TOPOLOGY OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Research School on Singularities and Applications
University of Lille
June 23, 2023

Hyperplane arrangements

- An arrangement of hyperplanes is a finite collection \mathcal{A} of codimension 1 linear (or affine) subspaces in \mathbb{C}^{ℓ}.
- Intersection lattice $L(\mathcal{A})$: poset of all intersections of \mathcal{A}, ordered by reverse inclusion, and ranked by codimension.

- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H$.

Example (The Boolean arrangement)

- \mathcal{B}_{n} : all coordinate hyperplanes $\left\{z_{i}=0\right\}$ in \mathbb{C}^{n}.
- $L\left(\mathcal{B}_{n}\right)$: Boolean lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$: complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$.

Example (THE BRAID ARRANGEMENT)

- \mathcal{A}_{n} : all diagonal hyperplanes $\left\{z_{i}-z_{j}=0\right\}$ in \mathbb{C}^{n}.
- $L\left(\mathcal{A}_{n}\right)$: lattice of partitions of $[n]:=\{1, \ldots, n\}$, ordered by refinement.
- $M\left(\mathcal{A}_{n}\right)$: configuration space of n ordered points in \mathbb{C} (a classifying space for P_{n}, the pure braid group on n strings).
- We may assume that \mathcal{A} is essential, i.e., $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
- Fix an ordering $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$, and choose linear forms $f_{i}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ with $\operatorname{ker}\left(f_{i}\right)=H_{i}$. Define an injective linear map

$$
\iota: \mathbb{C}^{l} \rightarrow \mathbb{C}^{n}, \quad z \mapsto\left(f_{1}(z), \ldots, f_{n}(z)\right) .
$$

- This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M\left(\mathcal{B}_{n}\right)$. Hence, $M(\mathcal{A})=\iota\left(\mathbb{C}^{\ell}\right) \cap\left(\mathbb{C}^{*}\right)^{n}$ is a Stein manifold.
- Therefore, $M=M(\mathcal{A})$ has the homotopy type of a connected, finite cell complex of dimension ℓ.
- In fact, M has a minimal cell structure. Consequently, $H_{*}(M, \mathbb{Z})$ is torsion-free.
- Let $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))=\mathbb{C P}^{\ell-1} \backslash \bigcup_{H \in \mathcal{A}} \mathbb{P}(H)$ be the projectivized complement. Then $M(\mathcal{A}) \cong U(\mathcal{A}) \times \mathbb{C}^{*}$.

Cohomology ring

- The Betti numbers $b_{q}(M):=\operatorname{rank} H_{q}(M, \mathbb{Z})$ are given by

$$
\sum_{q=0}^{\ell} b_{q}(M) t^{q}=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)},
$$

where $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is the Möbius function, defined recursively by $\mu\left(\mathbb{C}^{\ell}\right)=1$ and $\mu(X)=-\sum_{Y \supsetneqq X} \mu(Y)$.

- The logarithmic 1-forms $\omega_{H}=\frac{1}{2 \pi \mathrm{i}} d \log f_{H} \in \Omega_{\mathrm{dR}}(M)$ are closed.
- Let E be the \mathbb{Z}-exterior algebra on the degree 1 cohomology classes $e_{H}=\left[\omega_{H}\right]$ dual to the meridians x_{H} around $H \in \mathcal{A}$.
- Let $\partial: E^{*} \rightarrow E^{*-1}$ be the differential given by $\partial\left(e_{H}\right)=1$, and set $e_{X}=\prod_{H \Xi X} e_{H}$ for each $X \in L(A)$.
- The cohomology ring $A(\mathcal{A})=H^{*}(M ; \mathbb{Z})$ is isomorphic to the Orlik-Solomon algebra E / I, where $I=\left\langle\partial e_{X}\right.$: $\left.\operatorname{rank}(X)<\right| X| \rangle$.
- Hence, $A(\mathcal{A})$ is determined by $L(\mathcal{A})$.

