topological space

(2.1) |X| =
∐
n≥0

Xn × |∆
n| /∼,

where ∼ is the equivalence relation generated by (x, di(p)) ∼ (di(x), p) for x ∈ Xn+1,
p ∈ |∆n|, and 0 ≤ i ≤ n, where di : |∆n| →

∣∣∣∆n+1
∣∣∣ is the inclusion of the i-th face. Such a

space is called a ∆-complex, and can be viewed either as a special kind of CW-complex,
or a generalized simplicial complex.

The assignment X { |X| is functorial: if f : X → Y is a map of ∆-sets (i.e., f is a family
of maps fn : Xn → Yn commuting with the face maps), there is an obvious realization,
| f | : |X| → |Y |, and this is a (continuous) map of ∆-complexes.

The chain complex of a ∆-set X, denoted C∗(X;Z), coincides with the simplicial chain
complex of its geometric realization: for each n ≥ 0, the chain group Cn(X) is the free
abelian group on Xn, while the boundary maps ∂n : Cn(X) → Cn−1(X) are the linear
maps given by ∂n =

∑
i(−1)idi. If B is an abelian group, the chain complex of X with

coefficients in B is defined as C∗(X; B) = C∗(X;Z)⊗ B. The cochain complex C∗(X; B) is
defined by setting Cn(X; B) = Hom(Cn(X), B) and dualizing the differentials. We denote
by H∗(X; B) and H∗(X; B), respectively, the homology groups of these complexes.

2.2. From binary operations to ∆-sets. Let M = (M, µ) be a magma, that is, a set M
equipped with a binary operation, µ : M × M → M, commonly written as (a1, a2) 7→
a1a2. These data determine a 2-dimensional ∆-set, denoted ∆(2)(M), whose geometric
realization can be described as follows. There is a single vertex; each element a ∈ M
gives a 1-simplex, and to each ordered pair of 1-simplices, a1 and a2, we assign a 2-
simplex, (a1, a2), with front face a1, back face a2, and third face equal to a1a2.

This construction is functorial, in the following sense. Suppose h : (M, µ) → (M′, µ′)
is a morphism of magmas, that is, µ′(h(a1), h(a2)) = h(µ(a1, a2)) for all a1, a2 ∈ M.
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Figure 1.

Then h determines in a straightforward manner a simplicial map between the respective
∆-complexes, ∆(h) : ∆(2)(M′, µ′)→ ∆(2)(M, µ), so that ∆(h ◦ g) = ∆(h) ◦ ∆(g).

Now suppose M = (M, µ) is a semigroup, that is, the operation µ on the magma M is
associative. Then this construction can be pushed through in all dimensions.

Lemma 2.1. Let M be a semigroup, and let ∆(2)(M) be the 2-dimensional ∆-set deter-
mined by the underlying magma. Then ∆(2)(M) is the 2-skeleton of a ∆-set, ∆(M), whose
n-simplices are given by ordered n-tuples of elements in M.

Proof. We let ∆0(M) be a singleton, and ∆n(M) = Mn, the cartesian product of n copies
of M. The face maps di : Mn → Mn−1 send an ordered n-tuple (a1, . . . , an) ∈ Mn to
(a2, . . . , an) if i = 0, to (a1, . . . , an) if i = n, and to (a1, . . . , aiai+1, . . . , an), otherwise.

Now, if the operation µ is associative, then, as indicated in Figure 1, the 2-dimensional ∆-
complex corresponding to ∆(2)(M) extends to a 3-dimensional ∆-set, whose 3-simplices
are ordered triples, (a1, a2, a3), of elements in A. More generally, a routine computation
shows that did j = d j−1di for all i < j, and thus ∆(M) is indeed a ∆-set, with 2-skeleton
equal to ∆(2)(M). □

Given a semigroup M, we define a ∆-set S (M), as follows. We let S n(M) equal to the
set of all functions, f , from the 1-simplices of the abstract n-simplex ∆n to M with the
property that

(2.2) f (i, ℓ) = f (i, j) · f ( j, ℓ) for all 0 ≤ i < j < ℓ ≤ k.

The face maps di : S n(M)→ S n−1(M) are given by the restriction of f to the faces of ∆n.

Lemma 2.2. The ∆-set S (M) coincides with ∆(M).
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Proof. From the associativity of the multiplication in M it follows that an arbitrary map
from the 1-simplices of ∆n of the form (i, i + 1) to M extends uniquely to a map from all
1-simplices of ∆n to M that satisfies equation (2.2). This gives a bijection between the
elements in S n(M) and the n-tuples, (a1, . . . , an), of elements in M. It is readily seen that
this bijection is compatible with the respective face maps. □

Remark 2.3. Of particular importance is the case when M is a monoid, that is, a semi-
group with multiplication µ : M × M → M and two-sided identity e. Then ∆(M) is the
bar construction on M: the corresponding ∆-complex, B(M) = |∆(M)|, has a single 0-
cell, and an n-cell [g1| . . . |gn] for each n-tuple (g1, . . . , gn) ∈ Mn. The chain complex
C∗(B(M);Z) yields a resolution by free Z[M]-modules of the group Z, viewed as a triv-
ial module over the monoid-ring Z[M]. Finally, if M = G is a group, then B(G) is an
Eilenberg–MacLane classifying space K(G, 1); see [14, Ch. 10] and also [1, 3, 4].

2.3. Cocycles and ∆-complexes. Let M = (M, µ) be a magma, with multiplication
µ : M × M → M written as µ(a1, a2) = a1a2, and let B be an abelian group, together
with a map of sets ν : M × M → B, written (a1, a2) 7→ a1 ∗ a2. Defining a map
η : (M × B) × (M × B)→ M × B by

(2.3) η((a1, b1), (a2, b2)) = (a1a2, b1 + b2 + a1∗ a2)

for all ai ∈ M and bi ∈ B turns the set M × B into a magma which we call the extension
of (M, µ) by ν. If (M, µ) has a two-sided identity, e, and if η satisfies η((a, b1), (e, b2)) =
η((e, b2), (a, b1)) and η((e, b1), (e, b2)) = (e, b1 + b2) for all a ∈ M and b1, b2 ∈ B, then the
extension is called a central extension.

From the correspondence between 2-simplices in |∆(M)| and ordered pairs of elements in
M, it follows that νmay be viewed as an element in C2(∆(M); B). If the magma (M, µ) has
a two-sided identity e, we say that ν is normalized if ν(a, e) = ν(e, a) = 0 for all a ∈ M.
In the case when (M, µ) is a monoid (that is, the operation µ is associative and has a
two-sided identity e), a cochain ξ ∈ Ck(∆(M); B) is called normalized if ξ(a1, . . . , ak) = 0
whenever ai = e for some i.

The following lemma gives conditions on (M, µ) and ν for the extension of a semigroup
to be a semigroup, the extension of a monoid to be a monoid, and for the extension of a
group to be a group. Note that a monoid is a semigroup with identity.

Lemma 2.4. Given a magma (M, µ) and a map ν : M × M → B, the extension E =
(M × B, η) of M by the abelian group B as defined above has the following properties.

(1) Suppose (M, µ) has a two-sided identity e and ν is a normalized cochain. Then E
is a central extension.

(2) Suppose (M, µ) is a semigroup. Then (E, η) is a semigroup if and only if ν is a
cocycle in C2(∆(M); B).

(3) Suppose (M, µ) is a monoid and ν is a normalized cocycle in Z2(∆(M); B). Then
(E, η) is a monoid.
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(4) Suppose (M, µ) is a group and ν is a normalized cocycle in Z2(∆(M); B). Then
(E, η) is a group.

Proof. Part (1) follows directly from formula (2.3) expressing η in terms of ν and using
the assumption that ν is a normalized cochain.

To prove part (2), note that from equation (2.3), it follows that

(a1, b1)[(a2, b2)(a3, b3)] =
(
a1(a2a3), b1 + b2 + b3 + a2∗ a3 + a1∗ (a2a3)

)
[(a1, b1)(a2, b2)](a3, b3) =

(
(a1a2)a3, b1 + b2 + b3 + a1∗ a2 + (a1a2)∗ a3

)
.

Hence, the binary operation η on M × B is associative if and only if

(2.4) a2 ∗ a3 + a1∗ (a2a3) = a1∗ a2 + (a1a2)∗ a3

for all ai ∈ M. Let us view the map ν : M × M → B as a B-valued 2-cochain on ∆(M).
To find a formula for the coboundary of ν, we use Figure 1 to identify an arbitrary triple
(a1, a2, a3) ∈ M3 with the standard 3-simplex with vertices 0, 1, 2, and 3 and then to
identify ordered pairs of elements in M with 2-simplices. This gives the following

δν(a1, a2, a3) = ν([1, 2, 3]) − ν([0, 2, 3]) + ν([0, 1, 3]) − ν([0, 1, 2])
= ν(a2, a3) − ν(a1a2, a3) + ν(a1, a2a3) − ν(a1, a2)
= a2∗ a3 − (a1a2) ∗ a3 + a1∗ (a2a3) − a1∗ a2.

Hence, the identity (2.4) is satisfied precisely when ν is a cocycle, and the proof of part
(2) is complete.

To prove part (3), note that from part (2) we know that E = (M × B, η) is a semigroup, so
it suffices to show that E has an identity. From equation (2.3) and using the assumption
that ν is a normalized cochain, we have

(a, b)(e, 0) = (ae, b + 0 + a∗ e) = (a, b),

for all (a, b) ∈ M × B, where we used the assumption that a∗ e = 0 for all a ∈ M. A
similar argument shows that (e, 0)(a, b) = (a, b) for all (a, b) ∈ M × B, and the proof of
part (3) is complete.

To prove part (4), note that from parts (2) and (3) it follows that E is a monoid so it
suffices to show that every element in E has a two-sided inverse. It is well known that if
E is a monoid and each element a has a right inverse ar, then ar is also a left inverse of
a, and hence E is a group. So we only need to show that every element in E has a right
inverse. Let (a, b) ∈ M × B; then

(a, b)(a−1,−b − a∗ a−1) = (aa−1, b + (−b) − a∗ a−1 + a∗ a−1) = (e, 0),

and the proof of part (4) is complete. □
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3. Differential graded algebras and homotopies

3.1. Differential graded algebras. Throughout this section, we work over a fixed co-
efficient ring R, assumed to be commutative and with unit 1. We start with some basic
definitions.

Definition 3.1. A graded algebra over R is an R-algebra A such that the underlying R-
module is a direct sum of R-modules, A =

⊕
i≥0 Ai, and such that the product A⊗R A→ A

sends Ai ⊗R A j to Ai+ j.

We refer to the multiplication maps ∪ : Ai ⊗R A j → Ai+ j, given by ∪(a ⊗ b) = a ∪ b as
the cup-product maps; we also refer to the elements of Ai as i-cochains. A morphism of
graded algebras is a map of R-algebras preserving degrees.

Definition 3.2. A differential graded algebra over R (for short, a dga) is a graded R-
algebra A =

⊕
i≥0 Ai endowed with a degree 1 map, d : A→ A, satisfying d2 = 0 and the

graded Leibniz rule,

(3.1) d(a ∪ b) = da ∪ b + (−1)|a|a ∪ db

for all homogenous elements a, b ∈ A, where |a| is the degree of a.

We denote by [a] ∈ Hi(A) the cohomology class of a cocycle a ∈ Zi(A). As usual, the
graded R-module H∗(A) inherits an algebra structure from A.

Observe that A0 is a subring of A and the structure map R → A sends the unit 1 ∈ R
to the unit of A, which we will also denote by 1, and which necessarily has degree 0.
Consequently, R may be viewed as a subring of A0, and the graded pieces Ai may be
viewed as A0-modules. We say that A is connected if the structure map R → A maps
R isomorphically to A0. We say that A is graded commutative (for short, A is a cdga) if
ab = (−1)|a||b|ba for all homogeneous elements a, b ∈ A.

A morphism of differential graded R-algebras is an R-linear map φ : A → B between
two dgas which preserves the grading and commutes with the respective differentials
and products. The induced map in cohomology, φ∗ : H∗(A) → H∗(B), [a] 7→ [φ(a)],
is a morphism of graded R-algebras. The map φ is called a quasi-isomorphism if φ∗ is
an isomorphism. Two dgas are called weakly equivalent if there is a zig-zag of quasi-
isomorphisms connecting one to the other; plainly, this is an equivalence relation among
dgas. A dga (A, d) is said to be formal if it is weakly equivalent to its cohomology
algebra, H∗(A), endowed with the zero differential.

All these notions have partial analogues. Fix an integer q ≥ 1. A dga map φ : A →
B is a q-quasi-isomorphism if the induced homomorphism, φ∗ : Hi(A) → Hi(B), is an
isomorphism for i ≤ q and a monomorphism for i = q + 1. Two dgas are called q-
equivalent if they may be connected by a zig-zag of q-quasi-isomorphisms. Finally, a
dga (A, d) is q-formal if it is q-equivalent to (H∗(A), d = 0).
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Remark 3.3. For later use, let us note the following. Suppose φ : A → B is a surjective
q-quasi-isomorphism. From the long exact sequence in cohomology induced by the exact
sequence of cochain complexes 0 ker(φ) A B 0,

φ
it then follows that

Hi(ker(φ)) = 0 for i ≤ q + 1.

If (A, dA) and (B, dB) are two dgas, then the tensor product of the underlying graded R-
modules, A ⊗R B, acquires a dga structure, with multiplication and differential given on
homogeneous elements by (a ⊗ b) · (a′ ⊗ b′) = (−1)|a

′ ||b|aa′ ⊗ bb′ and dA⊗RB(a ⊗ b) =
dA(a) ⊗ b + (−1)|a|a ⊗ dB(b). The direct product A × B also has a natural structure of a
dga, with (a, b) · (a′, b′) = aa′ ⊗ bb′ and dA×B(a, b) = (dA(a), dB(b)). If φ : A → B and
φ′ : A′ → B are two dga maps, then their fiber product, denoted A ×B A′, is the sub-dga
of A × B consisting of all pairs (a, b) with φ(a) = φ′(b).

3.2. Cochain algebras. The motivating example for us is the singular cochain algebra
C∗(X; R) on a space X, with coefficients in a commutative ring R. This is an R-dga,
with differentials given by the usual coboundary maps, and with multiplication given
by the cup product. We will be mostly interested in the case when X is a simplicial
complex, or, more generally, a ∆-complex (see [21, 12, 8]). We will view such a complex
as the geometric realization of the corresponding abstract simplicial complex or ∆-set,
respectively, and we will use the simplicial cochain algebra of X, still to be denoted by
C∗(X; R). Let us note that the structure map R→ C0(X; R) sends an element r ∈ R to the
cochain whose value on every vertex is r.

Example 3.4. Let I be the closed interval [0, 1], viewed as a simplicial complex in the
usual way, and let C = C∗(I; R) be its cochain algebra over R. Then C0 = R ⊕ R with
generators t0, t1 corresponding to the endpoints 0 and 1, and C1 = R with generator u.
The differential d : C0 → C1 is given by dt0 = −u and dt1 = u, while the multiplication is
given on generators by tit j = δi jti, t0u = ut1 = u, and ut0 = t1u = 0. Note that the cocycle
t0 + t1 is the unit of C. Furthermore, H∗(C) = R, concentrated in degree 0.

Example 3.5. Now let G be a group. Recall from Section 2.2 that in the ∆-complex
B(G) for the bar construction on G, there is one 0-cell, one 1-cell [g] for each g ∈ G,
and one 2-cell for each ordered pair [g1|g2] of elements in G. Thus, the 1-cochains are
functions f : G → R and the 2-cochains are functions from G ×G to R. The cup product
and differential are as follows:

( f ∪ h)([g1|g2]) = f (g1) · h(g2),(3.2)
(d f )([g1|g2]) = f ([g1]) + f ([g2]) − f ([g1 · g2]),

where · denotes the product in R or G depending on the context.

Following J.H.C. Whitehead [26], we say that two maps of spaces, f , g : X → Y , are n-
homotopic if f ◦h ≃ g◦h, for every map h : K → X from a CW-complex K of dimension
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at most n. A map f : X → Y is an n-homotopy equivalence (for some n ≥ 1) if it admits
an n-homotopy inverse. If such a map f exists, we say that X and Y have the same n-
homotopy type. Two CW-complexes, X and Y , are said to be of the same n-type if their
n-skeleta have the same (n−1)-homotopy type. Any two connected CW-complexes have
the same 1-type, and they have the same 2-type if and only if their fundamental groups
are isomorphic.

A (cellular) map f : X → Y between two CW-complexes induces a morphism of dgas,
f ♯ : C∗(Y; R)→ C∗(X; R), between the respective cochain algebras, and thus a morphism,
f ∗ : H∗(Y; R) → H∗(X; R), between their cohomology algebras. If f is a homotopy
equivalence, then f ♯ is a quasi-isomorphism of R-dgas. The next result, which develops
ideas from [26], was proved in [18].

Theorem 3.6 ([18]). If X and Y are CW-complexes of the same n-type, then the cochain
algebras C∗(X; R) and C∗(Y; R) are (n − 1)-equivalent. In particular, if π1(X) � π1(Y),
then C∗(X; R) and C∗(Y; R) are 1-equivalent.

The (n − 1)-equivalence between the n-skeleta of X and Y takes a special form, which
we now recall, for it will be needed in the proof of Theorem 12.4. By [26, Theorem 6],
there is a homotopy equivalence, f , from X

(n)
= X(n) ∨

∨
i∈I S n

i to Y
(n)
= Y (n) ∨

∨
j∈J S n

j ,

for some indexing sets I and J. Let qX : X
(n)
→ X(n) and qY : Y

(n)
→ Y (n) be the maps that

collapse the wedges of n-spheres to the basepoint of the wedge, and consider the induced
morphisms on cochain algebras,

(3.3) C∗(X(n); R) C∗(X
(n)

; R) C∗(Y
(n)

; R) C∗(Y (n); R) .
q♯X f ♯ q♯Y

The map f ♯ is a quasi-isomorphism, while q♯X and q♯Y are (n − 1)-quasi-isomorphisms;
thus, (3.3) is the desired (n − 1)-equivalence between the n-skeleta of X and Y .

3.3. Homotopy invariance. Let C∗(I; R) be the cochain algebra of the interval I, as
described in Example 3.4, and let η0, η1 : C∗(I; R)→ R denote the R-linear maps induced
by restriction to the endpoints of I; that is to say, ηi(t j) = δi j, and ηi(u) = 0.

Definition 3.7. Two dga maps, φ0, φ1 : A → B, are said to be homotopic (denoted φ0 ≃

φ1) if there is a dga mapΦ : A→ B⊗RC∗(I; R) such that the following diagram commutes
for i = 0, 1:

(3.4)
B ⊗R C∗(I; R) B ⊗R R

A B.

idB ⊗ηi

Φ

φi
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From the commutativity of the diagram (3.4) it follows that a homotopy Φ is given on
elements a ∈ Ai by

(3.5) Φ(a) = φ0(a)t0 + φ1(a)t1 − c(a)u,

for some c(a) ∈ Bi−1. In particular, if a ∈ A0, then c(a) = 0, and so Φ(a) = φ0(a)t0 +

φ1(a)t1.

Theorem 3.8. Homotopic dga maps induce the same map on cohomology:

φ0 ≃ φ1 ⇒ φ∗0 = φ
∗
1.

Proof. We proceed in a manner similar to the proof of [6, Proposition 12.8(i)] (see also
[11, Remark 5.10.3]). Define a linear map h : A→ B of degree −1 by

(3.6) Φ(a) = φ0(a)t0 + φ1(a)t1 − (−1)|a|h(a)u

for every homogeneous element a ∈ A. Then:

dΦ(a) = dφ0(a)t0 − (−1)|a|φ0(a)u + dφ1(a)t1 + (−1)|a|φ1(a)u − (−1)|a|dh(a)u,

Φ(da) = φ0(da)t0 + φ1(da)t1 − (−1)|a|+1h(da)u.

Since the maps φ0, φ1, and Φ commute with the differentials, we infer that φ1 − φ0 =

dh + hd, and the claim follows. □

3.4. Augmented dgas and the wedge sum. Let (A, dA) be a differential graded algebra
over a unital commutative ring R. Let us view the ground ring R as a dga concentrated
in degree 0 and with differential d = 0. An augmentation for A, then, is a dga-map,
εA : A→ R. We call the triple (A, dA, εA) an augmented dga. A morphism in this category
is a dga map, φ : (A, dA)→ (B, dB), such that εB ◦ φ = εA.

Recall that A is connected if the structure map σA : R → A0 is an isomorphism of rings;
in this case we assume the augmentation εA : A → R then restricts to an isomorphism
from A0 to R. The composition εA ◦ σA : R → R then is an isomorphism of rings, and
hence, is the identity map. Thus, if A is connected, it has a unique augmentation map.
Moreover, if φ : A → B is an augmentation-preserving morphism between connected
R-dgas, the map φ0 : A0 → B0 may be identified with idR. In general, though, a dga may
admit many augmentations.

If A and B are two augmented dgas, we denote by A ∨ B = A ×R B the fiber product of
the augmentation maps εA : A → R and εB : B → R. Note that (A ∨ B)0 is the kernel of
the map (εA,−εB) : A0 ⊕ B0 → R, while (A ∨ B)i = Ai ⊕ Bi for i > 0.

The motivation for these definitions comes from topology. Let X be a topological space,
and let C∗(X; R) be its singular cochain algebra. Choosing a basepoint x0 ∈ X yields an
augmentation, ε0 : C∗(X; R) → R, which sends a 0-cochain ξ to its evaluation ξ(x0) ∈
R and any cochain of higher degree to 0. If f : (X, x0) → (Y, y0) is a pointed map,
then the induced morphism of cochain algebras, f ∗ : C∗(Y; R)→ C∗(X; R), preserves the
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respective augmentations. Finally, if X ∨ Y is the wedge sum of two pointed spaces, then
C∗(X ∨ Y; R) is isomorphic to C∗(X; R) ∨C∗(Y; R).

Example 3.9. Let C∗(I; R) be the cochain algebra of the unit interval I = [0, 1] as in
Example 3.4, and let x0 = 0. Then ε0(t0) = 1, while ε0(t1) = ε0(u) = 0.

3.5. Augmentation-preserving homotopies. Two augmented dga maps, φ0, φ1 : A →
B, are said to be augmentation-preserving homotopic if there is a homotopy Φ : A →
B ⊗R C∗(I; R) between them such that the following diagram commutes,

(3.7)

A B ⊗R C∗(I; R)

R R ⊗R C∗(I; R)

C∗(I; R),

Φ

εA εB⊗id

where the diagonal map is the structure map for the R-algebra C∗(I; R), which sends 1
to t0 + t1. As noted in (3.5), the homotopy Φ is given on elements a ∈ Ai by Φ(a) =
φ0(a)t0 + φ1(a)t1 − c(a)u, for some c(a) ∈ Bi−1. The commutativity of (3.7) implies
that εB(c(a)) = 0. When both A and B are connected and A is generated in degree 1,
augmentation-preserving homotopies take a very special form, which we describe next.

Lemma 3.10. Let A and B be augmented dgas such that A and B are connected and A is
generated as a graded R-algebra by A1. Let φ0 and φ1 be augmentation-preserving mor-
phisms of dgas and let Φ : A → B ⊗R C∗(I; R) be an augmentation-preserving homotopy
between φ0 and φ1. Then, for all a ∈ A,

Φ(a) = φ0(a)t0 + φ1(a)t1,(3.8)
φ0(a) = φ1(a).(3.9)

Proof. We start with equation (3.8). For each a ∈ Ai, write as before Φ(a) = φ0(a)t0 +

φ1(a)t1 − c(a)u, for some c(a) ∈ Bi−1. When a ∈ A0, we necessarily have c(a) = 0. When
a ∈ A1, we have that c(a) ∈ B0 and εB(c(a)) = 0; since B is connected, it follows that
c(a) = 0. Therefore, (3.8) holds for all a ∈ A0 ⊕ A1.

Recall that tit j = δi jti. Since φ0, φ1, and Φ are all maps of graded algebras, A is generated
in degree 1, and (3.8) holds for all a ∈ A1, it follows that equation (3.8) holds for all
a ∈ A.
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We now turn to equation (3.9). Using (3.8), we have that,

(Φ ◦ dA)(a) = φ0(dAa)t0 + φ1(dAa)t1

(dB⊗RC∗(I;R) ◦ Φ)(a) = dB⊗RC∗(I;R)(φ0(a)t0 + φ1(a)t1)
= φ0(dAa)t0 + φ1(dAa)t1 − (φ0(a) − φ1(a))u

for every a ∈ A. Since Φ is a map of dgas, it follows that φ0(a) − φ1(a) = 0 for all a ∈ A,
and the proof is complete. □

4. The Steenrod ∪i-products

4.1. The ∪i operations. We now enrich the notion of a differential graded algebra with
extra structure, motivated by properties of the cochain algebra of a space, as laid out in
the foundational paper of Steenrod [22], and further developed by Hirsch in [13].

Let X be a ∆-complex, and let A = (C∗(X; R), d) be its cochain algebra with coefficients in
a commutative ring R, with multiplication given by the cup product ∪ : Ap⊗R Aq → Ap+q.
This R-dga comes endowed with R-linear maps, ∪i : Ap ⊗R Aq → Ap+q−i, which coincide
with the usual cup product when i = 0, vanish if either p < i or q < i, and satisfy

d(a ∪i b) = (−1)|a|+|b|−ia ∪i−1 b + (−1)|a||b|+|a|+|b|b ∪i−1 a + da ∪i b + (−1)|a|a ∪i db(4.1)

(a ∪ b) ∪1 c = a ∪ (b ∪1 c) + (−1)|b|(|c|−1)(a ∪1 c) ∪ b(4.2)

for all homogeneous elements a, b, c ∈ A. We shall refer to (4.1) as the “Steenrod identi-
ties” and to (4.2), with the cup product to the left of the cup-one product, as the “Hirsch
identity”.

Steenrod’s ∪i operations enjoy the following naturality property. Suppose f : X → Y is
a map of ∆-complexes which preserves the ordering of the vertices of simplices. Then,
by [22, Theorem 3.1], the induced map on cochains, f ∗ : C∗(Y; R) → C∗(X; R), is a
morphism of differential graded algebras that commutes with the ∪i products.

Steenrod’s ∪i products also occur in the theory of non-commutative differential forms, as
developed by M. Karoubi, N. Battikh, and A. Abbassi. We refer to our prior work [18]
for an overview of this subject and detailed references.

4.2. Cup and cup-one operations on 1-cochains. Henceforth, we will focus on the
aforementioned operations on cochains in low degrees. Let (A, d) be an R-dga and as-
sume we have an R-linear map ∪1 : A1 ⊗R A1 → A1 that satisfies the Steenrod and Hirsch
identities (4.1) and (4.2), that is,

d(a ∪1 b) = −a ∪ b − b ∪ a + da ∪1 b − a ∪1 db,(4.3)
(a ∪ b) ∪1 c = a ∪ (b ∪1 c) + (a ∪1 c) ∪ b,(4.4)
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for all a, b, c ∈ A1. In particular, if a, b ∈ Z1(A) are 1-cocyles, we then have

(4.5) d(a ∪1 b) = −(a ∪ b + b ∪ a).

Under these assumptions, the operation ∪1 : Z1(A) ⊗R Z1(A) → A2 provides an explicit
witness for the non-commutativity of the multiplication map ∪ : Z1(A)⊗R Z1(A)→ Z2(A)
and shows that uv = −vu for elements u, v ∈ H1(A).

Now let X be a ∆-complex and let C∗(X; R) be its cochain algebra with coefficients in a
commutative ring R. By [22, Theorem 2.1], u ∪1 v = 0 if either u or v is a 0-cochain.
Formulas for computing the cup products and cup-one products for 1-cochains u, v ∈
C1(X; R) are as follows:

(u ∪ v)(s) = u(e1) · v(e2),
(u ∪1v)(e) = u(e) · v(e),

(4.6)

where in the first formula s is a 2-simplex with front face e1 and back face e2, while in
the second formula e is a 1-simplex, and · denotes the product in R. In particular, the ∪1-
product on C1(X; R) is both associative and commutative, and thus defines an R-algebra
structure on C≤1(X; R).

Example 4.1. For the cochain algebra C = C∗(I; R) from Example 3.4, the cup-one
product C1 ⊗R C1 → C1 is given by u ∪1 u = u.

Example 4.2. Now let G be a group, and let C∗(B(G); R) be the cochain algebra of the
bar construction on G, as described in Example 3.5. The ∪1-product on C1(B(G); R) is
given by ( f ∪1 h)([g]) = f (g) · h(g).

4.3. Graded algebras with cup-one products. Given a graded R-algebra A, we let
D2(A) denote the decomposables in A2; that is, the R-submodule of A2 spanned by all
elements of the form a ∪ b, with a, b ∈ A1.

Definition 4.3. A graded algebra with cup-one products is a graded R-algebra A with a
cup-one product map, ∪1 : A1⊗R A1 → A1, which gives the R-submodule R⊕A1 ⊂ A0⊕A1

the structure of a commutative ring, and a cup-one product map ∪1 : D2(A) ⊗R A1 → A2

that satisfies the Hirsch identity (4.4).

A morphism of graded algebras with cup-one products is a map φ : A → B between two
such objects which is a map of graded algebras and commutes with cup-one products;
that is, φ(a1 ∪1 a2) = φ(a1) ∪1 φ(a2), for all a1, a2 ∈ A.

Lemma 4.4. Let A and B be two graded R-algebras with cup-one products. Then the
tensor product A ⊗R B is again a graded algebra with cup-one products.
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Proof. We extend the ∪1-products on A1 and B1 to a ∪1-product on (A ⊗R B)1 = (A1 ⊗R

B0) ⊕ (A0 ⊗R B1) by setting

(a1 ⊗ b0) ∪1 (a′1 ⊗ b′0) = (a1 ∪1 a′1) ⊗ b0b′0
(a0 ⊗ b1) ∪1 (a′0 ⊗ b′1) = a0a′0 ⊗ (b1 ∪1 b′1)
(a1 ⊗ b0) ∪1 (a′0 ⊗ b′1) = (a0 ⊗ b1) ∪1 (a′1 ⊗ b′0) = 0

(4.7)

for all ai, a′i ∈ Ai and bi, b′i ∈ Bi (i = 0, 1) and extending linearly to (A ⊗R B)1. Since
the ∪1-product on A1 and B1 and the multiplication on A0 and B0 are all commutative, it
follows that the ∪1-product on (A ⊗R B)1 is also commutative. Since the Hirsch identity
(4.4) holds for both A and B, it also holds for A ⊗R B; for instance,

(a1 ⊗ b0 ∪ a′1 ⊗ b′0) ∪1 (a′′1 ⊗ b′′0 ) = ((a1 ∪ a′1) ∪1 a′′1 ) ⊗ b0b′0b′′0
= ((a1 ∪1 a′′1 ) ∪ a′1 + a1 ∪ (a′1 ∪1 a′′1 )) ⊗ b0b′0b′′0
= (a1 ⊗ b0 ∪1 a′′1 ⊗ b′′0 ) ∪ a′1 ⊗ b′1+

a1 ⊗ b0 ∪ (a′1 ⊗ b′0 ∪1 a′′1 ⊗ b′′0 ),

and similarly for the other types of ∪ and ∪1 products. This completes the proof. □

4.4. Cup-one differential graded algebras. In this section we make a definition that
will play an important role in our investigation. We begin with some motivation. Note
that if a dga is generated by a set of elements {xi}i∈J in degree 1, then the Leibniz rule
gives a formula for the differential of any product of the xi as a sum of cup products of
the xi and dxi. Hence, the differential on the algebra is completely determined by the
differentials of the generators xi.

This raises the question of whether there is a formula for the differential of cup-one
products of the generators xi that allows one to write d(xi ∪1 x j) as a sum of cup products
of 1-cochains. If so, then it follows that if a dga is generated by elements xi in degree
one and by iterated cup-one products of the xi, then the differential on the algebra is
completely determined by the differentials of the xi.

The next definition answers this question by giving as part of hypothesis (iv) a formula for
the differential of a cup-one product of 1-cochains that, along with the Hirsch identity,
allows one to write the differential of cup-one products of 1-cochains as a sum of cup
products. This definition is a slight modification of a notion introduced in [18], better
adapted to the current context by including the additional hypothesis (iii).

Definition 4.5. A differential graded R-algebra (A, d) is called a cup-one differential
graded algebra if the following conditions hold.

(i) A is a graded R-algebra with cup-one products.
(ii) There is an R-linear map ◦ : D2(A) ⊗R D2(A)→ D2(A) such that

(4.8) (u ∪ v) ◦ (w ∪ z) = (u ∪1 w) ∪ (v ∪1 z)
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for all u, v,w, z ∈ A1.
(iii) The differential d and the ∪ and ∪1 products satisfy the identity

(4.9) a ∪1 dc = a ∪ c − c ∪ a

for all a ∈ A1 and c ∈ A0.
(iv) The differential d satisfies the “∪1– d formula,”

(4.10) d(a ∪1 b) = −a ∪ b − b ∪ a + da ∪1 b + db ∪1 a − da ◦ db,

for all a, b ∈ A1 with da, db ∈ D2(A).

Remark 4.6. Formula (4.10) comes from Steenrod’s definition of the ∪i products in a
cochain algebra A = C∗(X; R), as follows. By equation (4.3), we have that d(a ∪1 b) =
−a ∪ b − b ∪ a + da ∪1 b − a ∪1 db for all a, b ∈ A1. If da is decomposable, then da ∪1 b
can be written as a sum of cup products using the Hirsch formula (4.4). This leaves the
problem of writing a ∪1 db as a sum of cup products. By a direct computation using
Steenrod’s definition of the cup-one product ∪1 : A1 ⊗R A2 → A2, it follows that

(4.11) a ∪1 (b1 ∪ b2) = da ◦ (b1 ∪ b2) − (b1 ∪ b2) ∪1 a,

where we assume da is decomposable and ◦ is given by (4.8). This then gives the ∪1– d
formula, equation (4.10).

Our motivation for Definition 4.5 arises from the cochain algebras of ∆-complexes. As
shown in [18, Theorem 4.4], such algebras are indeed ∪1-algebras. We briefly review
this result, with the necessary modifications for our context here.

Theorem 4.7 ([18]). Let X be a non-empty ∆-complex, and let R be a unital commutative
ring. The the cochain algebra (C∗(X; R), δ) is a cup-one dga.

Proof. As we saw in Sections 3.2 and 4.2, the cellular cochain algebra C = (C∗(X; R), δ)
is a graded algebra with cup-one products. Moreover, it is a differential graded algebra,
and the Steenrod identities (4.1) hold in full generality.

Setting (c1 ◦ c2)(s) = c1(s) · c2(s) for any 2-cochains c1, c2 and any 2-simplex s defines
an R-linear map ◦ : C2 ⊗R C2 → C2. It follows straight from the definitions of the ∪- and
∪1-products that

(4.12) (u ∪ v)(s) · (w ∪ z)(s) = ((u ∪1 w) ∪ (v ∪1 z))(s),

for all 1-cochains u, v,w, z. Thus, the restriction of the ◦-map to decomposable elements
yields a map, ◦ : D2(C) ⊗R D2(C)→ D2(C), which clearly obeys formula (4.8). It is now
straightforward to verify that the simplicial differential d satisfies formula (4.10).
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It remains to check that formula (4.9) holds. Given a 1-cochain u, a 0-cochain c, and a
1-simplex e with endpoints v0 and v1, we have

(u ∪1 δc)(e) = u(e) · (δc)(e)
= u(e) · c(v1 − v0)
= u(e) · c(v1) − c(v0) · u(e)
= (u ∪ c)(e) − (c ∪ u)(e),

(4.13)

and this completes the proof. □

Remark 4.8. Comparing the definition of the map ◦ : C2 ⊗R C2 → C2 given in the above
proof to that of Steenrod’s map ∪2 : C2 ⊗R C2 → C2, we readily see that these two maps
coincide. Moreover, as shown in Remark 4.6, in this case the ∪1– d formula (4.10) is a
consequence of Steenrod’s formula (4.3).

4.5. Tensor products of ∪1-dgas. We conclude this section with a result showing that
the category of ∪1-dgas is closed under taking tensor products.

Proposition 4.9. If (A, dA) and (B, dB) are cup-one differential graded algebras, then the
tensor product (A ⊗R B, dA⊗B) is again a cup-one differential graded algebra.

Proof. By Lemma 4.4, A ⊗R B is a graded algebra with cup-one products. The ◦ opera-
tions on D2(A) and D2(B) extend to a binary operation, ◦ : D2(A ⊗R B) ⊗R D2(A ⊗R B)→
D2(A ⊗R B), by letting

[(a1 ⊗ b0) ∪ (a′1 ⊗ b′0)] ◦ [(a′′1 ⊗ b′′0 ) ∪ (a′′′1 ⊗ b′′′0 )] =
[(a1 ∪ a′1) ◦ (a′′1 ∪ a′′′1 )] ⊗ b0b′0b′′0 b′′′0

(4.14)

and so on. Using (4.7), it is readily verified that equation (4.8) holds for (A ⊗R B, dA⊗B).

Next, we verify that equation (4.9) holds:

(a1 ⊗ b0) ∪1 dA⊗B(a′0 ⊗ b′0) = (a1 ⊗ b0) ∪1 (dA(a′0)b′0 + a′0dB(b′0))
= (a1 ∪1 dA(a′0)) ⊗ b0b′0
= (a1 ∪ a′0 − a′0 ∪ a1) ⊗ b0b′0
= (a1 ⊗ b0) ∪ (a′0 ⊗ b′0) − (a′0 ⊗ b′0) ∪ (a1 ⊗ b0),

(4.15)

and similarly for the other cases.

The last step is to verify that equation (4.10) holds for the tensor product of A and B. First
let a ∈ A1 such that dA(a) ∈ D2(A), and let b ∈ B0. It is readily seen that dA⊗B(a ⊗ b) ∈
D2(A ⊗R B); for instance, if dA(a) = u ∪ v for some u, v ∈ A1, then

(4.16) dA⊗B(a ⊗ b) = dAa ⊗ b − a ⊗ dBb = (u ⊗ 1) ∪ (v ⊗ b) − (a ⊗ 1) ∪ (1 ⊗ dBb).
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Now also let a′ be an element in A1 such that dA(a′) ∈ D2(A). and let b′ ∈ B0. Using
equations (4.8) and (4.7), we find that

(dA(a) ⊗ b) ◦ (a′ ⊗ dB(b′)) = ((u ∪ v) ⊗ b) ◦ ((a′ ⊗ 1) ∪ (1 ⊗ dB(b′)))
= (u ∪1 (a′ ⊗ b)) ∪ ((v ⊗ 1) ∪1 (1 ⊗ dB(b′)))
= ((u ∪1 a′) ⊗ b) ∪ 0
= 0,

(4.17)

and similarly (a⊗dB(b))◦ (dA(a′)⊗b′) = 0. Furthermore, using equations (4.8) and (4.9),
we get

(a ⊗ dB(b)) ◦ (a′ ⊗ dB(b′)) = ((a ⊗ 1) ∪ (1 ⊗ dB(b))) ◦ ((a′ ⊗ 1) ∪ (1 ⊗ dB(b′)))
= ((a ⊗ 1) ∪1 (a′ ⊗ 1)) ∪ ((1 ⊗ dB(b)) ∪1 (1 ⊗ dB(b′)))
= (a ∪1 a′) ⊗ (dB(b′) ∪1 dB(b))
= (a ∪1 a′) ⊗ (dB(b′)b − bdB(b′)).

(4.18)

Finally, using formula (4.10) for A as well as equations (4.17) and (4.18) we find that

dA⊗B[(a ⊗ b) ∪1 (a′ ⊗ b′)] = dA⊗B[(a ∪1 a′) ⊗ bb′] = dA(a ∪1 a′) ⊗ dB(bb′)

is equal to

(−a ∪ a′ − a′ ∪ a + dA(a) ∪1 a′ + dA(a′) ∪1 a − dA(a) ◦ dA(a′)) ⊗ bb′−

(a ∪1 a′) ⊗ (dB(b)b′ + bdB(b′))
= −(a ⊗ b) ∪ (a′ ⊗ b′) − (a′ ⊗ b′) ∪ (a ⊗ b) + (dA(a) ⊗ b) ∪1 (a′ ⊗ b′)+

(dA(a′) ⊗ b′) ∪1 (a ⊗ b) − (a ∪1 a′) ⊗ (dB(b)b′ + bdB(b′))−
(dA(a) ⊗ b) ◦ (dA(a′) ⊗ b′)

= −(a ⊗ b) ∪ (a′ ⊗ b′) − (a′ ⊗ b′) ∪ (a ⊗ b) + dA⊗B(a ⊗ b) ∪1 (a′ ⊗ b′)+
dA⊗B(a′ ⊗ b′) ∪1 (a ⊗ b) − dA⊗B(a ⊗ b) ◦ dA⊗B(a′ ⊗ b′).

This shows that (4.10) holds for elements in A ⊗R B of the form (a ⊗ b) ∪1 (a′ ⊗ b′) with
|a| = |a′| = 1 and |b| = |b′| = 0. The case |a| = |b′| = 1, |b| = |a′| = 0 follows using similar
computations to show that in this case the right side of equation (4.10) equals zero. The
case |a| = |a′| = 0, |b| = |b′| = 1 follows by the same computations as in the first case
with the elements in A and B interchanged. □

5. Binomial cup-one differential graded algebras

In this section we begin by reviewing the definition and basic properties of binomial
rings and then define Zp-binomial algebras for p a prime. This leads to the definition of
binomial cup-one differential graded algebras over the ring R = Z or Zp. A consequence
of including the binomial algebra structure is that it then follows that the cohomology
of the free binomial cup-one differential graded algebra on a single generator in degree
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1 is isomorphic to the cohomology ring H∗(K(R, 1); R) of the Eilenberg–MacLane space
K(R, 1) with R = Z or Zp (see Theorem 8.9).

5.1. Binomial rings and R-valued polynomials. Following P. Hall [10] and J. Elliott
[5], we say that a commutative ring A is a binomial ring if the element

(5.1)
(
a
n

)
B a(a − 1) · · · (a − n + 1)/n! ∈ A ⊗Z Q

lies in A for every a ∈ A and every n > 0. Therefore we have maps ζn : A → A, a 7→
(

a
n

)
for all n ∈ N, with the convention that ζ0(a) = 1 for all a ∈ A.

Let (x)n B x(x − 1) · · · (x − n + 1) ∈ Z[x] be the “falling factorial” polynomial. Writing
(x)n =

∑n
k=0 s(n, k)xk, the coefficients s(n, k) of this polynomial are the Stirling numbers

of the first kind. Now note that numerator of the fraction in (5.1) is obtained by evaluating
the polynomial (x)n at the value x = a, and so we may also write

(5.2) ζn(a) =
(a)n

n!
.

The next lemma follows straight from the definitions.

Lemma 5.1. Let R be a binomial ring, and let M be an R-module. Then the dual module,
M∨ = HomR(M,R), is a binomial ring with maps ζn : M∨ → M∨ given by ζn( f )(m) =
ζn( f (m)) for all f ∈ M∨ and m ∈ M.

Now suppose R is an integral domain, and let K = Frac(R) be its field of fractions. Let
K[X] be the ring of polynomials in a set of formal variables X, with coefficients in K,
and let RX be the free R-module on the set X. Following [2, 5], we define the ring of
R-valued polynomials (in the variables X and with coefficients in K) as the subring

(5.3) Int(RX) B {p ∈ K[X] | p(RX) ⊆ R}.

Assume now that the domain R has characteristic 0, that is, R is torsion-free as an abelian
group. Then Int(RX) is a binomial ring, generated by the polynomials

(
X
n

)
B

∏
x∈X

(
x

nx

)
,

for all multi-indices n = (nx)x∈X ∈
⊕

X Z≥0. Moreover, Int(RX) satisfies a type of uni-
versality property which makes it into the free binomial ring on variables in X. As a
consequence (at least when R = Z), any binomial ring is a quotient of Int(RX), for some
set X.

As shown in [5, Theorem 7.1], every torsion-free ring A is contained in a smallest bino-
mial ring, Bin(A), which is defined as the intersection of all binomial subrings of A⊗Z Q
containing A. Alternatively,

(5.4) Bin(A) = Int(ZXA)/IAQ
XA ∩ Int(ZXA),

where Z[XA] denotes the polynomial ring in variables indexed by the elements of A, and
IA is the kernel of the canonical epimorphism Z[XA]→ A. Moreover, if A is generated as
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a Z-algebra by a collection of elements {ai}i∈J, then Bin(A) is the Z-subalgebra of A⊗ZQ
generated by all elements of the form ζk(ai) =

(
ai
k

)
with i ∈ J and k ≥ 0. Finally, it is

readily seen that Bin(Z[X]) = Int(ZX).

5.2. Products of binomial polynomials. Let I : X → Z≥0 be a function which takes
only finitely many non-zero values; in other words, the support of the function, supp(I) B
{x ∈ X | I(x) , 0}, is a finite subset of X. Given a coefficient ring R, we associate to such
a function an R-valued polynomial function, as follows.

First let x = {x1, . . . , xn} be a finite subset of X that contains supp(I). Then the indexing
function I : X → Z≥0 takes values I(xk) = ik for k = 1, . . . , n, and 0 otherwise, and so it
may be identified with the n-tuple (i1, . . . , in) ∈ (Z≥0)n. We define a polynomial, ζI(x), in
the variables x1, . . . , xn, by

(5.5) ζI(x) =
n∏

k=1

ζik(xk).

Clearly, ζI(x) is an R-valued polynomial in Int(Rx) ⊂ Int(RX). That is to say, given an
n-tuple a = (a1, . . . , an) ∈ Rx, the evaluation ζI(a) B ζI(x)(a) of the polynomial ζI(x) at
xk = ak is an element of R.

We now define an R-valued polynomial ζI ∈ Int(RX) by setting ζI = ζI(x), for some finite
set of variables x with x ⊇ supp(I). Since ζ0(a) = 1 for all a ∈ R, this definition is
independent of the choice of x. Given any a ∈ RX, we have a well-defined evaluation
ζI(a) ∈ R; in fact, we do have such an evaluation for any function a : X → R, again since
I has finite support. For instance, if I = 0 is the function that takes only the value 0, then
ζ0 is the constant polynomial 1 in the variables X, and ζ0(a) = 1, for any a : X → R.