- $E=\Lambda\left(e_{1}, \ldots, e_{6}\right)$
- $I=\left\langle\left(e_{1}-e_{4}\right)\left(e_{2}-e_{4}\right),\left(e_{1}-e_{5}\right)\left(e_{3}-\right.\right.$ $\left.\left.e_{5}\right),\left(e_{2}-e_{6}\right)\left(e_{3}-e_{6}\right),\left(e_{4}-e_{6}\right)\left(e_{5}-e_{6}\right)\right\rangle$
- The map $e_{H} \mapsto \omega_{H}$ extends to a cdga quasi-isomorphism, $\left(H^{*}\left(M_{\mathcal{A}}, \mathbb{R}\right), d=0\right) \rightarrow \Omega_{\mathrm{dR}}^{*}\left(M_{\mathcal{A}}\right)$. Therefore, $M(\mathcal{A})$ is formal.
- $M(\mathcal{A})$ is minimally pure (i.e., $H^{k}(M(\mathcal{A}), \mathbb{Q})$ is pure of weight $2 k$, for all k), which again implies formality (Dupont 2016).
- D. Matei: For each prime p, there is an \mathcal{A} such that $H^{*}\left(M ; \mathbb{Z}_{p}\right)$ has non-vanishing Massey products, and so M is not \mathbb{Z}_{p}-formal.
- If $L(\mathcal{A})$ is supersolvable, then $A(\mathcal{A})$ admits a quadratic Gröbner basis, and thus it is a Koszul algebra. Does the converse hold?

LINE ARRANGEMENTS

- Let $\mathcal{A}^{\prime}=\left\{H \cap \mathbb{C}^{2}\right\}_{H \in \mathcal{A}}$ be a generic planar slice of \mathcal{A}. Then the arrangement group, $G=\pi_{1}(M(\mathcal{A}))$, is isomorphic to $\pi_{1}\left(M\left(\mathcal{A}^{\prime}\right)\right)$.
- So, for the purpose of studying π_{1} 's, it is enough to consider arrangements of affine lines in \mathbb{C}^{2}, or projective lines in $\mathbb{C P}^{2}$.

Example

$G=P_{3} \cong F_{2} \times \mathbb{Z}$
$G=P_{4} \cong F_{3} \rtimes P_{3}$

Fundamental groups of arrangements

- Let $\mathcal{A}^{\prime}=\left\{H \cap \mathbb{C}^{2}\right\}_{H \in \mathcal{A}}$ be a generic planar section of \mathcal{A}. Then the arrangement group, $G(\mathcal{A})=\pi_{1}(M(\mathcal{A}))$, is isomorphic to $\pi_{1}\left(M\left(\mathcal{A}^{\prime}\right)\right)$.
- So let \mathcal{A} be an arrangement of n affine lines in \mathbb{C}^{2}. Taking a generic projection $\mathbb{C}^{2} \rightarrow \mathbb{C}$ yields the braid monodromy $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, where $s=\#\{$ multiple points $\}$ and the braids $\alpha_{r} \in P_{n}$ can be read off an associated braided wiring diagram,

- The group $G(\mathcal{A})$ has a presentation with meridional generators x_{1}, \ldots, x_{n} and commutator relators $x_{i} \alpha_{j}\left(x_{i}\right)^{-1}$.

Associated graded Lie algebra

- Let G be a group. The lower central series $\left\{\gamma_{k}(G)\right\}_{k \geqslant 1}$ is defined inductively by $\gamma_{1}(G)=G$ and $\gamma_{k+1}(G)=\left[G, \gamma_{k}(G)\right]$.
- Here, if $H, K<G$, then $[H, K]$ is the subgroup of G generated by $\left\{[a, b]:=a b a^{-1} b^{-1} \mid a \in H, b \in K\right\}$. If $H, K \triangleleft G$, then $[H, K] \triangleleft G$.
- The subgroups $\gamma_{k}(G)$ are, in fact, characteristic subgroups of G. Moreover, $\left[\gamma_{k}(G), \gamma_{\ell}(G)\right] \subseteq \gamma_{k+\ell}(G), \forall k, \ell \geqslant 1$.
- In particular, it is a central series, i.e., $\left[G, \gamma_{k}(G)\right] \subseteq \gamma_{k+1}(G)$.
- In fact, it is the fastest descending central series for G.
- It is also a normal series, i.e., $\gamma_{k}(G) \triangleleft G$. Each quotient,

$$
\operatorname{gr}_{k}(G):=\gamma_{k}(G) / \gamma_{k+1}(G)
$$

lies in the center of $G / \gamma_{k+1}(G)$, and thus is an abelian group.