The above notions extend to an arbitrary binomial ring A. For instance, if I = (i1, . . . , in)
is an n-tuple of non-negative integers, the evaluation of the polynomial function ζI(x)
from (5.5) at an n-tuple a = (a1, . . . , an) of elements in A is equal to ζI(a) =

∏n
k=1 ζik(ak).

More generally, the evaluation ζI(a) ∈ A is defined for any function a : X → A.

5.3. A basis for integer-valued polynomials. We restrict now to the case when R =
Z. The next theorem provides a useful Z-basis for the ring Int(ZX) of integer-valued
polynomials; for a proof, we refer to [2, Proposition XI.I.12] and [5, Lemma 2.2].

Theorem 5.2. The Z-module Int(ZX) is free, with basis consisting of all polynomials of
the form ζI with I : X → Z≥0 a function with finite support.

Alternatively, one may take as a basis for Int(ZX) all polynomials ζI(x) with supp(I) = x,
together with the constant polynomial ζ0. We emphasize that in the products ζI(x), there
is no repetition allowed among the variables comprising the set x. For instance, the
product ζm(x)ζn(x) is not part of the aforementioned Z-basis; rather, it may be expressed
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as a linear combination of the binomials ζm(x), . . . , ζm+n(x). On the other hand, if I and
J have disjoint supports, we have that ζI · ζJ = ζI+J, and this polynomial is again part of
the aforementioned basis for Int(ZX).

As an application of the above theorem, we obtain the following universality property
for free binomial rings.

Corollary 5.3 ([18]). Let X be a set, let A be a binomial ring, and let ϕ : X → A be a
map of sets. There is then a unique extension of ϕ to a map ϕ̃ : Int(ZX)→ A of binomial
rings.

A characterization of binomial rings in terms of integer-valued polynomials is given in
the following theorem (see [5, Theorem 4.1] and [27, Theorem 5.34]).

Theorem 5.4. A ring R is a binomial ring if and only if the following two conditions
hold:

(1) R is Z-torsion-free.
(2) R is the homomorphic image of a ring Int(ZX) of integer-valued polynomials, for

some set X.

Corollary 5.5 ([18]). Let R1 and R2 be binomial rings. Then the tensor product R1⊗ZR2,
with product (a ⊗ b) · (c ⊗ d) = ac ⊗ bd, is a binomial ring.

5.4. Zp-binomial algebras. Now fix a prime p, and let Zp = Z/pZ be the field with p
elements. Let A be a commutative Zp-algebra; we will assume that the structure map
Zp → A which sends 1 ∈ Zp to the identity 1 ∈ A is injective. Note that the binomial
operations ζn(a) = (a)n/n! with a ∈ A are defined for 1 ≤ n ≤ p − 1, since n! is then a
unit in Zp.

Example 5.6. Let A = C∗(X;Zp) be the cochain algebra over Zp of a ∆-complex X. For
a cochain a ∈ A1, we have that (a)p = 0, where the product is the ∪1-product on A1. To
see this, let e be any 1-simplex in X; then the elements a(e), a(e)− 1, . . . , a(e)− p+ 1 are
distinct elements in Zp. Since there are p of these elements, one of the elements must be
0 and the property follows.

This motivates the following definition.

Definition 5.7. Let A be a commutative Zp-algebra. We say that A is a Zp-binomial
algebra if (a)p = 0, for all a ∈ A.

Clearly, this condition is equivalent to (a)n = 0 for all integers n ≥ p and all a ∈ A. Note
that in Zp[x] we have the equality

(5.6) (x)p = xp − x.
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Indeed, both polynomials are monic, of degree p, and both have the same set of p distinct
roots, namely 0, 1, . . . , p − 1. Therefore, a commutative Zp-algebra A is a Zp-binomial
algebra if and only if ap = a, for all a ∈ A.

The next step is to derive properties of binomials in a Zp-binomial algebra analogous to
those for a binomial ring over Z. We start by defining the analog of Int(ZX).

Given a set X, we will denote by Int(ZX
p ) the quotient of the free binomial algebra Int(ZX)

by the ideal generated by the elements ζn(x) for x ∈ X and n ≥ p, tensored with Zp.
The next result shows that, modulo the constant terms, Int(ZX

p ) has Zp-basis given by
products of the elements ζi(x) for 0 < i < p and x ∈ X. Recall from (5.5) that, for a
finite subset x = {x1, . . . , xn} ⊂ X and a finitely supported function I : X → Z≥0, we write
ζI(x) =

∏n
k=1 ζI(xk)(xk).

Lemma 5.8 ([18]). The ring Int(ZX
p ) is a Zp-binomial algebra, with Zp-basis given by

the Zp-valued polynomials ζI(x) with I : X → {0, . . . , p − 1}.

Theorem 5.9 ([18]). Let A be a Zp-binomial algebra. There is then a bijection between
maps of Zp-binomial algebras from Int(ZX

p ) to A and set maps from X to A.

Lemma 5.10. Let A and B be Zp-binomial algebras. Then the tensor product A ⊗Zp B,
with product (a ⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′, is a Zp-binomial algebra.

Proof. Let a ∈ A and b ∈ B, so that ap = a and bp = b. Then (a ⊗ b)p = ap ⊗ bp = a ⊗ b,
and the claim follows. □

5.5. Binomial cup-one differential graded algebras. Following our previous work
[18], we combine the notions of cup-one algebras and binomial algebras into a single
package. Henceforth we will assume that our ground ring R is equal to either Z or Zp for
some prime p.

Definition 5.11. A differential graded algebra (A, d) over R = Z or Zp is called a binomial
cup-one algebra if

(i) A is a cup-one algebra.
(ii) A0, with multiplication A0⊗R A0 → A0 given by the cup-product, is an R-binomial

algebra.
(iii) The R-submodule R⊕ A1 ⊂ A≤1, with multiplication A1 ⊗R A1 → A1 given by the

cup-one product, is an R-binomial algebra.

If φ ∈ Hom1(A, B) is a morphism of binomial cup-one algebras, it follows from the
definitions that φ(ζk(a)) = ζk(φ(a)), for all k ≥ 1 and all a ∈ A1.

Proposition 5.12. Let (A, dA) and (B, dB) be binomial cup-one algebras over R = Z or
Zp. Then the tensor product (A ⊗R B, dA⊗B) of the underlying dgas is again a binomial
cup-one algebra.
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Proof. Recall that (A ⊗R B)1 = (A1 ⊗R B0) ⊕ (A0 ⊗R B1). The claim follows at once from
Proposition 4.9, Corollary 5.5, and Lemma 5.10. □

5.6. Binomial operations on cochains. In this section, we show that cochain com-
plexes with coefficients in a binomial algebra are binomial cup-one algebras and give
examples. The next result builds on work from [18].

Theorem 5.13. For any non-empty ∆-complex X, the cochain algebra C∗(X; R), where
R = Z or Zp, is a binomial ∪1-dga.

Proof. First assume R = Z. The cochain algebra C∗(X;Z) is then a cup-one dga by
Theorem 4.7. The claim now follows from Lemma 5.1.

Now assume R = Zp. We define maps ζX
n : C1(X;Zp)→ C1(X;Zp) for 1 ≤ n ≤ p − 1, by

setting ζX
n ( f )(e) B ( f (e))n/n! for each 1-cochain f ∈ C1(X;Zp) = Hom(C1(X;Zp),Zp)

and each 1-simplex e in X. As noted in Example 5.6, we have that ( f )p = 0. With this
structure, it is readily verified that the cochain algebra C∗(X;Zp) is a Zp-binomial ∪1-dga,
and this completes the proof. □

This theorem together with Proposition 5.12 yield the following corollary.

Corollary 5.14. Let A be a binomial ∪1-dga over R = Z or Zp. Then the tensor product
A ⊗R C∗(I; R) is again a binomial ∪1-dga.

It is readily seen that the ζ-maps enjoy the following naturality property: If h : X → Y
is a map of ∆-complexes, then each ζk commutes with the pullback of cochains, that is,
h∗ ◦ ζY

k = ζ
X
k ◦ h∗ : C∗(Y; R)→ C∗(X; R).

Note that in the case R = Z, the evaluation ζk( f )(e) is simply the binomial coefficient(
f (e)
k

)
, for all f ∈ Hom(C1(X; R),R) and all e ∈ C1(X; R).

Example 5.15. For the cochain algebra C = C∗(I;Z) from Example 3.4, the ζk-maps are
given by ζk(nu) =

(
n
k

)
u. In particular, ζk(u) = 0 for k ≥ 2.

Example 5.16. Let G be a group, and let C∗(B(G); R) be the cochain algebra of the
bar construction on G, as described in Example 3.5 with coefficient ring R a binomial
algebra. Then the ζk maps on C1(B(G); R) are given by ζk( f )([g]) =

(
f (g)
k

)
.

6. Free binomial ∪1-differential graded algebras

In this section, we define T(X), the free binomial graded cup-one algebra over the rings
R = Z and R = Zp generated by a set X. Given a map d : T(X) → T(X) that satisfies the
∪1– d formula and the Leibniz rule, we show that d2 ≡ 0 if and only if d2(x) = 0 for all
x ∈ X. In particular, setting d0(x) = 0 for all x ∈ X yields the dga (T(X), d0), which we
call the free binomial ∪1-dga generated by X.
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6.1. The free binomial cup-one graded algebra. Let R = Z or Zp. Given a set X, let
mX,R denote the R-submodule of Int(RX) consisting of polynomials with zero constant
term. We let T = TR(X) denote the free graded algebra over R with T1 equal to mX,R.
We define a cup-one map, ∪1 : (T1

⊗T1) ⊗ T1
→ T2, by means of the Hirsch identity

(4.4), and a map ◦ : T2
⊗T2

→ T2 by means of equation (4.8). Then TR(X) is a graded
R-algebra with cup-one products which we call the free binomial graded algebra over R
with cup-one products generated by X.

We now make this all more precise by starting with a definition.

Definition 6.1 ([18]). The free binomial ∪1-graded algebra over R on a set X, denoted
T = TR(X), is the tensor algebra on the free R-module mX,R; that is,

(6.1) T∗R(X) = T ∗(mX,R).

By construction, T0
R(X) = R and T1

R(X) = mX,R, and so T≤1
R (X) = T0

⊕T1 is isomorphic
to the free binomial algebra Int(RX). By Theorem 5.2 and Lemma 5.8, respectively, T1 is
a free R-module, with basis consisting of all R-valued polynomials of the form ζI , where
I : X → Z≥0 has finite, non-empty support when R = Z, and I : X → {0, 1, . . . , p − 1}
when R = Zp excluding the constant-0 function. Furthermore, the R-module T1 comes
endowed with a cup-one product map, ∪1 : T1

⊗T1
→ T1, given by

(6.2) a ∪1 b = ab.

By analogy with the classical Hirsch formula for cochain algebras, we use this cup-one
product to define a linear map T2

⊗T1
→ T2 by

(6.3) (a ⊗ b) ⊗ c 7→ ac ⊗ b + a ⊗ bc .

Recall that the ∪1– d formula (4.10) involves an operation (denoted by ◦) between degree
2 elements. For this to work, we include the linear map ◦ : T2

⊗T2
→ T2 defined on basis

elements by

(6.4) (a1 ⊗ a2) ◦ (b1 ⊗ b2) = (a1b1) ⊗ (a2b2) .

With this structure, T(X) is a graded R-algebra with cup-one products.

The assignment X { TR(X) is functorial: a map of sets, h : X → X′, extends to a map
of polynomials from Int(RX) to Int(RX′) that restricts to an R-linear map mX,R → mX′,R
which then extends to a map between tensor algebras, T(h) : TR(X) → TR(X′). Clearly,
T(h) is a morphism of graded algebras that preserves ∪1-products; moreover, T(h ◦ g) =
T(h) ◦ T(g).

In the following, the ring R will be equal to either Z or Zp. A graded R-algebra A with
cup-one products such that the augmented algebra R ⊕ A1 is a binomial algebra is called
a binomial graded R-algebra with cup-one products. In this category, the free binomial
graded R-algebra TR(X) enjoys the following universality property.
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Lemma 6.2. Let A be a binomial graded R-algebra with cup-one products, let X be a
set, and let ϕ : X → A1 be a map of sets. There is then an extension of ϕ to a map
f : TR(X)→ A of binomial graded R-algebras with cup-one products.

Proof. From [18, Lemmas 7.4 and 8.13], it follows that there is a unique extension of
ϕ to a degree-preserving map f >0 : T>0

R (X) → A>0 which commutes with cup products,
cup-one products, and the ζ maps. Let σT : R→ T0

R(X) and σA : R→ A0 be the structure
maps for T and A; respectively, and define f 0 : T0

R(X) → A0 to be the composition
σA ◦ σ

−1
T . Then the resulting map f : TR(X) → A is a morphism of binomial graded

R-algebras and the proof is complete. □

6.2. Maps from free binomial cup-one dgas. Consider now a differential d : TR(X)→
TR(X) making (TR(X), d) into a binomial cup-one dga, and let (A, dA) be an arbitrary
binomial cup-one dga over R. The next lemma gives a handy criterion for deciding
whether a map f : TR(X) → A between the underlying binomial graded algebras with
cup-one products is a morphism of binomial cup-one dgas.

Lemma 6.3. A map f : (TR(X), d) → (A, dA) of binomial graded R-algebras with cup-
one products commutes with the differentials if and only if dA f (x) = f (dx) for all x ∈ X.

Proof. Recall from Section 6.1 that T1
R(X) is the free R-module with basis consisting of

all R-valued polynomials of the form ζI , where I : X → Z≥0 has finite, non-empty support
when R = Z and I : X → {0, . . . , p − 1} has non-empty support when R = Zp. The claim
follows from formulas (4.8) and (4.10); formula (6.14) expressing ζn+1(x) in terms of
ζn(x); and induction on n. □

Under a connectivity assumption on H∗(A), we may improve on the conclusion of Lemma
6.2, as follows.

Lemma 6.4. Let (A, dA) be a binomial cup-one R-dga with H0(A) � R, let (TR(X), d) be
a free binomial cup-one dga, and let ϕ : X → A1 be a map of sets. There is then a unique
extension of ϕ to a map f : TR(X) → A of binomial graded R-algebras with cup-one
products such that H0( f ) : H0(TR(X))→ H0(A) is an isomorphism.

Proof. Let f : TR(X) → A be the extension of ϕ constructed in Lemma 6.2 and let ε
denote the isomorphism from H0(A) to R. Since H0(A) = ker dA : A0 → A1, it follows
that the image of the structure map σA is contained in H0(A) ⊆ A0. Thus, the composition
ε ◦ σA is an isomorphism of rings from R to R, and so equals idR. It then follows that f 0

is the unique R-linear map from T0(X) to A0 that commutes with the structure maps; that
is, f 0 ◦ σT = σA, and the proof is complete. □
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6.3. Homotopies between binomial cup-one dga maps. As we saw in Theorem 3.8,
homotopic dga maps induce the same homomorphism on cohomology. The next lemma
provides a partial converse to this theorem, in the context of binomial cup-one algebras.

Lemma 6.5. Let (A, dA) be a binomial cup-one dga over R = Z or Zp such that H1(A) is a
finitely generated, free R-module. Suppose φ0, φ1 : (TR(X), d0) → (A, dA) are morphisms
of binomial ∪1-dgas such that H1(φ0) = H1(φ1). Then φ0 ≃ φ1.

Proof. We construct a homotopy Φ : TR(X) → A ⊗R C∗(I; R) between φ0 and φ1, as
follows. For each x ∈ X, set

(6.5) Φ(x) = φ0(x)t0 + φ1(x)t1 − c(x)u,

where c(x) is an element in A0 given by

(6.6) dA(c(x)) = φ0(x) − φ1(x);

such an element exists by our assumption that H1(φ0)([x]) = H1(φ1)([x]). It is readily
verified that Φ(x) is a 1-cocycle in A ⊗R C∗(I; R); indeed,

(6.7) dA⊗C∗(I;R)(Φ(x)) = φ0(x)u − φ1(x)u − (φ0(x) − φ1(x))u = 0.

It now follows from Corollary 7.9 that the set map Φ : X → Z1(A ⊗R C∗(I; R)) extends to
a map of binomial ∪1-dgas, Φ : TR(X) → A ⊗R C∗(I; R). By construction, this map is a
homotopy between φ0 and φ1. □

6.4. Differentials on TR(X). As before, let T = TR(X) be a free binomial ∪1-graded
R-algebra on a set X. In this section we show that if a map d : T → T satisfies the ∪1– d
formula and the Leibniz rule, then d2(u) = 0 for all u ∈ T if and only if d2(x) = 0 for all
x ∈ X. For that, we define additional ∪1 and ◦ maps in T, as follows. First, we define a
linear map ∪1 : T3

⊗T1
→ T3 by

(6.8) (u1 ∪ u2 ∪ u3) ∪1 v = (u1 ∪1 v) ∪ u2 ∪ u3 + u1 ∪ (u2 ∪1 v) ∪ u3 + u1 ∪ u2 ∪ (u3 ∪1 v)

and a map ∪1 : T2
⊗T2

→ T3 by

(a1 ∪ a2) ∪1 (b1 ∪ b2) = −a1 ∪ (b1 ∪1 a2) ∪ b2−a1 ∪ b1 ∪ (b2 ∪1 a2)

+
∑

j

a1 ∪ (a2,1, j ∪1 b1) ∪ (a2,2, j ∪1 b2)

+ (b1 ∪1 a1) ∪ b2 ∪ a2 + b1 ∪ (b2 ∪1 a1) ∪ a2

−
∑

i

(a1,1,i ∪1 b1) ∪ (a1,2,i ∪1 b2) ∪ a2,

(6.9)
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where da1 =
∑

i a1,1,i∪a1,2,i and da2 =
∑

j a2,1, j∪a2,2, j. Next, we define a map ◦ : T2
⊗T3

→

T3 by
(a1 ∪ a2) ◦ (v1 ∪ v2 ∪ v3) = (a1 ∪1 v1) ∪ (a2 ∪1 v2) ∪ v3

+ (a1 ∪1 v1) ∪ v2 ∪ (a2 ∪1 v3)
+ v1 ∪ (a1 ∪1 v2) ∪ (a2 ∪1 v3)

−
∑

i

(a1,1,i ∪1 v1) ∪ (a1,2,i ∪1 v2) ∪ (a2 ∪1 v3),

(6.10)

where da1 =
∑

i a1,1,i ∪ a1,2,i. Finally, we define a map ◦ : T3
⊗T2

→ T3 by
(u1 ∪ u2 ∪ u3) ◦ (b1 ∪ b2) = u1 ∪ (u2 ∪1 b1) ∪ (u3 ∪1 b2)

+ (u1 ∪1 b1) ∪ (u2 ∪1 b2) ∪ u3

+ (u1 ∪1 b1) ∪ u2 ∪ (u3 ∪1 b2)

−
∑

k

(u1 ∪1 b1) ∪ (u2 ∪1 b2,1,k) ∪ (u3 ∪1 b2,2,k),

(6.11)

where db2 =
∑

k b2,1,k ∪ b2,2,k.

The proof of the following two equations is a straightforward, though computationally
intensive, verification using the definitions of the ∪1– d formula along with the ∪1 and ◦
maps in T.

d(da ∪1 b) = da ∪ b − b ∪ da + da ∪1 db + d2a ∪1 b,(6.12)

d(da ◦ db) = da ∪1 db + db ∪1 da + d2a ◦ db + da ◦ d2b.(6.13)

Note that these equations are analogous to equation (4.1) for i = 1, 2 and |a| + |b| − i ≤ 3,
with the ∪2 map replaced by the ◦ map.

Lemma 6.6. If d : T → T is a degree one map satisfying the ∪1– d formula and the
Leibniz rule, and if a, b are elements in T1 with d2a = d2b = 0, then d2(a ∪1 b) = 0.

Proof. By the ∪1– d formula (4.10), we have that

d(a ∪1 b) = −a ∪ b − b ∪ a + da ∪1 b + db ∪1 a − da ◦ db.

Then from equations (6.12) and (6.13), we have

d2(a ∪1 b) = −d(a ∪ b) − d(b ∪ a) + d(da ∪1 b) + d(db ∪1 a) − d(da ◦ db)
= −da ∪ b + a ∪ db − db ∪ a + b ∪ da

+ da ∪ b − b ∪ da + da ∪1 db + d2a ∪1 b

+ db ∪ a − a ∪ db + db ∪1 da + d2b ∪1 a

− da ∪1 db − db ∪1 da − d2a ◦ db − da ◦ d2b

= d2a ∪1 b + d2b ∪1 a − d2a ◦ db − da ◦ d2b,
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and the result follows since d2a = d2b = 0. □

Theorem 6.7. Let d : TR(X)→ TR(X) be a degree-one map satisfying the ∪1– d formula
and the Leibniz rule. Then d2(x) = 0 for all x ∈ X if and only if d2(u) = 0 for all
u ∈ TR(X), in which case (TR(X), d) is a binomial ∪1-dga.

Proof. Let x ∈ X. Recall that the binomial ζ-functions satisfy the formula

(6.14) ζn+1(x) =
ζn(x) ∪1 x − nζn(x)

n + 1
.

where n + 1 ≤ p − 1 for R = Zp. Using this formula and Lemma 6.6, induction on n
shows that d2ζn(x) = 0 for all n ≥ 1 in the case R = Z and for all n ≤ p − 2 in the case
R = Zp.

Making use of this fact and of Lemma 6.6 once again, induction on the number of ele-
ments in the support of I shows that d2(ζI(x)) = 0 for all I. The claim now follows by the
Leibniz rule. □

As a corollary, we recover a result from [18], which gives the free binomial graded
algebra TR(X) the structure of a binomial ∪1-dga structure, with differential d0 vanishing
on all the generators x ∈ X.

Corollary 6.8 ([18]). For any set X, the algebra TR(X) is a binomial ∪1-dga, with differ-
ential d0 satisfying d0(x) = 0 for all x ∈ X.

7. Differentials defined by admissible maps

In this section, we define embeddings of the free binomial R-algebra TR(X) (or its trun-
cation in degree 2) into a suitable cochain algebra. Using these embeddings, we show in
Theorem 7.3 that there is a bijection between degree one linear maps d : TR(X)→ TR(X)
that satisfy the ∪1– d formula and the Leibniz rule and maps of sets τ : X → T2

R(X). The-
orem 7.6 gives a sufficient condition on τ, called admissibility, for d2 to be the zero map.

7.1. Embedding T≤2
R (X) into a cochain algebra. Recall that the ring R equals Z or

Zp with p a prime. Given a set X, we let M(X,R) be the set of all functions a : X →
R. This is an abelian group under pointwise addition, with neutral element the zero
function, denoted 0. Alternatively, we may view M(X,R) as a free R-module with basis
X. Furthermore, to every set map f : X → Y we assign (in a functorial way) the R-linear
map f ∨ : M(Y,R)→ M(X,R) given by f ∨(b)(x) = b( f (x)), for b : Y → R and x ∈ X.