- If G is finitely generated, then so are its LCS quotients. Set $\phi_{k}(G):=\operatorname{rankgr}_{k}(G)$.
- For a coefficient ring \mathbb{k}, we let $\operatorname{gr}(G ; \mathbb{k})=\oplus_{k \geqslant 1} \operatorname{gr}_{k}(G) \otimes \mathbb{k}$.
- This is a graded Lie algebra, with addition induced by the group multiplication and with Lie bracket [,]: $\mathrm{gr}_{k} \times \mathrm{gr}_{\ell} \rightarrow \mathrm{gr}_{k+\ell}$ induced by the group commutator.
- The construction is functorial. Write $\operatorname{gr}(G)=\operatorname{gr}(G ; \mathbb{Z})$.
- Example: if F_{n} is the free group of rank n, then
- $\operatorname{gr}\left(F_{n}\right)$ is the free Lie algebra $\operatorname{Lie}\left(\mathbb{Z}^{n}\right)$.
- $\operatorname{gr}_{k}\left(F_{n}\right)$ is free abelian, of rank $\phi_{k}\left(F_{n}\right)=\frac{1}{k} \sum_{d \mid k} \mu(d) n^{\frac{k}{d}}$.
- $G / \gamma_{k}(G)$ is the maximal $(k-1)$-step nilpotent quotient of G.
- $G / \gamma_{2}(G)=G_{\mathrm{ab}}$, while $G / \gamma_{3}(G) \leftrightarrow H^{\leqslant 2}(G ; \mathbb{Z})$.

Chen Lie algebras

- Let $G^{(i)}$ be the derived series of G, starting at $G^{(1)}=G^{\prime}$, $G^{(2)}=G^{\prime \prime}$, and defined inductively by $G^{(i+1)}=\left[G^{(i)}, G^{(i)}\right]$.
- The quotient groups, $G / G^{(i)}$, are solvable; $G / G^{\prime}=G_{\mathrm{ab}}$, while $G / G^{\prime \prime}$ is the maximal metabelian quotient of G.
- The i-th Chen Lie algebra of G is defined as $\operatorname{gr}\left(G / G^{(i)} ; \mathbb{k}\right)$.
- The projection $q_{i}: G \rightarrow G / G^{(i)}$, induces a surjection $\operatorname{gr}_{k}(G ; \mathbb{k}) \rightarrow \operatorname{gr}_{k}\left(G / G^{(i)} ; \mathbb{k}\right)$, which is an iso for $k \leqslant 2^{i}-1$.
- Assuming G is finitely generated, write $\theta_{k}(G)=\operatorname{rank}^{\prime} r_{k}\left(G / G^{\prime \prime}\right)$ for the Chen ranks. We have $\phi_{k}(G) \geqslant \theta_{k}(G)$, with equality for $k \leqslant 3$.
- Example (K.-T. Chen 1951): $\theta_{k}\left(F_{n}\right)=(k-1)\binom{n+k-2}{k}$, for $k \geqslant 2$.

Holonomy Lie algebra

- A quadratic approximation of the Lie algebra $\operatorname{gr}(G ; \mathbb{k})$, where \mathbb{k} is a field, is the holonomy Lie algebra of G, defined as

$$
\mathfrak{h}(G ; \mathbb{k}):=\operatorname{Lie}\left(H_{1}(G ; \mathbb{k})\right) /\left\langle\operatorname{im}\left(\mu_{G}^{\vee}\right)\right\rangle,
$$

where

- $L=\operatorname{Lie}(V)$ the free Lie algebra on the \mathbb{k}-vector space $V=H_{1}(G ; \mathbb{k})$, with $L_{1}=V$ and $L_{2}=V \wedge V$;
- $\mu_{G}^{\vee}: H_{2}(G ; \mathbb{k}) \rightarrow V \wedge V$ is the dual of the cup product map $\mu_{G}: H^{1}(G ; \mathbb{k}) \wedge H^{1}(G ; \mathbb{k}) \rightarrow H^{2}(G ; \mathbb{k})$.
- There is natural epimorphism of graded Lie algebras, $\mathfrak{h}(G ; \mathbb{k}) \rightarrow \operatorname{gr}(G ; \mathbb{k})$, which restricts to isos in degrees 1 and 2.
- For each $i \geqslant 2$, this morphism factors through epimorphisms $\mathfrak{h}(G ; \mathbb{k}) / \mathfrak{h}(G ; \mathbb{k})^{(i)} \rightarrow \operatorname{gr}\left(G / G^{(i)} ; \mathbb{k}\right)$.

LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

- The holonomy Lie algebra of $G=G(\mathcal{A})$ is determined by $L_{\leqslant 2}(\mathcal{A})$,

$$
\mathfrak{h}(G)=\operatorname{Lie}\left(x_{H}: H \in \mathcal{A}\right) / \text { ideal }\left\{\left[x_{H}, \sum_{\substack{K \in \mathcal{A} \\ K \supset Y}} x_{K}\right]: \underset{H \supset Y}{H \in \mathcal{A}, Y \in L_{2}(\mathcal{A})}\right\} .
$$

- Since M is formal, the group G is 1-formal. Hence, $\operatorname{gr}(G) \otimes \mathbb{Q}$ is determined by $H^{\leqslant 2}(M, \mathbb{Q})$, and thus, by $L_{\leqslant 2}(\mathcal{A})$.
- In fact, the surjection $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$ induces an isomorphism, $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$.
- (Papadima-S. 2004) The Chen ranks $\theta_{k}(G)$ are also determined by $L_{\leqslant 2}(\mathcal{A})$.
- Explicit combinatorial formulas for the LCS ranks $\phi_{k}(G)$ are known in some cases, but not in general.
- (Falk-Randell 1985) If \mathcal{A} is supersolvable with exponents d_{1}, \ldots, d_{q}, then $\phi_{k}(G)=\sum_{i=1}^{q} \phi_{k}\left(F_{d_{i}}\right)$. (Also follows from Koszulity of $H^{*}(M, \mathbb{Q})$ and Koszul duality.)
- (Porter-S. 2020) The $\operatorname{map} \mathfrak{h}_{3}(G) \rightarrow \operatorname{gr}_{3}(G)$ is an isomorphism, but it is not known whether $\mathfrak{h}_{3}(G)$ is torsion-free.
- (S. 2002) The groups $\operatorname{gr}_{k}(G)$ may have non-zero torsion for $k \gg 0$. E.g., if $G=G($ MacLane $)$, then $\operatorname{gr}_{5}(G)=\mathbb{Z}^{87} \oplus \mathbb{Z}_{2}^{4} \oplus \mathbb{Z}_{3}$.
- (S. 2002): Is the torsion in $\operatorname{gr}(G)$ combinatorially determined?
- (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!
- There are two arrangements of 13 lines, $\mathcal{A}^{ \pm}$, each one with 11 triple points and 2 quintuple points, such that $\mathrm{gr}_{k}\left(G^{+}\right) \cong \mathrm{gr}_{k}\left(G^{-}\right)$ for $k \leqslant 3$, yet $\operatorname{gr}_{4}\left(G^{+}\right)=\mathbb{Z}^{211} \oplus \mathbb{Z}_{2}$ and $g_{4}\left(G^{-}\right)=\mathbb{Z}^{211}$.

Nilpotent quotients

- The quotient $G / \gamma_{3}(G)$ is determined by $L_{\leqslant 2}(\mathcal{A})$. Indeed, in the central extension,

$$
0 \longrightarrow \operatorname{gr}_{2}(G) \longrightarrow G / \gamma_{3}(G) \longrightarrow G_{\mathrm{ab}} \longrightarrow 0
$$

we have $\operatorname{gr}_{2}(G)=\left(I^{2}\right)^{\vee}$ and the k-invariant $H_{2}\left(G_{\mathrm{ab}}\right) \rightarrow \mathrm{gr}_{2}(G)$ is dual of the inclusion $I^{2} \hookrightarrow E^{2}=\bigwedge^{2} G_{a b}$.

- (G. Rybnikov 1994): $G / \gamma_{4}(G)$ is not always determined by $L_{\leqslant 2}(\mathcal{A})$.
- There are two arrangements of 13 lines, $\mathcal{A}^{ \pm}$, each one with 15 triple points, such that $L\left(\mathcal{A}^{+}\right) \cong L\left(\mathcal{A}^{-}\right)$, and therefore $G^{+} / \gamma_{3}\left(G^{+}\right) \cong G^{-} / \gamma_{3}\left(G^{-}\right)$and $\operatorname{gr}_{3}\left(G^{+}\right) \cong \operatorname{gr}_{3}\left(G^{-}\right)$, but $G^{+} / \gamma_{4}\left(G^{+}\right) \not \equiv G^{-} / \gamma_{4}\left(G^{-}\right)$.
- The difference can be explained in terms of (generalized) Massey triple products over \mathbb{Z}_{3}.