Now let µ : M × M → M be an arbitrary binary operation on M = M(X,R). By the
construction from Section 2.2, the magma (M, µ) determines a 2-dimensional ∆-set,
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∆(2)(M, µ). Let Cµ(X) = Cµ(X; R) denote the cochain complex (over R) of this ∆-set.
Next, we define a degree-preserving, R-linear map,

(7.1) ψ = ψX,µ : T≤2
R (X) Cµ(X),

as follows. First define a map ψ : T0
R(X) → C0

µ(X) by sending 1 ∈ T0
R(X) = R to the unit

cochain 1 ∈ C0
µ(X). For each polynomial p ∈ T1

R(X) = mX, we set ψ(p) ∈ C1
µ(X) equal

to the 1-cochain whose value on a 1-simplex a is p(a). Finally, we set ψ(p ⊗ q) ∈ C2
µ(X)

equal to the 2-cochain whose value on a 2-simplex (a, a′) is p(a) · q(a′). If the zero
function 0 is a two-sided identity in (M, µ), it is readily seen that the image of ψ is
contained in the normalized cochains on ∆(2)(M, µ).

Lemma 7.1. With notation as above, the map ψ = ψX,µ : T≤2
R (X)→ Cµ(X) is a monomor-

phism that commutes with cup products, cup-one products, and the ◦ map.

Proof. The proof of the lemma follows in general outline the proof of the first part of
[18, Theorem 7.2]; since the context here is somewhat different, we provide full details.

It follows directly from the definitions that the map ψ commutes with cup products, cup-
one products, and the ◦ map, so it suffices to show that ψ is a monomorphism. To prove
this, first suppose that ψ(p) = 0, for some p ∈ mX. Then for all functions a : X → R, we
have that p(a) = 0, and so p is the zero polynomial. Therefore, ψ : T1

R(X) → C1
µ(X) is a

monomorphism.

Now suppose ψ
(∑

αI,JζI ⊗ ζJ
)
= 0, for some αI,J ∈ R and each of I, J not identically

0. Then
∑
αI,JζI(a) · ζJ(a′) = 0, for all functions a, a′ : X → R. Let X′ be another

(disjoint) copy of X, and for each J, let J′ : X′ → Z≥0 be the corresponding indexing
function. Viewing each ζJ′ as a polynomial in Int(RX′), it follows that the polynomial∑
αI,JζI · ζJ′ ∈ Int(RX⊔X′) is the zero polynomial. Note that, for each pair I and J of

indexing functions, the functions I and J′ have disjoint supports; hence, ζI · ζJ′ = ζK ,
where K|X = I and K|X′ = J′. Since these polynomials are elements in a basis for
Int(RX⊔X′), it follows that each αI,J is equal to 0, thus showing that ψ : T2

R(X) → C2
µ(X)

is a monomorphism. □

The map ψ = ψX,µ constructed above enjoys a naturality property that we now proceed
to describe. Let h : X → X′ be a map of sets. By the discussion in section 6.1, we
have an induced morphism, T(h) : T≤2

R (X) → T≤2
R (X′). Now let µ′ be a binary operation

on M′ = M(X′,R). Composition with h defines a map h∗ : M′ → M. Suppose this
map is a morphism of magmas, that is, µ′(a ◦ h, a′ ◦ h) = h(µ(a, a′)) for all a, a′ : X →
R. Then, as noted in Section 2.2, h∗ yields a simplicial map between the respective ∆-
complexes, ∆(h∗) : ∆(2)(M′, µ′)→ ∆(2)(M, µ), which in turn induces a morphism between
the corresponding cochain algebras, ∆(h∗)∗ : Cµ(X; R) → Cµ′(X′; R). The next lemma
now follows straight from the definitions.
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Lemma 7.2. Let h : X → X′ be a set map and suppose h∗ : (M′, µ′)→ (M, µ) is a magma
map. Then the following diagram commutes

(7.2)

T≤2
R (X) Cµ(X; R)

T≤2
R (X′) Cµ(X′; R).

ψX,µ

T(h) ∆(h∗)∗

ψX′ ,µ′

In particular, if h : X → X′ is injective, µ′ : M′ × M′ → M′ is a binary operation on M′,
and µ is the restriction of µ′ to M × M, then clearly h∗ : (M′, µ′) ↠ (M, µ) is a magma
map, and thus ψX′,µ′ ◦ T(h) = ∆(h∗)∗ ◦ ψX,µ.

7.2. From 2-tensors to simplicial complexes. We now refine the above construction,
in a more specialized setting. Consider a set map τ : X → T2

R(X). Recall from (6.1) that
TR(X) is the tensor algebra on the maximal ideal mX,R ⊂ Int(RX). Thus, for each x ∈ X,
the 2-tensor τ(x) ∈ T2

R(X) may be written as

(7.3) τ(x) =
sx∑

i=1

px,i ⊗ qx,i,

for some polynomials px,i, qx,i ∈ Int(RX) with px,i(0) = qx,i(0) = 0.

As before, let M = M(X,R) be the set of all functions a : X → R, with R-module
structure given by pointwise addition. We define a map fτ : M × M → M by setting

(7.4) fτ(a, a′)(x) =
sx∑

i=1

px,i(a) · qx,i(a′).

The map fτ then determines an operation, µτ : M × M → M, given by

(7.5) µτ(a, a′) = a + a′ − fτ(a, a′).

The pair Mτ B (M, µτ) is a unital magma, with unit the zero function 0; indeed, equations
(7.4) and (7.5) imply that µτ(a, 0) = µτ(0, a) = a, for all a. In the particular case when
τ itself is the zero function (that is, τ(x) = 0 in T2

R(X) for all x ∈ X), the corresponding
magma is just the aforementioned abelian group M. In general, though, the operation τ
is not associative, and so Mτ need not be a (unital) semigroup (also known as monoid).

We denote by ∆(2)(Mτ) the 2-dimensional ∆-set associated to the magma Mτ by the con-
structions from Sections 2.2 and 7.1, and we let Cτ(X) B (C•(∆(2)(Mτ)), d∆) denote the
simplicial cochain algebra associated to the ∆-set ∆(2)(Mτ).
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7.3. The endomorphism dτ of TR(X). Our next objective is to define a degree-1 endo-
morphism dτ : TR(X) → TR(X) of the free binomial algebra on X that extends the map
τ and satisfies some desirable properties. We achieve this by embedding T≤2

R (X) into the
cochain algebra Cτ(X) defined above.

Theorem 7.3. Given a map of sets, τ : X → T2
R(X), there is a unique degree-1 linear

map, dτ : TR(X) → TR(X), such that dτ(x) = τ(x) for all x ∈ X and both the ∪1– d
formula and the graded Leibniz rule are satisfied.

Proof. Let ψ = ψX,τ : T≤2
R (X) ↪→ Cτ(X) be the monomorphism from Lemma 7.1. First

note that from the formula for the coboundary of a 1-cochain in a ∆-complex, we have

d∆ψ(x)(a, a′) = a(x) + a′(x) − (a(x) + a′(x) − τ(a, a′)(x))
= τ(a, a′)(x)

=
∑

i

(φ(px,i)(a) · φ(qx,i)(a′))

=
∑

i

(φ(px,i)(x) ∪ φ(qx,i)(x))(a, a′)(7.6)

=
∑

i

φ(pi,x(x)) ⊗ φ(qx,i(x)))(a, a′)

= (φτ(x))(a, a′).

Since this holds for all pairs (a, a′) ∈ M × M, it follows that d∆(ψ(x)) = ψ(τ(x)).

The next step is to show that the differential d∆ : C•τ(X) → C•+1
τ (X) leaves invariant

the subgroup ψ
(
T≤2

R (X)
)
⊂ Cτ(X). Let p = p(x) be a polynomial in T1

R(X), where x ⊂ X
denotes the subset of variables appearing in the monomials comprising p. Given 1-chains
a, a′, we have

(7.7) d∆p(a, a′) = p(a) + p(a′) − p
(
a + a′ − τ(a, a′)

)
.

By Theorem 5.2, we may write

(7.8) d∆p(x, x′) =
∑

cIi,Ji · ζIi(x) ⊗ ζJi(x
′),

for some constants cIi,Ji ∈ R. From equation (7.7) it follows that the polynomial d∆p(0, x′) =∑
c0,Ji · ζJi(x′) vanishes for all values of x′; thus all coefficients c0,Ji vanish. A similar ar-

gument shows that cIi,0 = 0 for all i. Therefore, d∆p is a sum of products of polynomials
in Int(RX) and polynomials in Int(RX′) with zero constant term in each factor; that is, d∆p
is in the image of T≤2

R (X) under the map ψ. This completes the proof that ψ
(
T≤2

R (X)
)

is
closed under d∆.

Now set dτ : T≤2
R (X) → T≤2

R (X) equal to the restriction of d∆ to the invariant subgroup
ψ
(
T≤2

R (X)
)
. Since the differential d∆ satisfies the ∪1– d formula (4.10), it follows that
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dτ also satisfies this formula. Finally, we extend dτ to the whole free cup-one algebra
T = TR(X) using the graded Leibniz rule.

The final step is to show that the map dτ : T → T defined above is the unique degree 1
linear map for which dτ(x) = τ(x) for all x ∈ X, and the ∪1– d formula and the graded
Leibniz rule are satisfied. Let d : T1

→ T2 be any map that satisfies the ∪1– d formula
with d(x) = dτ(x) for all x ∈ X. It suffices to show that d(p) = dτ(p) for all p ∈ T1. Since
both d and dτ satisfy the ∪1– d formula, it follows that

(7.9) d(p ∪1 q) = dτ(p ∪1 q) if d(p) = dτ(p) and d(q) = dτ(q).

Then from equation (7.9) and induction on i using the formula ζi+1(x) = (ζi(x) ∪1 x −
iζi(x))/(i + 1), it follows that d(ζi(x)) = dτ(ζi(x) for all x ∈ X and all i ≥ 1 in the case
R = Z and 1 ≤ i ≤ p − 2 in the case R = Zp.

It then follows using (7.9) and induction on the length of supp(I) that d(ζI(x)) = dτ(ζI(x))
for all I and x. Since the polynomials ζI(x) form a basis for T1, the proof of uniqueness
is complete.

This completes the proof of the theorem. □

7.4. On the invariance of ψ(T≤2
R (X)). Let f : M × M → M be an arbitrary map, with

M = M(X,R) equal to the set of functions from X to R, let µ : M × M → M be defined
by µ = a + a′ − f (a, a′), and let ψ : T≤2

R (X) ↪→ Cµ(X) be the monomorphism in Lemma
7.1. The next step is to characterize the maps f for which the simplicial differential
d∆ : C•µ(X)→ C•+1

µ (X) leaves invariant the subgroup ψ(T≤2
R (X)) ⊂ Cµ(X).

Proposition 7.4. The differential d∆ : Cµ(X) → Cµ(X) leaves invariant the subgroup
ψ
(
T≤2

R (X)
)
⊂ Cµ(X) if and only if f = fτ, for some function τ : T1(X)→ T2(X).

Proof. The “if” part is included in the proof of Theorem 7.3. To prove the “only if” part,
assume the map d∆ leaves invariant the subgroup ψ

(
T≤2

R (X)
)

of C≤2
τ (X). Then there is a

linear map d : T1
R(X)→ T2

R(X) such that the following diagram commutes.

(7.10)

T2
R(X) C2

τ(X)

T1
R(X) C1

τ(X).

ψ

d

ψ

d∆

For each x ∈ X, let px,i, qx,i be polynomials in Int(RX) with px,i(0) = qx,i(0) = 0 such that
d(x) =

∑
i px,i ⊗ qx,i; then for each pair (a, a′) ∈ M × M we have

(7.11) ψ ◦ d(x)(a, a′) =
∑

i

px,i(a) ∪ qx,i(a′).
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Note that for x ∈ X, the cochain ψ(x) is given by ψ(x)(a) = a(x), and then from equation
(7.7) we have

d∆ ◦ ψ(x)(a, a′) = a(x) + a′(x) − (a + a′ − f (a, a′)(x)
= a(x) + a′(x) − a(x) − a′(x) + f (a, a′)(x)(7.12)
= f (a, a′)(x).

Since ψ ◦ d(x)(a, a′) = d∆ ◦ ψ(x)(a, a′), it follows that for all x ∈ X and all pairs (a, a′) ∈
M × M, we have

(7.13)
∑

i

px,i(a) ∪ qx,i(a′) = f (a, a′)(x).

Hence, f = fτ where τ B d|X : X → T2
R(X), and the argument is complete. □

7.5. The differential dτ associated to an admissible map τ. Recall that a map τ : X →
T2

R(X) given by (7.3) determines a map fτ : M × M → M, given by (7.4), where M
is the set of all functions from X to R. In turn, the map fτ determines an operation,
µτ : M × M → M, given by (7.5). The case when the corresponding unital magma,
Mτ = (M, µτ), is a monoid is particularly interesting.

Definition 7.5. A map of sets τ : X → T2
R(X) is said to be admissible if corresponding

the binary operation, µτ : M × M → M, is associative, or, equivalently, the magma Mτ is
a monoid.

Theorem 7.6. If the map τ : X → T2
R(X) is admissible, then the map ψ = ψX,τ : TR(X)→

C∗(∆(Mτ)) is a monomorphism and d2
τ ≡ 0.

Proof. Let ∆τ = ∆(Mτ) be the ∆-set associated to the monoid Mτ. Note that the 2-
skeleton of ∆τ is the previously defined ∆-set ∆(2)(Mτ). The arguments in the proofs of
Lemma 7.1 and Theorem 7.3 generalize as follows to show that the map ψ≤2 : T≤2

R (X)→
C≤2(∆(2)

τ ) extends to a monomorphism ψ : TR(X)→ C∗(∆τ) with d∆ ◦ ψ = ψ ◦ dτ.

Set ψ : TR(X) → C∗(∆τ) equal to the unique map of algebras that restricts to ψ≤2 on
elements of degree less than or equal to 2.

The next step is to show that ψ is a monomorphism. Let p1(x) ⊗ · · · ⊗ pn(x) be a ba-
sis element in Tn

R(X) and let X1, . . . , Xn be disjoint copies of X. Set e : Tn
R(X) →

Int
(
RX1∪···∪Xn

)
equal to the map that sends p1(x) ⊗ · · · ⊗ pn(x) to the product of poly-

nomials p1(x1) · · · pn(xn), where pi(xi) denotes the polynomial pi(x) with the variables
x ∈ X replaced by the corresponding variables xi ∈ Xi. Since e is a bijection on basis
elements, it follows that e is a bijection. If ψ

(∑
i p1,i(x) ⊗ · · · ⊗ pn,i(x)

)
is the zero element

in Cn(∆τ), then e
(∑

i p1,i(a1) ⊗ · · · ⊗ pn,i(an)
)

is zero for all maps ai : Xi → R, and hence,
is the zero polynomial. The result that ψ is a monomorphism now follows since e is a
monomorphism.
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Since d∆ ◦ ψ = ψ ◦ dτ : T1
R(X) → C2(∆τ) by Theorem 7.3, and since TR(X) is generated

by products of elements in T1
R(X), it follows that d∆ ◦ ψ = ψ ◦ dτ : Ti

R(X)→ Ci+1(∆τ) for
all i ≥ 1. Then since d2

∆
≡ 0 and ψ is a monomorphism, it follows that d2

τ ≡ 0, and the
proof is complete. □

Remark 7.7. It can be shown that the homomorphism ψ : TR(X) → C•(∆τ) sends the
∪1 and ◦ products in TR(X) given in Section 6.4; respectively, to the ∪1 and ∪2 product
maps in C•(∆τ).

7.6. The differentials of the ζ-maps. We consider now in more detail the simplest pos-
sible case of Theorem 7.3; namely, the case when τ = 0. To begin, we recall the following
result, which is proved in [18, Theorems 7.5 and 8.14].

Theorem 7.8. Let (A, dA) be a ∪1-dga over R = Z or Zp, let X be a set, and let
f : TR(X) → A be a morphism of graded R-algebras with cup-one products. Then
f : (TR(X), d0) → (A, dA) is a map of ∪1-dgas if and only if dA ◦ f (x) = f ◦ d0(x) for
all x ∈ X.

Lemma 6.4 and the above theorem have the following immediate corollary.

Corollary 7.9. If (A, dA) is a binomial cup-one R-dga with H0(A) = R, then there is a
bijection between binomial ∪1-dga maps from (TR(X), d0) to (A, dA) inducing an isomor-
phism on H0 and maps of sets from X to Z1(A).

The following theorem gives an explicit formula for the differential d0 : T1
R(X)→ T2

R(X)
associated to this map. This result recovers Theorem 6.11 from [18], proved there by
other methods.

Theorem 7.10. Let X be a set, let τ : X → T2
R(X) be the zero map, and let d0 be the

corresponding differential on TR(X), given by d0(x) = 0 for all x ∈ X. Then we have

(7.14) d0(ζk(x)) = −
k−1∑
ℓ=1

ζℓ(x) ⊗ ζk−ℓ(x).

for all x ∈ X and for k ≥ 1 in the case R = Z and for 1 ≤ k ≤ p − 1 in the case R = Zp.
More generally,

(7.15) d0(ζI(x)) = −
∑

I1+I2=I
I j,0

ζI1(x) ⊗ ζI2(x).

where in the case R = Zp we have k ≤ p − 1 and each of the indices in I is less than or
equal to p − 1.

Proof. Since τ is the zero map, the magma M = Mτ is a monoid (in fact, an abelian
group), and hence, τ is admissible. By Theorem 7.6, we have that d0 = dτ is a differential
on TR(X), and hence, T = (TR(X), d0) is a binomial ∪1-dga.
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To prove equations (7.14) and (7.15) recall that in a binomial algebra with elements a, b,
we have

(7.16) ζk(a + b) =
∑
i+ j=k

ζi(a)ζ j(b),

for k ≥ 1 in the case R = Z and for 1 ≤ k ≤ p − 1 in the case R = Zp. Set Cτ(X) =
(C•(∆τ(X)), d∆), and let ψ : T≤2 ↪→ C≤2

τ (X) be the injective map of binomial ∪1-dgas
defined in the proof of Theorem 7.3, so that ψ(ζk(x)) = ζk(a(x)) for all a ∈ C1

τ(X) and all
k ≥ 1. Then,

ψ(dτζk(x))(a, a′) = d∆ψ(ζk(x))(a, a′)
= a(x) + a′(x) − ζk(a(x) + a′(x)) by (7.7)

= a(x) + a′(x) − a(x) − a′(x) −
k−1∑
ℓ=1

ζℓ(a(x) · ζk−ℓ(a′(x)) by (7.16)

= −

k−1∑
ℓ=1

ζℓ(a(x) · ζk−ℓ(a′(x))

= −

k−1∑
ℓ=1

[ψ(ζℓ(x)) ∪ ψ(ζk−ℓ(x))](a, a′)

= −

k−1∑
ℓ=1

ψ[ζℓ(x) ⊗ ψ(ζk−ℓ(x))](a, a′).

Since this equality holds for all 2-simplices (a, a′) in ∆τ(X), equation (7.14) now follows.
Equation (7.15) follows by a similar argument, by applying equation (7.16) to products
of the form ζi1(a1 + b1)ζi2(a2 + b2) · · · ζin(an + bn). □

Corollary 7.11. Let A be a binomial ∪1-dga over R. Then for a ∈ Z1(A) we have

(7.17) dA(ζk(a)) = −
k−1∑
ℓ=1

ζℓ(a) ⊗ ζk−ℓ(a),

for all k ≥ 1 in the case R = Z and for 1 ≤ k ≤ p − 1 in the case R = Zp.

Proof. By Corollary 7.9, an element a ∈ Z1(A) corresponds to a map of binomial ∪1-dgas
from (TR({x}), d0) to (A, dA) which sends x to a, and the result follows from Theorem
7.10. □

8. Hirsch extensions

In this section, we consider Hirsch extensions of (TR(X), d), the free binomial graded
algebra with cup-one products on a set X equipped with a differential d : TR(X) →
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TR(X) making it into a ∪1-dga. Furthermore, for R = Z or Zp, we show that the map
ψX,R : (TR(X), d0)→ C∗(B(Rn); R) induces an isomorphism of cohomology rings.

8.1. Hirsch extensions of TR(X). The following definition is motivated by the notion of
Hirsch extension in the context of commutative dgas over fields of characteristic 0. Let
(TR(X), d) be as above.

Definition 8.1. Let Y be a set. An inclusion i : (TR(X), d) → (TR(X ∪ Y), d̄) of binomial
∪1-dgas is called a Hirsch extension if d̄(y) is a cocycle in (T2

R(X), d) for all y ∈ Y. If
Y = {y} is a singleton, we call such an extension an elementary Hirsch extension.

Theorem 8.2. Let (TR(X), d) be a free binomial ∪1-dga on a set X. Then,

(1) For every set Y, there is a bijection between Hirsch extensions (TR(X), d) →
(TR(X ∪ Y), d̄) and maps of sets τY : Y → Z(T2

R(X)).
(2) If τ = d|X is admissible, then τ̄ = d̄|X∪Y is admissible.

Proof. Given a Hirsch extension (TR(X), d) ↪→ (TR(X ∪ Y), d̄), the restriction of d̄ to Y
gives a map τY = d̄|Y : Y → Z(T2

R(X)).

In the opposite direction, assume that the map τY : Y → Z(T2
R(X)) is given. Set τ̄ : X ∪

Y → T2
R(X ∪ Y) equal to the map given by τ̄|X = d|X and τ̄|Y = τ|Y. By Theorem 7.3, the

map τ̄ determines an extension of d to a map d̄ = dτ̄ : TR(X∪Y)→ TR(X∪Y) satisfying
the ∪1– d formula and the Leibniz rule with dτ̄|X∪Y = τ̄. Since τY(y) is a cocycle for all
y ∈ Y, it follows from Theorem 6.7 that d̄2(u) = 0 for all u ∈ TR(X ∪ Y), and the proof of
claim (1) is complete.

Recall from Definition 7.5 that τ is admissible precisely when the corresponding magma,
Mτ, is a monoid. It follows from the above proof that Mτ̄ is the extension of Mτ by
the R-module M(Y,R) of functions from Y to R given by the normalized cocycle ν ∈
Z2(∆(Mτ); M(Y,R)), where for y ∈ Y, we have τ(y) =

∑sy

i=1 py,i ⊗ qy,i and ν(a, a′)(y) =∑sy

i=1 py,i(a) · qy,i(a′).

Claim (2) now follows from Lemma 2.4, part (3), and the proof is complete. □

Given a map τ : Y → Z(T2
R(X), d), denote by [τ] the map from Y to H2(TR(X), d) that

sends each element y ∈ Y to the cohomology class of τ(y).

Definition 8.3. Given maps τ and τ′ from a set Y to Z(T2
R(X), d), the corresponding

Hirsch extensions, (TR(X ∪ Y), d̄) and (TR(X ∪ Y), d̄′), are called equivalent Hirsch ex-
tensions if [τ] = [τ′].

Lemma 8.4. If (TR(X∪Y), d̄) and (TR(X∪Y), d̄′) are equivalent Hirsch extensions, then
the cohomology algebras H∗(TR(X ∪ Y), d̄) and H∗(TR(X ∪ Y), d̄′) are isomorphic.
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Proof. First recall from Lemmas 6.3 and 6.4 that a map f : (TR(X), d) → (A, dA) of
binomial graded R-algebras with cup-one products commutes with the differentials if
and only if dA f (x) = f (dx) for all x ∈ X; moreover, if H0(A) = R and f induces an
isomorphism on H0, then f is determined by its restriction to the set X.

From the definition of equivalent Hirsch extensions it follows that for each y ∈ Y there
is an element c1(y) ∈ T1

R(X) with τ′(y) = τ(y) + dc1(y). Define a linear map f : (TR(X ∪
Y), d̄)→ (TR(X∪Y), d̄′) by setting f (u) = u for u ∈ TR(X) and f (y) = y− c1(y) for y ∈ Y.
Then

d̄′( f (y)) = d̄′(y − c1(y))

= d̄′(y) − dc1(y)
= τ′(y) − dc1(y)
= (τ(y) + dc1(y)) − dc1(y)
= τ(y)

= f (d̄(y)).

Thus, f commutes with the differentials. Similarly, a linear map g : (TR(X ∪ Y), d̄′) →
(TR(X∪Y), d̄) is defined by setting g(u) = u for u ∈ TR(X) and g(y) = y+ c1(y) for y ∈ Y.
Then g commutes with the differentials, and the result follows since f and g are inverses
of each other. □

8.2. A spectral sequence. We now set up a cohomological spectral sequence that will
prove useful for our purposes.

Lemma 8.5. Let (TR(X), d) be a free binomial ∪1-dga on a set X. Given an elementary
Hirsch extension (TR(X), d) → (TR(X ∪ {y}), d̄), there is a spectral sequence, (Ep,q

r , dr),
with dr : Ep,q

r → Ep+r,q−r+1
r and Ep,q

2 � Hp(TR(X), d) ⊗ Hq(TR({y}), d0), where d0(y) = 0.

Proof. Denote TR(X ∪ {y}) by T. A basis for T1 is given by elements of the form

(8.1) ζI(x1, . . . , xℓ)ζk(y),

where I = (i1, . . . , iℓ) and ζI(x1, . . . , xℓ) = ζi1(x1) · · · ζiℓ(xℓ) ∈ TR(X), with the x j dis-
tinct elements in X. If k = 0, then ζI(x1, . . . , xℓ)ζk(y) denotes ζI(x1, . . . , xℓ); and if
I = (0, . . . , 0), then ζI(x1, . . . , xℓ)ζk(y) denotes ζk(y), where in the case R = Zp, we have
that 1 ≤ i j ≤ p − 1.

Define a bigrading on T by setting Dp,q equal to the summand of Tp+q generated by the
tensor products u1 ⊗ · · · ⊗ up+q of basis elements in T1 for which exactly p of the factors
have I , (0, . . . , 0). We claim that the differential d restricts to maps

(8.2) d : D0,1 → D2,0 ⊕ D0,2 and d : D1,0 → D2,0 ⊕ D1,1.
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The claim follows by induction using the ∪1– d formula, the Hirsch identity, and the for-
mula ζn+1(y) = [ζn(y)y− nζn(y)]/(n+ 1). The group D0,1 is free abelian, with basis {ζi(y)},
and the induction is on i with base case i = 1. The group D1,0 has basis {ζI(x1, . . . xℓ)ζi(y)},
where I , {0}, and the induction is on i with base case i = 0.

From equation (8.2), it follows that Fℓ(T) B
⊕

p≥ℓ,q≥0 Dp,q defines a decreasing filtration,
T = F0 ⊇ F1 ⊇ F2 ⊇ · · · , of subcomplexes. A direct computation shows that in the
resulting spectral sequence the E2 term is given by

(8.3) Ep,q
2 = Hp(TR(X), d) ⊗ Hq(TR(y), d0),

where d0(y) = 0, and the proof is complete. □

8.3. The cohomology of (TR(X), d0). We are now in a position to compute the coho-
mology algebra of the free binomial graded cup-one algebra TR(X), endowed with the
differential dτ = d0 corresponding to the admissible function τ : X → T2

R(X) given by
τ(x) = 0 for all x ∈ X. We first assume R = Z, in which case we write T(X) B TR(X).

Proposition 8.6. Given a finite set X, there is a natural isomorphism

(8.4) κX : H∗(T(X))
∧∗(X)≃

between the cohomology algebra of the dga (T(X), d0) and the exterior algebra on the
free abelian group ZX.

Proof. We establish the existence of the isomorphism κX is by induction on k, the size of
X. For the base case k = 1, write T = T(X), and define two subcomplexes, T0 and T1,
as follows. Set T0

0 = Z, T1
0 = Z with generator x, and Ti

0 = 0 for i ≥ 2. Furthermore, set
T1

1 equal to the submodule of T1({x}) generated by the elements of the form ζk(x) with
k ≥ 2, and set T j

1 = T j({x}) for j ≥ 2. It is now readily verified that T = T0 ⊕T1.

Clearly, T0 =
∧

(x), with zero differential; thus, H∗(T0) =
∧

(x). Denote ζk(x) by ζk, and
define homomorphisms hℓ : Tℓ

1 → Tℓ−1
1 by

(8.5) hℓ(ζi1 ⊗ ζi2 ⊗ · · · ⊗ ζiℓ) =

−ζi2+1 ⊗ · · · ⊗ ζiℓ if i1 = 1,

0 if i1 > 1.

By direct computation using equation (7.15), it follows that

(8.6) d0 ◦ hℓ + hℓ+1 ◦ d0 = idT1 .

Hence, the cohomology of T1 is zero, and we conclude that the cohomology of (T({x}), d0)
is the exterior algebra with generator x.

For the inductive step, we assume the result holds for Xk = {x1, . . . , xk} and show the
result then holds for Xk+1 = {x1, . . . , xk, xk+1}. We use the spectral sequence in Lemma 8.5
with X = Xk and y = xk+1; applying the base case with T = T(xk+1), we have by induction
that the E2 term in the spectral sequence of the form E2 =

∧
(x1, . . . , xk)⊗

∧
(xk+1). Since
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d0xk+1 = 0 in T, it follows that the spectral sequence collapses, from which we obtain an
isomorphism of graded Z-modules,

(8.7) H∗(T(X), d0) �
∧

(x1, . . . , xk+1).

For x ∈ X, set [x] equal to the cohomology class of x in H1(T(X), d0); note that d0ζ2(x) =
−x ∪ x, and so [x] ∪ [x] = 0 in H∗(T(X)). Moreover, for x1, x2 distinct elements in X, we
have d0(x1 ∪1 x2) = −x1 ∪ x2 − x2 ∪ x1, so [x1] ∪ [x2] = −[x2] ∪ [x1]. It follows that the
isomorphism κX of graded Z-modules between H∗(T(X), d0) and the exterior algebra is a
map of graded algebras.

To prove the naturality of the isomorphism κX, let h : X → Y be a map of sets, let∧
(h) :

∧
(X) →

∧
(Y) be its extension to exterior algebras, and let T(h) : T(X) → T(Y)

be its extension to free binomial graded algebras with cup-one products constructed in
Section 6.1. It is readily verified that κY ◦ T(h) =

∧
(h) ◦ κX, and this completes the

proof. □

Corollary 8.7. If X is a set with n elements, then the map ψX : (T(X), d0) → C∗(B(Zn))
induces an isomorphism of cohomology rings.

Proof. The proof is by induction. To prove the result in the case n = 1, let X = {x}. The
morphism ψ in Theorem 7.6 maps T({x}) to C∗(∆(M({x});Z) = C∗(B(Z);Z). Note that
C1(B(Z),Z) is the free abelian group of maps of sets from Z to Z and ψ(x) is the identity
map from Z to Z. The identity map of Z is a generator for H1(Z) and it now follows from
Proposition 8.6 that the map H∗(ψ) is an isomorphism.

For the inductive step, write Xn = {x1, . . . , xn} and X = Xn ∪ {xn+1}, and consider the
morphism ψ = ψX : (T(X), d0)→ C∗(B(Zn⊕Z);Z) from Theorem 7.6. Assume by induc-
tion that the restriction of ψ to a map T(Xn)→ C∗(B(Zn);Z) induces an isomorphism on
cohomology. By the case n = 1 above, the restriction of ψ to the map from (T({xn+1}), d0)
to C∗(B(Z);Z) induces an isomorphism on cohomology. Thus the map of E2 terms from
the spectral sequence of the Hirsch extension T(Xn) → T(X) to the spectral sequence of
the central extension Z → Zn+1 → Zn is an isomorphism. Since both spectral sequences
collapse, it follows that H∗(ψ) is an isomorphism and the proof is complete. □

The next step is to consider the case R = Zp. Recall that for R = Z2, the cohomology ring
H∗(B(R),R) = R[x] is the polynomial algebra over R on a single generator x in degree 1,
and for R = Zp with p odd, H∗(B(R); R) =

∧
(x) ⊗R R[y] is the free commutative algebra

over R with one generator x in degree 1 and one generator y in degree 2, with the relation
x2 = 0.

Proposition 8.8. For R = Zp, the map ψ : (TR({x}), d0) → C∗(B(R); R) induces an iso-
morphism ψ∗ : H∗(TR({x}), d0) ≃−→ H∗(B(R); R).
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Proof. Consider first the case R = Z2. Note that in this case TR({x}) is equal to Z2[x],
the polynomial algebra on a single generator x. Hence, the differential d0 is identically
zero and we have that H∗(TR({x}), d0) = Z2[x]. To see that ψ induces an isomorphism
on cohomology, note that the 1-chain, [1], in the chain complex of the bar construction
on Z2 is a generator of H1(B(Z2);Z2) and ψ(x)([1]) = 1 ∈ Z2 so ψ(x) is a generator of
H1(B(Z2);Z2). The result follows, since ψ∗ is an isomorphism in degree 1 and both its
source and target are polynomial algebras on a single generator in degree 1.

Now consider the case R = Zp with p ≥ 3. Denoting ζi(x) by ζi, the R-vector space
T = TR({x}) has basis consisting of all elements of the form ζi1 ⊗ ζi2 ⊗ · · · ⊗ ζiℓ , where
each 1 ≤ i j ≤ p − 1. Set D equal to the graded R-submodule of T generated by the basis
elements ζi for 2 ≤ i ≤ p − 1 and ζi1 ⊗ ζi2 ⊗ · · · ⊗ ζiℓ for (i1, i2) , (1, p − 1). Clearly, D is
closed under the differential d0; moreover, the cochain homotopy used over Z restricts to
D. Hence, H∗(D, d0) = 0, and it follows that H∗(T, d0) � H∗(T /D, d0).

Write x and ζi for the images of those elements from T in T /D, and note that both x and
ζ1 ⊗ ζp−1 are cocycles in T /D. The Zp-algebra T /D is generated in degree 1 by [x] and
in degree 2 by [ζ1 ⊗ ζp−1]. It follows that H1(T /D;Zp) � Zp, with generator [x], and
H2(T /D;Zp) � Zp, with generator [ζ1 ⊗ ζp−1].

Now note that (T /D)i+2 is isomorphic to ζ1 ⊗ ζp−1 ⊗ Ti for i ≥ 1. The degree-2 map
T∗ → (T /D)∗+2 given by α 7→ ζ1 ⊗ ζp−1 ⊗ α for α ∈ Ti is an isomorphism of graded
R-algebras. Since ζ1 ⊗ ζp−1 is a cocycle in T /D, it follows from the graded Leibniz
rule that this map commutes with the differentials, and hence induces an isomorphism
on cohomology. This gives Hi(T) � Hi(T /D) � Hi+2(T) for i ≥ 1, and it follows that
Hi(T /D) � Zp for i ≥ 1. The generators of these groups are

ζ1 ⊗ ζp−1 ⊗ ζ1 ⊗ ζp−1 ⊗ · · · ⊗ ζ1 ⊗ ζp−1 if i is even,
ζ1 ⊗ ζp−1 ⊗ ζ1 ⊗ ζp−1 ⊗ · · · ⊗ ζ1 ⊗ ζp−1 ⊗ ζ1 if i is odd.

(8.8)

The next step is to see that ψ induces isomorphisms ψi : Hi(T({x}), d0) → Hi(B(Zp);Zp)
in degrees i = 1 and 2. The 1-chain [1] is a generator of H1(B(Zp);Zp) = Zp and
ψ(x)([1]) = 1, so ψ1 is an isomorphism. Now note that the cocycle c =

∑p
i=1 ζi(x)∪ζk−i(x)

in T projects to the cocycle ζ1⊗ζp−1 in T /D. Moreover, the homology class of the 2-cycle
g =

∑p−1
i=1 [i|1] is a generator of H2(B(Zp);Zp). Since ψ(c)(g) = 1, we conclude that ψ2 is

also an isomorphism.

Finally, since H∗(B(Zp);Zp) is generated in degrees 1 and 2 and ψ∗ is an isomorphism in
those degrees, it follows that ψ∗ is an epimorphism. Since Hi(T({x}), d0) and Hi(B(Zp);Zp)
are both isomorphic to Zp for each i ≥ 0, it follows that ψ∗ is an isomorphism, and the
proof is complete. □

The next theorem is a synthesis of the preceding results.
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Theorem 8.9. If X is a finite set with n elements and if R = Z or Zp, then the dga
morphism ψX,R : (TR(X), d0) → C∗(B(Rn); R) induces an isomorphism of cohomology
rings.

Proof. For R = Z the result is Corollary 8.7. For R = Zp and n = 1, the result is
Proposition 8.8. For n > 1, the result follows by induction on n, using the property that
the spectral sequence of the Hirsch extension (TR(X), d0) → (TR(X ∪ {y}), d0) collapses
with E2 = E∞. □

8.4. Colimits of Hirsch extensions. We now consider a type of free binomial ∪1-dgas
that arise as unions (or, colimits) of certain sequences of Hirsch extensions. These objects
will play an important role for the rest of this paper.

Definition 8.10. A free binomial ∪1-dga (TR(X), d) is called a colimit of Hirsch exten-
sions if the following conditions hold.

(1) X =
⋃

i≥1 Xi with each set Xi finite.
(2) For Xn =

⋃n
i=1 Xi and n ≥ 1, the differential d on TR(X) restricts to a differential

dn on TR(Xn).
(3) Each map in : (TR(Xn), dn)→ (TR(Xn+1), dn+1) is a Hirsch extension.
(4) X1 , ∅, and d1(x) = 0 for all x ∈ X1.

A morphism of colimits of Hirsch extensions is a map of binomial ∪1-dgas as above,
f : (TR(X), d) → (TR(X′), d′), with the property that for each n ≥ 1, the map restricts to
a morphism fn : TR(Xn) → TR(X′n). Note that these morphisms are compatible with the
respective colimits; that is, the diagram below commutes for each n ≥ 1.

(8.9)

TR(Xn+1) TR(X′n+1)

TR(Xn) TR(X′n) .

fn+1

in

fn

i′n

8.5. The group associated to a colimit of Hirsch extensions. We now associate in a
functorial way to each colimit of Hirsch extensions a pronilpotent group.

Lemma 8.11. Let T = (TR(X), d) be a colimit of Hirsch extensions.

(1) There is a pronilpotent group GT and a ∪1-dga map ψT : T→ C∗(B(GT); R).
(2) If X is finite, then GT is a nilpotent group and ψT is a quasi-isomorphism. More-

over, if R = Z, then GT is torsion-free.
(3) Every morphism of colimits of Hirsch extensions, f : T → T′, induces (in a

functorial way) a group homomorphism, f̃ : GT′ → GT.



CUP-ONE ALGEBRAS AND 1-MINIMAL MODELS 47

Proof. (1) We start by defining for each n ≥ 1 a finitely generated nilpotent group,
Gn = GTn , corresponding to the free ∪1-dgas Tn = (TR(Xn), dn), as well as a ∪1-dga
map ψn : TR(Xn) → C∗(B(Gn); R) inducing an isomorphism on cohomology. This is
done inductively, as follows.

First let G1 = M(X1,R). As noted in Section 7.1, this is a free R-module with basis
X1; we view it now as a finitely generated abelian group. By Theorem 8.9, there is a
quasi-isomorphism ψ1 : (TR(X1), d0) → C∗(B(G1); R). Assume now that a finitely gener-
ated nilpotent group Gn has been constructed, together with a ∪1-dga quasi-isomorphism
ψn : (TR(Xn), dn) → C∗(B(Gn); R) inducing an isomorphism on H1. By Theorem 8.2, the
differential dn+1 on T(Xn+1) restricts to an admissible map τn : Xn+1 → Z(T2

R(Xn)). The
composition ψn ◦ τn, then, defines a cocycle in Z2(B(Gn); M(Xn+1,R)); let

(8.10) 0 M(Xn+1,R) Gn+1 Gn 1
qn

be the corresponding central extension. Since Gn is a group, Lemma 2.4 insures that
Gn+1 is also a group; by construction, this is again a finitely generated nilpotent group
(torsion-free if R = Z). Since the map τn is admissible, Theorem 8.2 insures that the map
τn+1 = dn+1|Xn+1 is also admissible. Since Xn+1 is finite, the Hirsch extension TR(Xn) ↪→
TR(Xn+1) can be realized as a sequence of elementary Hirsch extensions. The inductive
assumption together with Lemma 8.5 and Theorem 8.9 then show that ψn+1 is a quasi-
isomorphism. This completes the construction of the Gn and the argument that ψn is a
quasi-isomorphism.

We now let GT = lim
←−−

Gn be the limit of the inverse system of groups {Gn, qn}n≥1 and
ψT : T→ C∗(B(GT); R) be the colimit of the directed system of maps ψn : (TR(Xn), dn)→
C∗(B(Gn); R). By construction, both GT and ψT satisfy the claimed properties. Note that
the underlying magma of GT is (M(X,R), µτ), where τ : X → Z(T2

R(X)) is the colimit of
the maps τn, while ψT coincides with the map ψX : T(X)→ C∗(∆(Mτ); R).

(2) If X is finite, then X = Xn for some n ≥ 1, and the claimed properties for GT and ψT

follow from the above proof.

(3) Let f : T→ T′ be a morphism of colimits Hirsch extensions, so that, for each n ≥ 1,
the diagram (8.9) commutes and d′n ◦ fn = fn+1 ◦ dn. Setting ĩn B qn, we define induc-
tively homomorphisms f̃n : G′n → Gn which satisfy f̃n ◦ ĩ′n = ĩn ◦ f̃n+1, as follows. We first
let f̃1 : G′1 → G1 be equal to the R-linear map f ∨1 : M(X′1,R) → M(X1,R) from Section
7.1. Assuming that f̃n has been defined, we let ( fn+1|Xn+1)

∨ : M(X′n+1; R) → M(Xn+1; R)
be equal to the Hom(−,R)-dual of the set map fn+1|Xn+1 : Xn+1 → X′n+1. The fact that fn

and fn+1 are compatible dga-maps implies that the homomorphisms f̃n and ( fn+1|Xn+1)
∨

are compatible with the k-invariants of the extensions (8.10), and thus define a homo-
morphism f̃n+1 : G′n+1 → Gn+1 with the claimed property. Passing to the limit yields a
homomorphism f̃ : GT′ → GT. Finally, if g : T′ → T′′ is another morphism of colimits
of Hirsch extensions, it is readily verified that f̃ ◦ g̃ = g̃ ◦ f . □
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The next lemma describes another type of functoriality property of the above construc-
tion, related to maps between classifying spaces of pronilpotent groups.

Theorem 8.12. Let T = (TR(X), d) be a colimit of Hirsch extensions, let G = GT be
the corresponding pronilpotent group, and assume the map ψT : TR(X) → C∗(BG; R) is
a quasi-isomorphism. Moreover, let π : BG → BG be the fibration corresponding to a
central extension of groups, 0 → F → G → G → 1, with F a finitely generated, free
R-module. Then

(1) There is a Hirsch extension i : T ↪→ T = (TR(X ∪ Y), d̄) such that G = GT .
(2) The diagram below commutes

(8.11)
T C∗(BG; R)

T C∗(BG; R) .

ψT

ψT

i π∗

(3) The map ψT is a quasi-isomorphism.

Proof. It suffices to prove the case where F = R. Let c ∈ T2
R(X) be a cocycle such that

the cohomology class of ψX(c) in H2(BG; R) corresponds to the central extension. Set
T = (TR(X ∪ {y}), d̄) equal to the Hirsch extension with d̄(y) = c and set G = GT. This
gives the commutative diagram (8.11).

The map ψT induces a map of spectral sequences from the spectral sequence of the Hirsch
extension to the spectral sequence of the fibration. The map of the terms Ep,q

2 is

(8.12) Hp(TR(X) ⊗ Hq(TR({y})) Hp(BG; R) ⊗ Hq(BR; R),
ψT⊗ f

where Hq(T({y}) denotes the cohomology computed with dy = 0 and f denotes the map
on cohomology induced by the map ψT({y}) : TR({y}) → C∗(BR; R). The map ψT is an
isomorphism by assumption, while f has been shown to be an isomorphism in Theorem
8.9. Hence, the map of E2 terms is an isomorphism and it follows that ψT is a quasi-
isomorphism. □

9. The existence of 1-minimal models

In this section, we define 1-minimal models and show that every binomial ∪1-dga A over
the ring R = Z or R = Zp admits a 1-minimal model, provided that H0(A) = R and H1(A)
is a finitely generated, free R-module.
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9.1. Solving an extension problem. We start by setting up an extension problem in the
category of binomial ∪1-dgas and give an if and only if criterion to solve it.

Definition 9.1. Let f : (TR(X), d)→ (A, dA) be a morphism of binomial ∪1-dgas, and let
i : TR(X)→ TR(X∪Y) be a Hirsch extension of TR(X). A morphism f̄ : TR(X∪Y)→ A
is an extension of f if the following diagram commutes.

(9.1)
TR(X ∪ Y)

A TR(X).

f̄
i

f

Theorem 9.2. Given a morphism of binomial ∪1-dgas, f : (TR(X), d) → (A, dA), and a
Hirsch extension, i : (TR(X), d) → (TR(X ∪ Y), d̄), there is an extension f̄ of f if and
only if [ f (dy)] = 0 for all y ∈ Y. Moreover, if there is an extension of f , then there is a
bijection between the set of extensions and functions σ : Y → A1 with dA(σ(y)) = f (dy).

Proof. Given an extension f̄ : TR(X ∪ Y) → A, the corresponding map σ : Y → A1 is
given by σ(y) = f̄ (y) for y ∈ Y. The condition that dA(σ(y)) = f (dy) follows from the
assumption that f̄ is a map of dgas.

In the opposite direction, assume σ : Y → A1 is a map of sets with dA(σ(y)) = f (dy).
Then by Lemma 6.2, the function y 7→ σ(y) extends f uniquely to a map f̄ of binomial
cup-one algebras from TR(X ∪ Y) to A. Since dA(σ(y)) = f (dy), it then follows from
Theorem 7.8 that this extension commutes with the differentials on TR(X ∪ Y) and on A,
and the proof is complete. □

Lemma 9.3. With notation as above, let f̄ : TR(X∪Y)→ A be an extension of f : TR(X)→
A with Y = {y}, where d̄ denotes the differential on TR(X∪Y) and d denotes its restriction
to TR(X). Assume both H1(A) and ker(H2( f )) are finitely generated, free R-modules, and
that the cohomology classes of the cocycles dy, c1, c2, . . . , cℓ in TR(X) form a basis for
ker(H2( f )). Then,

(1) The inclusion i : TR(X)→ TR(X ∪ {y}) induces an isomorphism on H1.
(2) The set {[i(c1)], . . . , [i(cℓ)]} is a basis for im(H2(i)) ∩ ker

(
H2( f̄ )

)
.