DECOMPOSABLE ARRANGEMENTS

- For each flat $X \in L(\mathcal{A})$, let $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid H \supset X\}$ be the localization of \mathcal{A} at X.
- The inclusions $\mathcal{A}_{X} \subset \mathcal{A}$ give rise to maps $M(\mathcal{A}) \hookrightarrow M\left(\mathcal{A}_{X}\right)$. Restricting to rank 2 flats yields a map

$$
j: M(\mathcal{A}) \longrightarrow \prod_{X \in L_{2}(\mathcal{A})} M\left(\mathcal{A}_{X}\right)
$$

- The induced homomorphism on fundamental groups, j_{\sharp}, defines a morphism of graded Lie algebras,

$$
\mathfrak{h}\left(j_{\sharp}\right): \mathfrak{h}(G) \longrightarrow \prod_{X \in L_{2}(\mathcal{A})} \mathfrak{h}\left(G_{X}\right) .
$$

THEOREM (PAPADIMA-S. 2006)
The $\operatorname{map} \mathfrak{h}_{k}\left(j_{\sharp}\right)$ is a surjection for each $k \geqslant 3$ and an iso for $k=2$.

DEFInition

\mathcal{A} is decomposable if the map $\mathfrak{h}_{3}\left(j_{\sharp}\right)$ is an isomorphism.

ExAMPLE

Let $\mathcal{A}(\Gamma)=\left\{z_{i}-z_{j}=0:(i, j) \in \mathrm{E}(\Gamma)\right\} \subset \mathcal{A}_{n}$ be a graphic arrangement. Then $\mathcal{A}(\Gamma)$ is decomposable if and only if Γ contains no K_{4} subgraph.

Theorem (Papadima-S. 2006)
Let \mathcal{A} be a decomposable arrangement, and let $G=G(\mathcal{A})$. Then

- The map $\mathfrak{h}^{\prime}\left(j_{\sharp}\right): \mathfrak{h}^{\prime}(G) \rightarrow \prod_{X \in L_{2}(\mathcal{A})} \mathfrak{h}^{\prime}\left(G_{X}\right)$ is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$ is an isomorphism
- For each $k \geqslant 2$, the group $\operatorname{gr}_{k}(G)$ is free abelian of rank $\phi_{k}(G)=\sum_{X \in L_{2}(\mathcal{A})} \phi_{k}\left(F_{\mu(X)}\right)$.

THEOREM (PORTER-S. 2020)
Let \mathcal{A} and \mathcal{B} be decomposable arrangements with $L_{\leqslant 2}(\mathcal{A}) \cong L_{\leqslant 2}(\mathcal{B})$.
Then, for each $k \geqslant 2$,

$$
G(\mathcal{A}) / \gamma_{k}(G(\mathcal{A})) \cong G(\mathcal{B}) / \gamma_{k}(G(\mathcal{B})) .
$$

RESONANCE VARIETIES

- Let X be a connected, finite cell complex,
- Let $A=H^{*}(X, \mathbb{k})$, where char $\mathbb{k} \neq 2$. Then: $a \in A^{1} \Rightarrow a^{2}=0$.
- We thus get a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots
$$

- The resonance varieties of X are the jump loci for the cohomology of this complex

$$
\mathcal{R}_{s}^{q}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{q}(A, \cdot a) \geqslant s\right\}
$$

- E.g., $\mathcal{R}_{1}^{1}(X, \mathbb{k})=\left\{a \in A^{1} \mid \exists b \in A^{1}, b \neq \lambda a, a b=0\right\}$.
- These loci are homogeneous subvarieties of $A^{1}=H^{1}(X, \mathbb{k})$. In general, they can be arbitrarily complicated.

Resonance varieties of arrangements

Work of Arapura, Falk, D.Cohen, A.S., Libgober, and Yuzvinsky, completely describes the varieties $\mathcal{R}_{s}(\mathcal{A})=\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{C})$.