(3) The kernel of H2( f̄ ) is a finitely generated, free R-module.

Proof. Consider the spectral sequence from Lemma 8.5 associated with the elementary
Hirsch extension (TR(X), d) ↪→ (TR(X∪ {y}), d̄). We then have E0,1

2 = R with generator y,
and d̄y ∈ ker(H2( f )). Hence, by assumption, ndy , 0 for all n ∈ R, n , 0. It follows that
E0,1

3 = 0. Therefore, the induced homomorphism H1( f ) : H1(TR(X) → H1(TR(X ∪ {y}))
is an isomorphism, and the proof of claim (1) is complete.

To prove claim (2) in the case R = Zp, note that since Zp is a field, we can write
H2(TR(X)) as a direct sum span([dy], [c1], . . . , [cℓ]) ⊕ B̄, with H2( f ) restricted to B̄ a
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monomorphism. Then im(H2(i)) = E2,0
∞ = span([c1], . . . , [cℓ]) ⊕ B̄, and the result follows

since H2( f̄ ) ◦ H2(i) = H2( f ).

To prove claim (2) in the case R = Z, note that since E0,2
2 = 0, the terms E2,0

∞ and E1,1
∞

give an exact sequence,

(9.2) 0 E2,0
∞ = H2(TR(X))/[d̄y] H2(TR(X ∪ {y})) E1.1

∞ 0,

and claim (2) follows at once.

For R = Zp, claim (3) follows since in this case every submodule of a finitely generated,
free R-module is a finitely generated, free R-module.

To prove claim (3) in the case R = Z, let {[dy], [c1], . . . , [cℓ]} be a basis for ker(H2( f )),
and let [c2, . . . , cℓ] denote the submodule of H2(TR(X ∪ {y})) generated by the elements
[i(c2)], . . . , [i(cℓ)]. Then since E1,1

∞ is finitely generated and torsion-free, the sequence
(9.2) is split exact and the kernel of the map from H2(TR(X ∪ {y}))/[c2, . . . , cℓ] to H2(A)
is the submodule K of E1,1

∞ consisting of all elements k for which there is an element α ∈
im(H2(i))/[c2, . . . , cℓ] with H2( f̄ )(k+α) = 0. It follows that ker

(
H2( f̄ )

)
� [c2, . . . , cℓ]⊕K.

This establishes claim (3) in the case R = Z, and the proof is complete. □

9.2. A lifting criterion. The next theorem corresponds to an analogous rational homo-
topy result from [6] (Lemma 12.4).

Theorem 9.4. Let (A, dA) and (A′, dA′) be binomial cup-one R-dgas over R = Z or Zp, let
f : A→ A′ be a surjective 1-quasi-isomorphism, and let φ be a morphism from a colimit
of Hirsch extensions, (TR(X), d), to (A′, dA′). There is then a lift of φ through f ; that is, a
morphism φ̂ : TR(X)→ A such that the following diagram commutes

A

TR(X) A′.

f

φ

φ̂

Proof. As in Definition 8.10, let {(TR(Xn), dn)}n≥1 be the sequence of binomial ∪1-dgas
whose colimit is (TR(X), d). Set φn : TR(Xn)→ A′ equal to the restriction of φ to TR(Xn).
It suffices to show that for each n ≥ 1, there is a lift φ̂n of φn through f .

The argument proceeds by induction. For n = 1, we have that d1(x) = 0 for all x ∈ X1.
Thus, by Lemmas 6.2 and 6.3 it suffices to show that for each x ∈ X1 there is a cocycle ax

in A with f (ax) = φ(x). To do this, given x ∈ X1, let bx be an element in A1 with f (bx) =
φ(x). Then dA(bx) is a cocycle in ker( f ). By Remark 3.3, we have that H2(ker( f )) = 0.
Hence, there is an element cx ∈ ker( f ) with dA(cx) = dA(bx). Then ax = bx − cx is a
cocycle in A with f (ax) = φ(x). This completes the argument for the case n = 1.
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Now assume there is a lifting φ̂n of φn through f . In order to show that φ̂n extends to a
lifting φ̂n+1 through f , it suffices by Lemmas 6.2 and 6.3 to show that for each x ∈ Xn+1

there is an element ax in A with f (ax) = φ(x) and φ̂n(dx) = dA(ax). Given x ∈ Xn+1, let
bx be an element in A with f (bx) = φ(x). Then

f
(
φ̂n(dx) − dA(bx)

)
= φ(dx) − f (dA(bx))
= φ(dx) − dA′( f (bx))
= φ(dx) − dA′(φ(x))
= 0,

and so φ̂n(dx) − dA(bx) ∈ ker( f ). We have that φ̂n(dx) − dA(bx) is a cocycle in ker( f ) and
H2(ker( f )) = 0; therefore, there is an element cx ∈ ker( f ) with dA(cx) = φ̂n(dx) − dA(bx).
Setting ax = bx − cx, we have that f (ax) = φ(x) and φ̂n(dx) = dA(ax), and the argument is
complete. □

9.3. 1-minimal models. Colimits of Hirsch extensions lead to the notion of 1-minimal
model, which is central to the study done in this paper. Let (A, dA) be a binomial ∪1-dga
over R = Z or Zp such that H0(A) = R and H1(A) is a finitely generated, free R-module.

Definition 9.5. A 1-minimal model for A is a free binomial∪1-dgaM = (TR(X), d) which
arises as the colimit of a sequence of Hirsch extensions,Mn = (TR(Xn), dn), together with
morphisms ρn : Mn → A such that, for each n ≥ 1, the diagram below,

(9.3)

Mn+1

A Mn ,

ρn+1

ρn

in

is a commutative diagram of binomial ∪1-dgas and the following conditions are satisfied:

(1) The maps Hi(ρ1) : Hi(M1)→ Hi(A) are isomorphisms for i = 0 and i = 1.
(2) The submodule ker(H2(ρn)) ⊂ H2(Mn) is a free R-module with basis given by

the cohomology classes of the cocycles {dn+1(x) | x ∈ Xn+1} ⊂ Z2(TR(Xn)).

Set M B
⋃

nMn. Since all diagrams of type (9.3) commute, there is a morphism of
∪1-dgas, ρ : (M, d) → (A, dA), whose restriction toMn coincides with ρn for all n ≥ 1.
We will oftentimes refer to ρ : M→ A, or simply toM as being a 1-minimal model for
A; when needed, we will refer to the map ρ : M→ A as the structural morphism forM.

From the definition of colimit of Hirsch extensions we have thatM1 = (TR(X1), d0). Also
note that from part (2) of Theorem 8.2 it follows that the map d|Xn is admissible for each
n ≥ 1.

Lemma 9.6. LetM =
⋃

n≥1Mn be a 1-minimal model for A. Then, for all n ≥ 1,
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(1) Z1(Mn) = H1(Mn).
(2) The inclusionM1 ↪→Mn induces an isomorphism, H1(M1) ≃−→ H1(Mn).

Proof. Part (1) follows since d : (Mn)0 → (Mn)1 is the zero map for all n. Part (2)
follows from Lemma 9.3, part (1). □

The next corollary follows at once from the lemma.

Corollary 9.7. IfM is a 1-minimal model for A, then, for all n ≥ 1,

(1) H1(Mn) � M(X1,R), the free R-module with basis given by the elements in X1.
(2) Z1(Mn+1) = Z1(Mn).

9.4. Existence of 1-minimal models. We are now in a position to state and prove the
main result of this section.

Theorem 9.8. Let A be a binomial ∪1-dga over R = Z or Zp, with H0(A) = R and
H1(A) a finitely-generated, free R-module. There is then a 1-minimal model, M, and a
structural morphism, ρ : M→ A, which is a 1-quasi-isomorphism.

Proof. SinceM is connected, we can define ρ0 : M0 → A0 to be the composition of the
inverse of the structure map from R toM0 followed by the structure map for A.

Now let u1, . . . , uk be cocycles in A1 whose cohomology classes give a basis for H1(A).
Let X1 = {x1, . . . , xk} and set M1 = (TR(X1), dτ1), where τ1 = 0, that is, dτ1(xi) = 0
for all i. In view of Corollary 7.9, we may define a morphism ρ1 : M1 → A by setting
ρ1(xi) = ui for 1 ≤ i ≤ k such that the induced map on H0 is an isomorphism. By
construction, the map H1(ρ1) is also an isomorphism.

Assume by induction that an extension (Mn, dτn) = (TR(X1∪· · ·∪Xn), dτn) has been con-
structed, along with a map ρn : Mn → A inducing isomorphisms on H0 and H1 and such
that the kernel of ρn is a finitely generated, free R-module. Then by repeated applications
of Corollary 7.9, Theorem 8.2, and Lemma 9.3, it follows that there is a finite set Xn+1,
an extensionMn+1 = TR(X1 ∪ · · · ∪ Xn+1) with differential dτn+1 , and an extension ρn+1 of
ρn such that ρn+1 induces isomorphisms on H0 and H1, the kernel of H2(ρn+1) is a finitely
generated, free R-module, and the restriction of H2(ρn+1) to the image ofMn inMn+1 is
a monomorphism.

If for some n the map H2(ρn) is a monomorphism, then setM =Mn; if not, then setM =⋃
n≥1Mn. It then follows thatM is a 1-minimal model for A. Its structural morphism,

ρ : M → A, is defined to be the direct limit of the morphisms ρn : Mn → A; that is,
ρ|Mn = ρn, for all n ≥ 1. By construction, the map Hi(ρ) : Hi(M) → Hi(A) is an
isomorphism for i = 0 and 1 and a monomorphism for i = 2. Therefore, ρ is a 1-quasi-
isomorphism, and the proof is complete. □
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The theorem has an immediate corollary in the case when A is a cochain algebra of a
space.

Corollary 9.9. Let X be a connected ∆-complex, and assume H1(X; R) is a finitely gen-
erated module over R = Z or Zp. There is then a 1-minimal model, ρ : M → A, for the
cochain algebra A = C∗(X; R).

9.5. Augmented 1-minimal models. When the binomial ∪1-dga A admits an augmen-
tation, the above theorem can be enhanced, accordingly.

Theorem 9.10. Let A be binomial ∪1-dga such that there is an augmentation εA : A→ R
which induces an isomorphism from H0(A) to R and such that H1(A) is a finitely gen-
erated, free R-module. There is then an augmented 1-minimal model, M, such that the
structural morphism, ρ : M→ A, is an augmentation-preserving 1-quasi-isomorphism.

Proof. By Theorem 9.8, the binomial ∪1-dga A has a 1-minimal model, ρ : M → A,
which is a 1-quasi-isomorphism. Since the tensor algebra M = TR(X) is connected, it
admits a canonical augmentation, εM : M→ R, which sendsM>0 to 0 and identifiesM0

with R.

Since both εA and ρ are dga maps, their composite, εA ◦ ρ : M → R is again a dga
map. Owing to our hypothesis on εA, the map from R = H0(M) to R induced by the
composition is an isomorphism of rings from R to R and so equals the identity of R. It
follows that εA ◦ ρ is an augmentation forM. By the uniqueness of augmentation maps
for connected dgas, we have that εA ◦ ρ = εM, and the proof is complete. □

Recall from Section 3.4 that a choice of basepoint x0 for a space X yields an augmentation
map, ε0 : C∗(X; R)→ R.

Corollary 9.11. Let (X, x0) be a connected, pointed ∆-complex, and assume H1(X; R) is
a finitely generated module over R = Z or Zp. There is then an augmented 1-minimal
model, M, for the cochain algebra C∗(X; R) and a structural morphism, ρ : M → A,
which is a 1-quasi-isomorphism preserving augmentations, that is, ε0 ◦ ρ = εM.

Example 9.12. In this example we find the (integral) 1-minimal model for the cochain
algebra A = C∗(B(G(k));Z), where G(k) is the Heisenberg group of upper triangular
matrices of the form

(9.4)


1 a1 a1,2/k

0 1 a2

0 0 1

 ,
with a1, a2, a1,2 ∈ Z and k is a fixed positive integer. The multiplication in G(k) has the
form

(9.5) (a1, a2, a1,2) · (a′1, a
′
2, a

′
1,2) = (a1 + a′1, a2 + a′2, a1,2 + a′1,2 + ka1a2).
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Hence, G(k) has presentation with generators g1, g2, g1,2 and relators [g1, g2]g−k
1,2, [g1, g1,2],

and [g2, g1,2]. Let X(k) be the corresponding CW-complex, with 1-skeleton equal to
a wedge of circles, one circle for each generator, and with 2-cells given by the relators.
Since a classifying space B(G(k)) can be constructed from X(k) by adding cells of dimen-
sion 3 or more, it follows that the corresponding inclusion of X(k) into B(G(k)) induces a
1-quasi-isomorphism of cochain complexes, and hence, it suffices to find the 1-minimal
model for C∗(X(k);Z).

Let c1, c2, c1,2 be 1-cochains in X(k) whose restrictions to the cochains on the 1-skeleton
are dual to the corresponding generators g1, g2, and g1,2, with c1 and c2 cocycles, dc1,2 =

−kc1 ∪ c2, the restriction of c2 to the 2-cell [g1, g1,2] is zero, and the restriction of c1 to
the 2-cell [g2, g1,2] is zero. Set M(k) = (T({x1, x2, x1,2}), d), where dx1 = dx2 = 0 and
dx1,2 = −kx1 ⊗ x2, and define ρ : M(k)→ C∗(X(k);Z) by ρ(xi) = ci and ρ(x1,2) = c1,2.

We can see that (M(k), ρ) is a 1-minimal model for C∗(X(k);Z) as follows. Note that
M(k)1 = T({x1, x2} and the kernel of H2(ρ1) is the submodule generated by the cohomol-
ogy class of kx1 ⊗ x2. Hence, it suffices to show that H2(ρ) : H2(M(k))→ H2(X(k);Z) is
a monomorphism.

By using the spectral sequence of a Hirsch extension of dgas and then finding cocycle
representatives of elements in E∞, it follows that H1(M(k)) = Z ⊕ Z with basis given
by the cohomology classes of x1 and x2. Moreover, H2(M(k)) = Zk ⊕ Z ⊕ Z, where the
cohomology class of x1 ⊗ x2 generates the Zk-summand and the cohomology classes of
the cocycles x1⊗x1,2−kζ2(x1)⊗x2 and x1,2⊗x2−kx1⊗ζ2(x2) generate the Z⊕Z-summand.

Since ρ∗ : H∗(M(k)) → H∗(X(k);Z) commutes with cup products, it follows that H2(ρ)
maps the Zk-summand in H2(M(k)) isomorphically to the Zk-summand in H2(X(k);Z).
To get information about H2(ρ) restricted to the Z ⊕ Z-summand, note that the co-
homology class u = [x1 ⊗ x1,2 − kζ2(x1) ⊗ x2] is an element in the Massey product
⟨[x1], k[x1], [x2]⟩, which has indeterminacy equal to the Zk-summand. Moreover, H2(ρ)(u) =
[c1 ⊗ c1,2 − kζ2(c1) ⊗ c2] ∈ ⟨[c1], k[c1], [c2]⟩, which has indeterminacy equal to the Zk-
summand of H2(X(k);Z). From the conditions on the cochains c1, c2, c1,2, it follows that
H2(ρ)(u) evaluated on the torus [g1, g1,2] is equal to ±1 and H2(ρ)(u) evaluated on the
torus [g2, g1,2] is zero. Similarly, for v = [x1,2 ⊗ x2 − kx1 ⊗ ζ2(x2)] ∈ ⟨[x1], k[x2], [x2]⟩, it
follows that H2(ρ)(v) evaluated on the torus [g2, g1,2] is equal to ±1, and H2(ρ)(v) eval-
uated on the torus [g1, g1,2] is zero. It follows that H2(ρ) is an isomorphism, and the
argument that (M(k), ρ) is a 1-minimal model for X(k) is complete.

10. Uniqueness and functoriality of 1-minimal models

10.1. Maps between 1-minimal models. Let (A, d) and (A′, d′) be binomial ∪1-dgas
over the ring R = Z or Zp, with H0 = R and H1 a finitely generated, free R-module. By
Theorem 9.8, there are 1-minimal models ρ : M → A and ρ′ : M′ → A′, in the sense
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of Definition 9.5. We then haveM =
⋃

n≥1Mn, with inclusion maps in : Mn ↪→ Mn+1

which are Hirsch extensions, and morphisms ρn : Mn → A such that ρn = ρ|Mn and
ρn+1 ◦ in = ρn for all n ≥ 1, and similarly for A′ andM′.

Let φ : A → A′ be a map of binomial ∪1-dgas. A map f : M → M′ between the
corresponding 1-minimal models is said to be a morphism compatible with φ if f is
a map of binomial ∪1-dgas such that ρ′ ◦ f = φ ◦ ρ. That is, we have a sequence
of morphisms, fn : Mn → M

′
n, such the following diagrams commute, for all n ≥ 1,

(10.1)

Mn+1 M′
n+1

Mn M′
n ,

fn+1

in

fn

i′n (10.2)

Mn M′
n

A A′ .

fn

ρn ρ′n

φ

The commutativity of the diagrams (10.1) means that the morphisms fn : Mn →M
′
n be-

tween the n-th stages of the respective colimits of Hirsch extensions are compatible, in
the sense delineated in Section 8.4.

A weaker notion is that of a morphism compatible up to homotopy; that is, a morphism
f : M → M′ preserving dga and binomial structures and such that ρ′ ◦ f ≃ φ ◦ ρ. In
this case, the diagram (10.1) commutes for all n ≥ 1 and the diagram (10.2) commutes
only up to homotopy, in the sense that there are homotopies Φn : Mn → A′ ⊗R C∗(I; R)
between φ ◦ρn and ρ′n ◦ fn for all n ≥ 1, with the restriction of Φn+1 toMn equal to Φn for
all n ≥ 1. Since by Theorem 3.8 homotopic maps induce the same map on cohomology,
we still get commuting diagrams in cohomology,

(10.3)

Hi(Mn) Hi(M′
n)

Hi(A) Hi(A′) ,

Hi( fn)

Hi(ρn) Hi(ρ′n)

Hi(φ)

for all i ≥ 0 and all n ≥ 1.

10.2. Extending dga maps to 1-minimal models. Our next goal is to show that, given
a morphism φ : A → A′, there is a morphism f : M → M′ compatible with φ up to
homotopy. We start with a lemma.

Lemma 10.1. Let φ : A→ A′ be a morphism of binomial ∪1-dgas as above. Let ρ : M→
A and ρ′ : M′ → A be 1-minimal models for (A, d) and (A′, d′), respectively, and let n
be a positive integer. Assume there is a morphism fn : Mn →M

′
n such that the diagram
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below commutes.

(10.4)
H2(Mn) H2(M′

n)

H2(A) H2(A′).

H2( fn)

H2(ρn) H2(ρ′n)

H2(φ)

Then

(1) There is a morphism fn+1 : Mn+1 →M
′
n+1 such that diagram (10.1) commutes.

(2) There is a bijection between morphisms fn+1 as above and maps of sets from Xn+1

to H1(M′
n).

(3) If fn is an isomorphism and H2(φ) is a monomorphism, then fn+1 is also an iso-
morphism.

Proof. Set Kn = ker H2(ρn) and K′n = ker H2(ρ′n). To prove parts (1) and (2), there are
three cases to consider: (a) Kn = 0, (b) Kn , 0, K′n = 0, and (c) Kn , 0, K′n , 0.

(a) If Kn = 0, thenMn =Mn+1 and the results in both parts follow, since fn+1 = i′n ◦ fn is
the unique map for which the diagram (10.1) commutes.

(b) Next consider the case where Kn , 0 and K′n = 0. In this case,Mn+1 = T(Xn ∪ Xn+1)
with Xn+1 , ∅, andM′

n+1 =M
′
n. For x ∈ Xn+1, it follows from the commutativity of the

diagram (10.4) that the cocycle fn(dMn(x)) is cohomologous to 0 in H2(M′
n). Thus, for

each x ∈ Xn+1, we can choose an element, fn+1(x) ∈ M′
n with dM′n( fn+1(x)) = fn(dMn(x)).

Then by Theorem 9.2 the map of sets Xn+1 →M
′
n given by x 7→ fn+1(x) extends uniquely

to a morphism fn+1 : Mn+1 → M
′
n+1 of binomial ∪1-dgas. This completes the proof of

part (1) in this case.

Now note that if f̂n+1 is a morphism from Mn+1 to M′
n+1 with f̂n+1 ◦ in = fn, then

dM′n+1
( fn+1(x)) − dM′n+1

( f̂n+1(x)) = fn(dMn(x)) − fn(dMn(x)) = 0. Hence, the map of sets
Xn+1 → Z1(M′

n) given by x 7→ cx B fn+1(x) − f̂n+1(x) is a bijection, in this case, between
morphisms f̂n+1 with f̂n+1 ◦ in = fn and maps of sets from Xn+1 to Z1(M′

n
)
. From part (1)

of Lemma 9.6, we have that Z1(Mn) = H1(Mn). This completes the proof of part (2) in
case (b).

(c) Finally, consider the case where Kn , 0 and K′n , 0. Since the diagram (10.4)
commutes, the map H2( fn) restricts to a homomorphism kn : Kn → K′n which fits into the
commuting diagram below,

(10.5)
0 Kn H2(Mn) H2(A)

0 K′n H2(M′
n) H2(A′) .

kn

H2(ρn)

H2( fn) H2(φ)

H2(ρ′n)



CUP-ONE ALGEBRAS AND 1-MINIMAL MODELS 57

Note that by assumption both Kn and K′n are non-zero, finitely generated, free R-modules.
Now letMn+1 = T(Xn∪Xn+1) andM′

n+1 = T
(
X′n∪X′n+1). From hypothesis (2) in the def-

inition of a 1-minimal for A, it follows that the composition of d : T1(Xn+1) → Z2(Mn)
followed by the projection of a cocycle to its cohomology class gives an isomorphism
T1(Xn+1) ≃−→ Kn. Similarly, the differential from T1(X′n+1) toM′

n+1 gives an isomorphism
T1(X′n+1) ≃−→ K′n. Therefore, kn gives a homomorphism T1(Xn+1) → T1(X′n+1). By Theo-
rem 7.8, this homomorphism extends uniquely to a map fn+1 : Mn+1 →M

′
n+1 of binomial

∪1-dgas such that the diagram (10.1) commutes. This completes the proof of part (1) in
this case.

Now fix a choice for fn+1 and let f̂n+1 : Mn+1 → M
′
n+1 be any morphism such that the

diagram (10.1) commutes. Let x be any element in Xn+1. Since f̂n+1 commutes with the
differentials and dx ∈ Mn, we have fn ◦ d(x) = d′ ◦ fn+1(x) and similarly fn ◦ d(x) =
d′ ◦ f̂n+1(x). Hence,

(10.6) d′ fn+1(x) − d′ f̂n+1(x) = fn(dx) − fn(dx) = 0,

and it follows that fn+1(x) − f̂n+1(x) is a cocycle in
(
M′

n
)1. Therefore, for each x ∈ Xn+1

there is a cocycle c(x) ∈
(
M′

n
)1 such that

(10.7) f̂n+1(x) = fn+1(x) + c(x).

By Lemma 9.6, part (1) we have that Z1(M′
n) = H1(M′

n). This shows that a choice for
fn+1 gives a map that sends isomorphisms f̂n+1 such that the diagram (10.1) commutes to
maps from Xn+1 to H1(M′

n). This completes the proof of part (2) in the last case.

We now turn to part (3). Suppose that fn is an isomorphism and H2(φ) is a monomor-
phism. Then H2( fn) is also an isomorphism, and so chasing diagram (10.5) shows that
H2( fn) restricts to an isomorphism kn : Kn

≃−→ K′n. Since the differentials d : T1(Xn+1) →
Z2(Mn) and d′ : T1(X′n+1)→ Z2(M′

n) are monomorphisms, it follows that kn gives an iso-
morphism T1(Xn+1) ≃−→ T1(X′n+1). By Theorem 7.8, this isomorphism extends uniquely
to a morphism fn+1 : Mn+1 → M

′
n+1 of binomial ∪1-dgas such that the diagram (10.1)

commutes.

We claim that if f̂n+1 is any morphism fromMn+1 toM′
n+1 such that the diagram (10.1)

commutes, then f̂n+1 is in fact, an isomorphism. To prove the claim, first note that since
fn+1 restricts to an isomorphism from T1(Xn+1) to T1(X′n+1), it follows that fn+1 : Mn+1 →

M′
n+1 is an isomorphism. By equation (10.7) it follows that fn+1 and f̂n+1 induce the same

map of R-modules from Mn+1/Mn to M′
n+1/M

′
n. Consider the following commutative
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diagram of exact sequences of R-modules.

(10.8)

0 Mn Mn+1 Mn+1/Mn 0

0 M′
n M′

n+1 M′
n+1/M

′
n 0 .

in

fn

qn

f̂n+1 [ fn+1]=[ f̂n+1]

i′n q′n

By assumption, fn is an isomorphism; moreover, [ f̂n+1] is an isomorphism, since [ fn+1] is
an isomorphism. The claim now follows from the Five Lemma, and this completes the
proof. □

10.3. Lifting homotopies to 1-minimal models. The next step is to show that homo-
topies between maps of binomial ∪1-dgas lift to the respective 1-minimal models.

Lemma 10.2 (Homotopy Lifting Lemma). Let (A, dA) and (A′, dA′) be binomial cup-
one dgas over R = Z or Zp with H0 = R and H1 finitely generated, free R-modules.
Let ρ : M(A) → A and ρ′ : M(A′) → A′ be 1-minimal models, and let φ : A → A′ be
a morphism. Suppose for a given n ≥ 1 there is a morphism fn : Mn → M′

n and a
homotopy Φn : Mn → A′ ⊗R C∗(I; R) between φ ◦ ρn and ρ′n ◦ fn. Then,

(1) There is a unique morphism fn+1 : Mn+1 →M
′
n+1 such that fn+1 ◦ in = i′n ◦ fn and

such that there is a homotopy Φn+1 : Mn+1 → A′ ⊗R C∗(I; R) between φ ◦ρn+1 and
ρ′n+1 ◦ fn+1 with Φn+1|Mn = Φn.

(2) If in addition fn is an isomorphism and H2(φ) is a monomorphism, then fn+1 is
also an isomorphism.

Proof. As before, letMn+1 = T(Xn ∪ Xn+1) and letM′
n+1 = T

(
X′n ∪ X′n+1), with corre-

sponding maps ρ and ρ′ as pictured in the diagram below.

(10.9)

Mn+1 M′
n+1

Mn M′
n

A A′

fn+1

ρn+1 ρ′n+1

fn

ρn

in

ρ′n

i′n

φ

Let dn+1 denote the differential onMn+1, and note that for x ∈ Xn+1, we have dn+1(x) ∈
Mn. By Theorem 7.8, it suffices to define for each x ∈ Xn+1 an element Φn+1(x) ∈
A′ ⊗R C∗(I; R) such that Φn+1 ◦ dn+1(x) = dA′⊗RC∗(I;R) ◦Φn+1(x). Let x ∈ Xn+1. Then dn+1(x)
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is a cocycle inMn, and hence, Φn(dn+1(x)) is a cocycle in A′ ⊗R C∗(I; R). We can assume
this cocycle has the form

(10.10) Φn(dn+1(x)) = φ(ρn(dn+1x))t0 + ρ
′
n( fn(dn+1x))t1 + c1(x)u,

with c1(x) ∈ (A′)1.

The condition that Φn(dn+1(x)) is a cocycle then leads to an equation for dA′(c1(x)), as
follows. Recall that if u0, u1, c are homogeneous elements in A′ with |u0| = |u1| = |c| + 1,
then u = u0t0 + u1t1 + cu is a homogeneous element in A′ ⊗R C∗(I; R) with

dA′⊗C∗(I;R)(u0t0 + u1t1 + cu) = dA′(u0)t0 + dA′(u1)t1

+
(
(−1)|u0 |+1u0 + (−1)|u1 |u1 + dA′(c)

)
u.

(10.11)

In particular, if u0t0 + u1t1 + cu is a cocycle in A′ ⊗R C∗(I; R), then u0 and u1 are cocycles
in A′ and dA′(c) = (−1)|u0 |u0 + (−1)|u1 |+1u1. Since Φn(dn+1x) is a cocycle in A′ ⊗R C∗(I; R),
we have that

(10.12) dA′(c1(x)) = φ(ρn(dn+1x)) − ρ′n( fn(dn+1x)).

Now by Lemma 10.1 there are morphisms fn+1 : Mn+1 → M
′
n+1 such that the diagram

(10.1) commutes. Choose such a map fn+1. The map fn+1 then determines a map from
Xn+1 to H1(M′

n), as follows. For each x ∈ Xn+1, we have

(10.13) dA′(φ(ρn+1(x))) = φ(ρn(dn+1x)) and dA′(ρ′n+1( fn+1(x))) = ρ′n( fn(dn+1x)),

and it follows from equations (10.12) and (10.13) that the element

(10.14) z(x) B c1(x) − φ(ρn+1(x)) + ρ′n+1( fn+1(x))

is a cocycle in A′. Thus, we have a map of sets from Xn+1 to H1(A′) given by x 7→ [z(x)],
where [w] denotes the cohomology class of a cocycle w. By Definition 9.5 and Lemma
9.6, this map corresponds uniquely to a map of sets from Xn+1 to H1(M′

n).

By Lemma 10.1 we can assume that fn+1 has been chosen so that for each x ∈ Xn+1, we
have that [z(x)] = 0. It then follows that for each x there is an element c0(x) ∈ (A′)0 with

(10.15) dA′(c0(x)) = z(x) = c1(x) − φ(ρn+1(x)) + ρ′n+1( fn+1(x)).

Now set

(10.16) Φn+1(x) B φ(ρn+1(x))t0 + ρ
′
n+1( fn+1(x))t1 + c0(x)u.

The final step is to show that with this choice of Φn+1, it follows that Φn(dn+1(x)) =
dA′⊗C∗(I)(Φn+1(x)) for all x ∈ Xn+1. Using equations (10.16), (10.15), and (10.10), we
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have that
dA′⊗C∗(I)(Φn+1(x)) = dA′⊗C∗(I)

(
φ(ρn+1(x))t0 + ρ

′
n+1( fn+1(x))t1 + c0(x)u

)
= φ(ρn(dn+1x))t0 + ρ

′
n( fn(dn+1x))t1

+ [φ(ρn+1(x)) − ρ′n+1( fn+1(x)) + dA′(c0(x))]u
= φ(ρn(dn+1x))t0 + ρ

′
n( fn(dn+1x))t1 + c1(x)u

= Φn(dn+1x),

(10.17)

and the proof is complete. □

10.4. Homotopy functoriality of 1-minimal models. We are now in a position to show
that 1-minimal models are unique up to homotopy.

Theorem 10.3. Let (A, d) and (A′, d′) be binomial cup-one dgas over R = Z or Zp such
that H0(A) and H0(A′) are isomorphic to R and H1(A) and H1(A′) are finitely generated,
free R-modules. Let ρ : M(A) → A and ρ′ : M(A′) → A′ be 1-minimal models, and let
φ : A→ A′ be a morphism. Then

(1) There is a morphism φ̂ : M(A) → M(A′) compatible with the respective col-
imit structures (that is, φ̂n+1 ◦ in = i′n ◦ φ̂n for all n), and there is a homotopy
Φ : M(A) → A′ ⊗R C∗(I; R) between φ ◦ ρ and ρ′ ◦ φ̂ (also preserving colimit
structures), so that the diagram below commutes up to homotopy.

(10.18)
M(A) M(A′)

A A′.

ρ

φ̂

ρ′

φ

(2) If φ is a 1-quasi-isomorphism, then φ̂ is an isomorphism.

Proof. To prove part (1), first setMn =Mn(A) andM′
n =Mn(A′). We need to construct

isomorphisms φ̂n : Mn →M
′
n and homotopies Φn : Mn → A⊗R C∗(I; R) between ρn and

ρ′n ◦ φ̂n such that φ̂n+1 ◦ in = i′n ◦ φ̂n and Φn+1|Mn = Φn. The proof is by induction on n.

The base case is to show that there is an isomorphism φ̂1 : M1 → M
′
1 and a homotopy

Φ1 : M1 → A ⊗R C∗(I; R) between ρ1 and ρ′1 ◦ φ̂1. Since H1(ρ1) = H1(ρ′1 ◦ φ̂1), the claim
follows from Lemma 6.5. The induction step now follows from the homotopy lifting
lemma (Lemma 10.2).

To prove part (2), assume that φ is a 1-quasi-isomorphism; that is, H1(φ) : H1(A) →
H1(A′) is an isomorphism and H2(φ) : H2(A) → H2(A′) is a monomorphism. Now,
the map H1(φ) determines a map φ̂1 : M1 → M

′
1, which must also be an isomorphism.

Since H2(φ) is a monomorphism, Lemma 10.1, part (3) insures that φ̂1 lifts to compatible
isomorphisms, φ̂n : Mn → M

′
n, for all n ≥ 1. It follows that the family of maps

{
φ̂n

}
n≥1

defines the desired isomorphism φ̂ : M(A)→M(A′), and this completes the proof. □
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Taking A = A′ in the above theorem, we obtain the following corollary.

Corollary 10.4. Let A be a binomial cup-one R-dga as above, and let (M, ρ) and (M′, ρ′)
be any two 1-minimal models for A. Then there is an isomorphism f : M → M′ such
that ρ′ ◦ f is homotopic to ρ.

10.5. 1-minimal models and homotopies. The next lemma corresponds to an analo-
gous result in [9] (Corollary 11.4); see also [6, Proposition 12.7].

Lemma 10.5. Homotopy is an equivalence relation on the set of morphisms from a col-
imit of Hirsch extensions,M, to a binomial cup-one dga, A.

Proof. Clearly, ≃ is reflexive. To show symmetry, let Φ : M→ A ⊗R C
∗(I; R) is a homo-

topy from φ0 to φ1, given on elements a ∈ Mi by Φ(a) = φ0(a)t0 + φ1(a)t1 + c(a)u, for
some c(a) ∈ Ai−1; then the mapΦ given byΦ(a) = φ1(a)t0+φ0(a)t1+c(a)u is a homotopy
from φ1 to φ0.

It remains to show ≃ is transitive. With Φ as above, let I′ be another copy of the interval,
let t′0, t

′
1, u

′ be the corresponding generators of C∗(I′; R), and let Φ′ : M→ A ⊗R C
∗(I′; R)

be a homotopy from φ1 to φ2. Finally, let C∗(I; R) ∨ C∗(I′; R) be the fiber product
corresponding to the augmentations ε : C∗(I; R) → R and ε′ : C∗(I′; R) → R given by
ε(t1) = ε′(t′0) = 1 and ε(t0) = ε′(t′1) = 0. With this setup, we define a map

(10.19) Ψ : M A ⊗R (C∗(I; R) ∨C∗(I′; R))

by setting Ψ(a) = (Φ(a),Φ′(a)). Now let ∆ be a triangle with oriented edges e1 = I,
e2 = I′, and e3 = I′′. The inclusions of the edges in the triangle induce epimorphisms
q j : C∗(∆; R) ↠ C∗(e j; R), which give a surjection f : C∗(∆; R) ↠ C∗(I; R) ∨ C∗(I′; R).
By Theorem 9.4, the morphism Ψ lifts through f to a morphism Ψ̂ : M→ A⊗R C∗(∆; R).
The map q3 ◦ Ψ̂ : M→ A ⊗R C

∗(I′′; R), then, is the desired homotopy from φ0 to φ2. □

We will write [M, A] for the set of homotopy classes of morphisms φ : M → A. Given
a morphism ξ : A → A′, composition with ξ defines a function, ξ∗ : [M, A] → [M, A′].
Similar notions hold for augmented dgas and augmentation-preserving morphisms be-
tween them. The next lemma corresponds to an analogous result in [9] (Theorem 11.5);
see also [6, Proposition 12.9].

Lemma 10.6. Let (TR(X), d) be a colimit of Hirsch extensions and assume A and A′

are binomial ∪1-dgas with augmentations, εA, εA′ that induce isomorphisms from H0

to R. Assume further that there is an augmentation-preserving 1-quasi-isomorphism,
ξ : A → A′. Then the induced map of equivalence classes of augmentation-preserving
homotopies of augmentation preserving maps, ξ∗ : [TR(X), A]→ [TR(X), A′], is injective.

Proof. Let f and g be augmentation-preserving morphisms from TR(X) to A, and let
H : TR(X)→ A′⊗R C∗(I; R) be an augmentation-preserving homotopy between ξ ◦ f and
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ξ ◦ g. We will show that H lifts to an augmentation-preserving homotopy Ĥ between f
and g.

Write X = {x1, x2, . . .} with Xn = {x1, . . . , xn}. SetMn = (TR(Xn), dn) and let fn, gn and
Hn denote the restrictions of f , g, and H toMn. Then x1 is a cocycle inM1, and we have

(10.20) H(x1) = ξ ◦ f (x1)t0 + ξ ◦ g(x1)t1 + c(x1)u

with

(10.21) dc(x1) = ξ ◦ f (x1) − ξ ◦ g(x1).

Since H1(ξ) : H1(A) → H1(A′) is a monomorphism, it follows that there is an element
ĉ(x1) ∈ ker(εA) with

(10.22) dĉ(x1) = f (x1) − g(x1) = f1(x1) − g1(x1).

Since f1(x1)t0 + g1(x1)t1 + ĉ(x1)u is a cocycle in A ⊗R C1(I; R) and ĉ(x1) ∈ ker(εA) with
εA a binomial subalgebra of A0, it follows that the map x1 7→ f1(x1)t0 + g1(x1)t1 + ĉ(x1)u
extends uniquely to an augmentation-preserving homotopy Ĥ1 between f1 and g1.

The next step is to show that Ĥ1 is a lifting of H1. Since ĉ(x1) ∈ ker(εA) and ξ is
augmentation-preserving, it follows that ξ ◦ ĉ(x1) ∈ ker(εA′). From equations (10.21) and
(10.22), we have that the elements ξ ◦ ĉ(x1) and c(x1) have the same coboundary. Since
εA′ induces an isomorphism from H0(A′) to R, it follows that two elements in ker(εA′)
with the same coboundary are equal to each other; hence ξ ◦ ĉ(x1) = c(x1) and Ĥ1 is a
lifting of H1.

Now assume by induction that the homotopy Hn lifts to a homotopy Ĥn between fn and
gn and show that Ĥn then extends to a lifting Ĥn+1 of Hn+1. Note that dxn+1 is a cocycle
in T(Xn). Hence

Ĥn(dxn+1) = fn(dxn+1)t0 + gn(dxn+1)t1 + ĉ(dxn+1)u

is a cocycle in A ⊗R C∗(I; R), and it follows that dĉ(dxn+1) = fn(dxn+1) − gn(dxn+1).

The obstruction to extending Ĥn to a homotopy Ĥn+1 is finding an element ĉ(xn+1) ∈ A0

such that the map

xn+1 7→ Ĥn+1(xn+1) = f (xn+1)t0 + g(xn+1)t1 + ĉ(xn+1)u

commutes with the coboundary map; that is,

dĉ(xn+1) = g(xn+1) − f (xn+1) + ĉ(dxn+1).

Since Ĥn is a lifting of Hn, we have that Hn+1(xn+1) has the form ξ ◦ f (xn+1)t0 + ξ ◦
g(xn+1)t1 + c(xn+1)u, where

dc(xn+1) = ξ ◦ g(xn+1) − ξ ◦ f (xn+1) + ξ ◦ ĉ(dxn+1).

In particular, the cocycle ξ ◦ g(xn+1)− ξ ◦ f (xn+1)+ ξ ◦ ĉ(dxn+1) in A′ is cohomologous to
zero, and then since ξ : H1(A) → H1(A′) is a monomorphism, it follows that the cocycle
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g(xn+1) − f (xn+1) + ĉ(dxn+1) is cohomologous to zero in A. Thus, there is an element
ĉ(xn+1) in ker(εA) with dĉ(xn+1) = g(xn+1) − f (xn+1) + ĉ(dxn+1), and hence, Ĥn extends to
a homotopy Ĥn+1.

The final step is to see that Ĥn+1 is a lifting of Hn+1. Since ĉ(xn+1) ∈ ker(εA) and ξ is
augmentation-preserving, it follows that ξ ◦ ĉ(xn+1) ∈ ker(εA′). The elements ξ ◦ ĉ(xn+1)
and c(xn+1) have the same coboundary and are both elements in ker(εA′); hence they are
equal to each other given that the augmentation εA′ induces an isomorphism from H0(A′)
to R. This completes the argument that Ĥn+1 is a lifting of Hn+1, and hence the proof is
complete. □

Remark 10.7. Note that if A = C∗(X; R) with X a path-connected ∆-complex, then there
is an augmentation εA : A→ R inducing an isomorphism from H0(A) to R.

10.6. 1-minimal models of augmented binomial dgas. Let R = Z or Zp. For binomial
cup-one R-dgas (A, dA) that come equipped with an augmentation, εA : A → R, that
induces an isomorphism from H0(A) to R, and for which H1(A) is a finitely generated,
free R-module, Theorem 10.3 may be refined. Recall from Theorem 9.10 that any such
dga admits an augmented 1-minimal model, ρ : M→ A.

Theorem 10.8. Let (A, d) and (A′, d′) be augmented binomial cup-one dgas as above. Let
ρ : M → A and ρ′ : M′ → A′ be augmented 1-minimal models, and let φ : A → A′ be
an augmentation-preserving morphism. There is then a unique augmentation-preserving
morphism φ̂ : M→M′ such that φ ◦ ρ is augmentation-preserving homotopic to ρ′ ◦ φ̂.

Proof. By Theorem 10.3, there is an isomorphism φ̂ : M→M′ and a homotopyΦ : M→
A ⊗R C∗(I; R) between φ ◦ ρ and ρ′ ◦ φ̂. Let φ̃ : M→M′ be another such isomorphism.
Since ρ′ ◦ φ̂ and ρ′ ◦ φ̃ are both homotopic to φ◦ρ, it follows from Lemma 10.5 that ρ′ ◦ φ̂
and ρ′ ◦ φ̃ are homotopic to each other. Then from Lemma 10.6, it follows that φ̂ and φ̃
are homotopic morphisms fromM toM′.

Since the proofs of Theorem 10.3 and Lemma 10.5 apply as well to augmentation pre-
serving homotopies, it follows that φ̂ and φ̃ are homotopic by an augmentation-preserving
homotopy. It then follows from Lemma 3.10 that φ̂ = φ̃, and the proof is complete. □

The following uniqueness result follows from Theorem 10.8 by talking A = A′.

Corollary 10.9. Let A be an augmented binomial cup-one R-dga as above, and let (M, ρ)
and (M′, ρ′) be any two augmented 1-minimal models for A. Then there is a unique
augmentation-preserving isomorphism f : M → M′ such that ρ′ ◦ f is augmentation-
preserving homotopic to ρ.
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11. Compatibility of integer and rational 1-minimal models

In this section we define the Postnikov tower of a connected space Y with H1(Y;Z)
finitely generated and show that the corresponding sequence of Hirsch extensions is a 1-
minimal model for Y . We then use this result to show that the integral 1-minimal model
of Y tensored with the rationals is weakly equivalent as a dga to the 1-minimal model of
Y defined in rational homotopy theory.

11.1. Postnikov towers and 1-minimal models. A connected space Y with H1(Y; R)
finitely generated determines a Postnikov tower with compatible maps from Y to the
tower, as pictured in display (11.1), as follows.

(11.1)

Y3

Y2

Y Y1

π2

π1

h1

h2

h3

Set Y1 equal to the Eilenberg–MacLane space K(H1(Y; R), 1) and let h1 be a map inducing
an isomorphism from H1(Y1; R) to H1(Y; R).

Assume hn : Y → Yn has been defined. Let πn : Yn+1 → Yn be the fibration with k-invariant
corresponding to the kernel of H2(hn), and let hn+1 be a lifting of hn. The resulting tower
is called the Postikov 1-tower of the space Y .

Lemma 11.1. Let Y be a connected space with H1(Y; R) finitely generated. Let {Yn}n≥1

be a Postnikov 1-tower for Y, as in diagram (11.1). Then there is a colimit of Hirsch
extensionsM and quasi-isomorphisms ψn : Mn → C∗(Yn; R) such thatM with structure
maps ρn : Mn → C∗(Y; R) given by ρn = h∗n ◦ ψn is a 1-minimal model for C∗(Y; R).

Proof. Note that H2(K(H1(Y; R), 1); R) is a finitely generated free R-module. Then by
induction, using the argument in the proof of property (3) of Lemma 9.3, it follows that
the kernel of the map H2(hn) : H2(Yn; R) → H2(Y; R) is also a finitely generated, free
R-module. The existence of the colimit of Hirsch extensionsM and quasi-isomorphisms
ψn : Mn → C∗(Yn; R) such thatM with structure maps ρn = h∗n ◦ψn is a 1-minimal model
for C∗(Y; R) now follows from Theorem 8.12. □
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11.2. Polynomial differential forms. We now briefly review a construction in rational
homotopy theory due to Sullivan [25]. For each integer n ≥ 0, set

(11.2) (APL)n =
Λ(t0, . . . , tn, y0, . . . , yn)

(
∑

ti − 1,
∑

y j)
,

where Λ(t0, . . . , tn, y0, . . . , yn) denotes the free commutative algebra over Q generated by
elements ti of degree zero and elements y j of degree one, and define a differential d on
(APL)n by setting dti = yi and dy j = 0.

Given a topological space Y , an element u ∈ Ap
PL(Y) is a rule that associates to each singu-

lar n-simplex σ of Y an element u(σ) ∈ (APL)p
n compatible with the face and degeneracy

maps ∂i : (APL)n+1 → (APL)n and s j : (APL)n → (APL)n+1 given by

(11.3) ∂i : tk 7→


tk k < i
0 k = i
tk−1 k > i

and s j : tk 7→


tk k < j
tk + tk+1 k = j
tk+1 k > j

Then APL(Y) is a commutative differential graded algebra over the rationals and the as-
signment Y { APL(Y) is functorial.

In addition to the Sullivan algebra APL(Y) and the cochain algebra C∗(Y;Q), there is a
differential graded algebra over the rationals, CA(Y), with the following property.

Theorem 11.2 (Corollary 10.10 in [6]). For topological spaces Y there are natural quasi-
isomorphisms

C∗(Y;Q) CA(Y) APL(Y).

Consequently, APL(Y) is weakly equivalent (as a dga) to C∗(Y;Q).

11.3. Rational 1-minimal models. Let (Λ(X), d) be the free commutative algebra over
Q generated by the elements in a set X, equipped with a differential d. We say that a dga
(Λ(X) ⊗Q Λ(Y), d̄) is a Hirsch extension of (Λ(X), d) if d̄x = dx for all x ∈ X and d̄y is a
cocycle in Λ(X) for all y ∈ Y.

Now let Y be a topological space. A sequenceMn,Q(Y) = (Λ(X1∪· · ·∪Xn), dn) of Hirsch
extensions with n ≥ 1 together with maps

(11.4)

Mn+1,Q(Y)

APL(Y) Mn,Q(Y)

ρn+1
in

ρn

is a rational 1-minimal model for Y if the following conditions are satisfied:

(1) d1(x) = 0 for all x ∈ X1.
(2) The map ρ1

1 : H1(M1,Q)→ H1(APL(Y)) is an isomorphism.
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(3) Under the assignment x 7→ dn+1(x), the set Xn+1 corresponds to a basis for
ker(ρ2

n) ⊂ H2(Mn,Q) given by the cohomology classes of the cocycles {dn+1(x) |
x ∈ Xn+1} ⊂ Z2(Mn,Q).

As shown by Sullivan [25] (see also [9, 6, 24, 23]), every connected space Y admits a
rational 1-minimal model, unique up to an isomorphism of cdgas.

The following gives the definition of n-step equivalence in rational homotopy theory.

Definition 11.3. Given commutative dgas (A, dA) and (A′, dA′) over Q with 1-minimal
models (MQ, ρ) and (M′

Q, ρ
′); respectively, and an integer n ≥ 1, we say that A and A′ are

n-step equivalent over Q if there are isomorphisms fn : Mn,Q →M
′
n,Q and en : H2(A) →

H2(A′) such that the diagram below commutes.

(11.5)

H2(Mn,Q) H2(M′
n,Q)

H2(A) H2(A′).

H2( fn)

H2(ρn) H2(ρ′n)

en

11.4. Relating the integer and rational 1-minimal models. We are now in a position
to state and prove the main result of this section.

Theorem 11.4. Let Y be a connected topological space with H1(Y;Z) finitely generated.
Then the 1-minimal model for C∗(Y;Z) tensored with the rationals is weakly equivalent
as a differential graded algebra to the 1-minimal model in rational homotopy theory for
APL(Y).

Proof. Let Yn be a Postnikov 1-tower for Y , and letM = {Mn,Z(Y), ρn,Z}n≥1 be an inte-
gral 1-minimal model for Y , with quasi-isomorphisms ψn : Mn,Z(Y) → C∗(Yn;Z) as in
Lemma 11.1. The proof is to show by induction that for the rational 1-minimal model
{Mn,Q(Y), ρn,Q}n≥1 for APL(Y), there are 1-quasi-isomorphisms en : Mn,Q(Y) → APL(Yn)
with ρn,Q = f ∗n ◦ en. The result then follows from the natural equivalences between
APL(Yn) and C∗(Yn;Q) and between APL(Y) and C∗(Y;Q).

Assume that for the sets Xi (i ≥ 1), we have Mn,Z(Y) = T(X1 ∪ · · · ∪ Xn). Then to
prove the base case, setM1,Q = Λ(X1) and define e1 : Λ(X1) → APL(Y1) by setting e1(x)
equal to a cocyle in APL(Y1) whose cohomology class corresponds to ψ1(x) under the
weak equivalence between C∗(Y1;Q) and APL(Y1). Then e1 is a 1-quasi-isomorphism and
ρ1,Q = f ∗1 ◦ e1 induces an isomorphism from H1(M1,Q(Y)) to H1(APL(Y)).

To prove the inductive step, assume Mn,Q(Y) and a 1-quasi-isomorphism en have been
constructed. Consider the diagram (11.6). Note that the diagram of solid arrows com-
mutes and each horizontal arrow represents a 1-quasi-isomorphism. Define Mn+1,Q(Y)
and en+1 as follows. SetMn+1,Q(Y) equal to the Hirsch extension (Mn,Q(Y)⊗Λ(Xn+1), dn,Q),
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(11.6)

Mn+1,Z(Y) ⊗ Q C∗(Yn+1;Q) CA(Yn+1) APL(Yn+1) Mn+1,Q(Y)

Mn,Z(Y) ⊗ Q C∗(Yn;Q) CA(Yn) APL(Yn) Mn,Q(Y)

C∗(Y;Q) CA(Y) APL(Y)

ψn+1 en+1

ψn

ρn,Z

pn

fn

en

in

ρn,Q

where for each x ∈ Xn+1, its differential dn,Q(x) is equal to a cocycle inMn,Q(Y) whose
cohomology class corresponds to the cohomology class of dn,Z(x) ∈ Mn,Z(Y) ⊗ Q under
the 1-equivalence betweenMn,Z(Y) ⊗ Q andMn,Q(Y).

Given x ∈ Xn+1, set en+1(x) equal to a cochain in APL(Yn+1) whose coboundary equals
en(dn,Q(x)). Then pn ◦ en = en+1 ◦ in. As in the proof of Theorem 8.12, the map en+1 gives
a map of the spectral sequence of the Hirsch extension in to the spectral sequence of the
fibration pn inducing an isomorphism of E2 terms. Thus, en+1 is a quasi-isomorphism
and the proof is complete. □

12. Distinguishing homotopy types via 1-minimal models

In this section we use the 1-minimal model of a binomial ∪1-dga over R = Z or Zp to
define n-step equivalence for n ≥ 1. We show in Theorem 12.4 that if X and X′ have
isomorphic fundamental groups, then C∗(X;Z) and C∗(X′;Z) are n-step equivalent for
all n ≥ 1, and in Proposition 12.5 we give an example of a family of spaces that can be
distinguished using n-step equivalence with R = Z, where the corresponding approach in
rational homotopy theory fails to distinguish the spaces.

12.1. n-step equivalence. Let (A, dA) be a binomial ∪1-dga over the ring R = Z or
R = Zp. We will assume throughout this section that H0(A) = R and H1(A) is a finitely
generated, free R-module. By Theorem 9.8, there is a 1-minimal model, (M, d), which
comes equipped with a structure map, ρ : M → A, that induces an isomorphism on H1

and a monomorphism on H2. Furthermore, by Theorem 10.3, any morphism φ : A→ A′

between two such binomial ∪1-dgas lifts to a morphism φ̂ : M→M′ which is compati-
ble with the respective colimit structures and with the structure maps (up to homotopy).
The next result extracts further information from these data.

Proposition 12.1. Let A and A′ be two binomial ∪1-dgas as above, with 1-minimal mod-
els ρ : M → A and ρ′ : M′ → A′. Let φ : A → A′ be a morphism, and let φ̂ : M → M′

be a lift of φ. Then,
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(1) The map H2(φ) induces homomorphisms φ̄n : coker(H2(ρn)) → coker(H2(ρ′n)),
for all n ≥ 1.

(2) If φ is a 1-quasi-isomorphism, then all the homomorphisms φ̄n are injective.

Proof. Since the morphism φ̂ : M → M′ is compatible with the colimit structures, it
restricts to R-linear maps φ̂n : Mn → M′

n. Since ρ′ ◦ φ̂ is homotopic to φ ◦ ρ via a
homotopy which is also compatible with the colimit structures, we have that H2(ρ′) ◦
H2(φ̂) = H2(φ)◦H2(ρ) and similarly for the maps at level n ≥ 1. We thus obtain for each
n ≥ 1 a commuting diagram in the category of R-modules,

(12.1)

H2(Mn) H2(M′
n)

H2(A) H2(A′)

coker(H2(ρn)) coker(H2(ρ′n)),

H2(φ̂n)

H2(ρn) H2(ρ′n)

H2(φ)

φ̄n

where, by definition, φ̄n is the R-linear map induced by H2(φ) on cokernels.

Now suppose φ : A → A′ is a 1-quasi-isomorphism. Then the map H2(φ) : H2(A) →
H2(A′) is injective; moreover, by Theorem 10.3, the map H2(φ̂) is an isomorphism. A
straightforward diagram chase with (12.1) then shows that the map φ̄n is injective, and
the proof is complete. □

Next we define an equivalence relation such that coker H2(ρn) is an invariant for each
n ≥ 1.

Definition 12.2. Given binomial cup-one dgas A, A′ with 1-minimal models (M, ρ) and
(M′, ρ′); respectively, and an integer n ≥ 1 we say that A and A′ are n-step equivalent if
there are isomorphsms fn : Mn → M

′
n and en : H2(A) → H2(A′) such that the diagram

below commutes.

(12.2)
H2(Mn) H2(M′

n)

H2(A) H2(A′)

H2( fn)

H2(ρn) H2(ρ′n)

en

Note that if A and A′ are q-equivalent for some q ≥ 2, then A and A′ are n-step equivalent
for all n ≥ 1.

For the rest of this paper, we will assume R = Z and that H2(A) and H2(A′) are finitely
generated. In this case, the cokernels of the maps H2(ρn) and H2(ρ′n) are also finitely
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generated. Given a 1-minimal model ρ : M→ A over Z, we define for each n ≥ 1 a finite
abelian group κn(A) by

(12.3) κn(A) B Tors
(
coker

(
H2(ρn) : H2(Mn)→ H2(A)

))
.

That is, κn(A) is the torsion subgroup of the finitely generated abelian group coker(H2(ρn)).

From Proposition 12.1 it follows that the groups coker H2(ρn) and hence κn(A) are inde-
pendent of the choice of 1-minimal model for A used in constructing them. The consid-
erations above yield the following proposition.

Proposition 12.3. Let A and A′ be binomial ∪1-dgas over Z, with H0 = Z, H1 finitely
generated and torsion-free, and H2 finitely generated. Let (M, ρ) and (M′, ρ′) be 1-
minimal models over Z for A and A′, respectively. Then, if A and A′ are n-step equivalent,
then coker H2(ρn) is isomorphic to coker H2(ρ′n) and κn(A) is isomorphic to κn(A′)

Proof. The result follows from the definition of n-step equivalence by a diagram chase
using the diagram (12.2) expanded, as in diagram (12.1), to include the cokernels. □

12.2. Distinguishing homotopy 2-types. Making use of the above setup, we obtain
in this section an invariant of 2-type for spaces based on a cohomological comparison
between their integral cochain algebra and the corresponding 1-minimal model.

In this section, all our spaces are assumed to be connected ∆-complexes X with finitely
generated cohomology groups H1(X;Z) and H2(X;Z) (for instance, presentation 2-com-
plexes for finitely presented groups). Let C∗(X;Z) be the simplicial cochain algebra
of such a space, viewed as a ∪1-algebra over Z. We consider the sequence of finite
abelian groups κn(X) B κn(C∗(X;Z)), for n ≥ 1, The next result shows that these groups
depend only on the homotopy 2-type of X, or, equivalently, on the isomorphism type of
its fundamental group.

Theorem 12.4. Let X and X′ be two ∆-complexes as above.

(1) If π1(X) � π1(X′), then κn(X) � κ′n(X) for all n ≥ 1.
(2) If κn(X) � κ′n(X) for some n ≥ 1, then the cochain algebras C∗(X;Z) and C∗(X′;Z)

are not n-step equivalent.

Proof. Let ρ : M → C∗(X;Z) and ρ′ : M′ → C∗(X′;Z) be 1-minimal models for the
respective cochain algebras. We begin by proving property (1) in the case where X and
X′ are 2-dimensional. By assumption, π1(X) � π1(X′), that is, X and X′ have the same
2-type. As in the proof of Theorem 3.6, it follows that there is a homotopy equivalence,
f : X → X′, where X = X ∨

∨
i∈I S 2

i and X′ = X′ ∨
∨

j∈J S 2
j , for some indexing sets I and

J. We let q : X → X and q′ : X′ → X′ be the maps that collapse the wedges of 2-spheres
to the basepoint, and we let ρ̄ : M → C∗(X;Z) and ρ̄′ : M′ → C∗(X′;Z) be 1-minimal
models for the respective cochain algebras.
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By Theorem 10.3, the induced maps on cochain algebras, f ♯, q♯, and q′♯, lift to maps
between 1-minimal models. For each n ≥ 1, this leads to the following diagram, which
commutes up to homotopy.

(12.4)

Mn Mn M
′

n M′
n

C∗(X;Z) C∗(X;Z) C∗(X′;Z) C∗(X′;Z).

ρ

q̂♯

≃

ρ̄n ρ̄′n

f̂ ♯

≃

ρ′n

q̂′♯

≃

q♯

≃

f ♯ q′♯

Since all the maps on the bottom row are 1-quasi-isomorphisms, the maps on the top row
are isomorphisms, again by Theorem 10.3. Applying now the H2(−) functor to diagram
(12.4), we obtain the following commuting diagram.

(12.5)

H2(Mn) H2(Mn) H2(M
′

n) H2(M′
n)

H2(X;Z) H2(X;Z) H2(X′;Z) H2(X′;Z)

coker(H2(ρn)) coker(H2(ρ̄n)) coker(H2(ρ̄′n)) coker(H2(ρ′n)).

H2(ρn)

H2(q̂♯)
≃

H2(ρ̄n) H2(ρ̄′n)

H2( f̂ ♯)
≃

H2(ρ′n)

H2(q̂′♯)
≃

H2(q)
≃

H2( f ) H2(q′)

≃

From the way the collapse map q is defined, the induced homomorphism H2(q) may
be identified with the natural inclusion H2(X,Z) → H2(X,Z) ⊕ ZI; thus the induced
map on cokernels restricts to an isomorphism on torsion subgroups. Similar considera-
tions apply to the map H2(q′), while of course H2( f ) is an isomorphism. It follows that
Tors(coker(H2(ρ̄n))) � Tors(coker(H2(ρ̄′n))). This completes the proof of property (1) in
the case where X and X′ are 2-dimensional.

Now let X be an arbitrary ∆-complex satisfying our assumptions. We let (C∗(X;Z), δ∗)
be its simplicial cochain complex, i : X(2) ↪→ X the inclusion of the 2-skeleton into X,
and ρ(2) : M(2) → C∗(X(2);Z) a 1-minimal model for X(2). The induced homomorphism
H2(i) : H2(X;Z)→ H2(X(2);Z) may be identified with the natural inclusion H2(X;Z) ↪→
H2(X;Z) ⊕ im(δ2). Since im(δ2) ⊂ C3(X;Z) is a free abelian group, the map induced
by H2(i) on cokernels, coker(H2(ρn)) → coker(H2(ρ(2)

n )), restricts to an isomorphism on
torsion subgroups, and the proof of property (1) is complete.

Part (2) follows at once from Corollary 12.3. □

12.3. Integral versus rational 1-minimal models. In this final section we give a family
of links in the 3-sphere that can be distinguished from each other using the integral
1-minimal model, but are not distinguished from each other using the corresponding
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Figure 2. Generalized Borromean Rings

approach in rational homotopy theory. We begin with a quick review of triple Massey
products and the cohomology of link complements.

We refer to [15] for the general definition and properties of Massey products. Here we
restrict our attention to triple Massey products of elements in the first cohomology. Given
a dga (A, d) and elements u1, u2, u3 in H1(A) with u1u2 = u2u3 = 0, let ci be cocycles with
cohomology classes [ci] = ui, and let ci, j for i < j be elements in A1 with dci, j = cic j.
Then c1c2,3 + c1,2c3 is a 2-cocyle; let ⟨u1, u2, u3⟩ denote the subset of H2(A) consisting of
the set of cohomology classes [c1c2,3 + c1,2c3] of this type. It follows that the difference
between any two elements in ⟨u1, u2, u3⟩ is an element in u1 ∪ H1(A) + H1(A) ∪ u3.

Now let L =
⋃n

i=1 Li be an n-component link in the 3-sphere, with complement XL = S 3 \

L. This space has the homotopy type of a finite, 2-dimensional CW-complex; moreover,
H1(XL;Z) = Zn, with basis elements corresponding by Alexander duality to generators
of H1(Li;Z), and with H2(XL;Z) = Zn−1 generated by the Lefschetz duals γi j to paths
from Li to L j. A formula for the Massey products of elements in the first cohomology of
a CW-complex in terms of the Magnus coefficients of the attaching maps of the 2-cells is
given in [16], along with a proof that Massey products in the complement of a link and
Milnor’s µ̄-invariants of the link determine each other.

Consider now the following family of links in the 3-sphere. For each n ≥ 1, let L(n)
be the link pictured in Figure 2, where the pattern in the middle repeats n times. Note
that L(1) is the well-known Borromean rings, and that the three components of L(n) have
pairwise linking numbers equal to 0, for all n ≥ 1. We denote by X(n) = XL(n) the
complement of L(n) in S 3, and we let ρ(n) : M(n) → A(n) be a 1-minimal model for the
cochain algebra A(n) B C∗(X(n);Z).

Proposition 12.5. For the links L(n) with complement X(n) described above, we have:
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(1) The cokernel of H2(ρ2(n)) is isomorphic to Zn ⊕ Zn, and so κ2(X(n)) = Zn ⊕ Zn.
(2) The cochain algebras C∗(X(m);Z) and C∗(X(n);Z) are not 2-step equivalent for

m , n.
(3) The Sullivan algebras APL(X(m)) and APL(X(n)) are 2-step equivalent for all pos-

itive integers m and n.

Proof. (1) To compute the cokernel of H2(ρ2(n)), we proceed as follows. First note that
M1(n) = (T({x1, x2, x3}, d0), with ρ1(n)(xi) equal to a cocycle whose cohomology class ui

is Alexander dual to the generator of H1(Li;Z) given by the orientation of Li.

Since all linking numbers for L(n) are zero, we have that all cup products of elements
in H1(X(n);Z) are zero, and it follows that M2(n) = (T({x1, x2, x3, x1,2, x1,3, x2,3}, d2(n))
where d2(n)(xi, j) = xi ⊗ x j and ρ2(n) is any extension of ρ1(n). In the spectral sequence
of the Hirsch extensionM1(n) ↪→ M2(n), it follows from Theorem 8.9 that the E2 term
is the tensor product of two exterior algebras,

(12.6) E2 =
∧

([x1], [x2], [x3]) ⊗Z
∧

([x1,2], [x2,3], [x1,3]),

where [x] denotes the image of x in E2. The differential d2 : E2 → E2 is given by
d2[xi] = 0 and d2[xi, j] = [xix j]. Then by direct computation of the Ep,q

∞ terms with
p+q = 2, it follows that H2(M2(n)) = Z8, with basis given by the triple Massey products

(12.7)
⟨[x1], [x1], [x2]⟩, ⟨[x1], [x2], [x2]⟩, ⟨[x1], [x1], [x3]⟩, ⟨[x1], [x3], [x3]⟩,
⟨[x2], [x2], [x3]⟩, ⟨[x2], [x3], [x3]⟩, ⟨[x1], [x2], [x3]⟩, ⟨[x1], [x3], [x2]⟩.

The correspondence between Massey products and elements in E∞ is indicated as fol-
lows. An element in E1,1

∞ such as [x1] ⊗ [x1,2] is represented by the element in the set
⟨[x1], [x1], [x2]⟩ given by the cohomology class of the cocycle x1 ⊗ x1,2 − ζ2(x1) ⊗ x2 in
M2(n) and ⟨[x1], [x2], [x3]⟩ is taken to be the cohomology class of the cocycle x1 ⊗ x2,3 +

x1,2 ⊗ x3, which corresponds to the element [x1] ⊗ [x2,3] − [x3] ⊗ [x1,2] in E1,1
∞ .

We now determine the homomorphism H2(ρ2(n)). From the naturality of Massey prod-
ucts, it follows that H2(ρ2(n)) sends a Massey product ⟨[xi], [x j], [xk]⟩ to ⟨ui, u j, uk⟩. All
cup products of elements in H1(X(n);Z) are zero, so each triple Massey product con-
tains only one element. Since each 2-component sublink of L is equivalent to the un-
link, it follows that each of the first six Massey products listed above maps to zero.
From the computations in [16, Example 3, p. 46], we have that ⟨u1, u2, u3⟩ = −nγ1,3

and ⟨u1, u3, u2⟩ = nγ1,2. Since {γ1,3, γ1,2} is a basis for H2(X(n);Z), the argument that
coker H2(ρ2(n)) = Zn ⊕ Zn is complete.

Part (2) follows at once from Part (1) and Theorem 12.4.

(3) We now show that if the binomial cup-one dga C∗(X(n);Z) is replaced by the cdga
B(n) = APL(X(n)) and the integral 1-minimal modelM is replaced with the Sullivan ratio-
nal 1-minimal modelMQ ≃ M⊗ Q from [25], then B(m) and B(n) are 2-step equivalent
for all positive integers m and n.
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Let ρQ(n) : (MQ, d) → B(n) be the rational 1-minimal model for B(n). Then M2,Q is
the exterior algebra over Q given by

∧
(y1, y2, y3, y1,2, y1,3, y2,3), with differential given by

dyi = 0 and dyi, j = yi ∧ y j. Let vi ∈ H1(B(n)) be the elements that correspond to the
elements ui ∈ H1(X(n);Q), and let ωi, j ∈ H2(B(n)) be the elements that correspond to the
elements γi, j ∈ H2(X(n);Q) via the zig-zag of quasi-isomorphisms

(12.8) C∗(X(n);Q) CA(X(n)) APL(X(n)) = B(n) .

We can assume that ρ1,Q(yi) = vi for i ∈ {1, 2, 3}. Since the maps in equation (12.8)
are dga maps inducing isomorphisms on cohomology, it follows from the computa-
tion of Massey products in C∗(X(n);Q) that in H2(B(n)) we have ⟨v1, v2, v3⟩ = −nω1,3

and ⟨v1, v3, v2⟩ = nω1,2, while all triple products of the form ⟨vi, v j, vk⟩ with {i, j, k} a
proper subset of {1, 2, 3} are zero. It follows that H2(ρ2)⟨[y1], [y2], [y3]⟩ = −nω1,3 and
H2(ρ2)⟨[y1], [y3], [y2]⟩ = nω1,2, while H2(ρ2)⟨[yi], [y j], [yk]⟩ = 0 if {i, j, k} ⫋ {1, 2, 3}.

Now given positive integers n and m, we define a homomorphism en,m : H2(B(n)) →
H2(B(m)) by ωi, j 7→

m
n · ωi, j for i = 1 and j ∈ {2, 3}. Then en,m is an isomorphism and the

following diagram commutes,

(12.9)

H2(M2,Q)

H2(B(n)) H2(B(m)) .

H2(ρ2,Q(n)) H2(ρ2,Q(m))

en,m

The argument that over the rationals the link complements X(m) and X(n) are 2-step
equivalent for all m, n ≥ 1 is complete. □
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