- $\mathcal{R}_{1}(\mathcal{A})$ is a union of linear subspaces in $H^{1}(M(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}(\mathcal{A})$ is the union of those linear subspaces that have dimension at least $s+1$.
- Each k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of $\mathcal{R}_{1}(\mathcal{A})$ of dimension $k-1$. Moreover, all components of $\mathcal{R}_{1}(\mathcal{A})$ arise in this way.

Multinets

DEFINITION (FALK AND YUZVINSKY)

A multinet on \mathcal{A} is a partition of the set \mathcal{A} into $k \geqslant 3$ subsets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$, together with an assignment of multiplicities, $m: \mathcal{A} \rightarrow \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, such that:

- $\exists d \in \mathbb{N}$ such that $\sum_{H \in \mathcal{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$.
- If H and H^{\prime} are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$.
- $\forall X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{\alpha}: H \supset X} m_{H}$ is independent of α.
- $\left(\bigcup_{H \in \mathcal{A}_{\alpha}} H\right) \backslash \mathcal{X}$ is connected, for each α.
- Such a multinet is also called a (k, d)-multinet, or k-multinet.
- It is reduced if $m_{H}=1$, for all $H \in \mathcal{A}$.
- A net is a reduced multinet with $n_{X}=1$, for all $X \in \mathcal{X}$.

Example (Braid arrangement \mathcal{A}_{4})

$\mathcal{R}_{1}(\mathcal{A}) \subset \mathbb{C}^{6}$ has 4 local components (from the triple points), and one essential component, from the above (3,2)-net:

$$
\begin{aligned}
& L_{124}=\left\{x_{1}+x_{2}+x_{4}=x_{3}=x_{5}=x_{6}=0\right\}, \\
& L_{135}=\left\{x_{1}+x_{3}+x_{5}=x_{2}=x_{4}=x_{6}=0\right\}, \\
& L_{236}=\left\{x_{2}+x_{3}+x_{6}=x_{1}=x_{4}=x_{5}=0\right\}, \\
& L_{456}=\left\{x_{4}+x_{5}+x_{6}=x_{1}=x_{2}=x_{3}=0\right\}, \\
& L=\left\{x_{1}+x_{2}+x_{3}=x_{1}-x_{6}=x_{2}-x_{5}=x_{3}-x_{4}=0\right\} .
\end{aligned}
$$

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, let $G=\pi_{1}\left(X, x_{0}\right)$, and let $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ be the affine algebraic group of \mathbb{C}-valued, multiplicative characters on G.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X :

$$
\mathcal{V}_{s}^{q}(X)=\left\{\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \mid \operatorname{dim} H_{q}\left(X, \mathbb{C}_{\rho}\right) \geqslant s\right\} .
$$

Here, \mathbb{C}_{ρ} is the local system defined by ρ, i.e, \mathbb{C} viewed as a $\mathbb{C}[G]$-module via $g \cdot x=\rho(g) x$, and $H_{i}\left(X, \mathbb{C}_{\rho}\right)=H_{i}\left(C_{*}(\widetilde{X}, \mathbb{C}) \otimes_{\mathbb{C}[G]} \mathbb{C}_{\rho}\right)$.

- These loci are Zariski closed subsets of the character group. In general, they can be arbitrarily complicated.
- The sets $\mathcal{V}_{s}^{1}(X)$ depend only on $G / G^{\prime \prime}$.

Example (Circle)
We have $\widetilde{S^{1}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{C} \mathbb{Z}=\mathbb{C}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{C}\right): 0 \longrightarrow \mathbb{C}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{C}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{C}^{*}\right)=\mathbb{C}^{*}$, we get

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{C}\right) \otimes_{\mathbb{C}[\mathbb{Z}]} \mathbb{C}_{\rho}: 0 \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow 0
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{C}\right)=H_{1}\left(S^{1}, \mathbb{C}\right)=\mathbb{C}$. Hence: $\mathcal{V}_{1}^{0}\left(S^{1}\right)=\mathcal{V}_{1}^{1}\left(S^{1}\right)=\{1\}$ and $\mathcal{V}_{s}^{i}\left(S^{1}\right)=\varnothing$, otherwise.

Example (PUNCTURED COMPLEX LINE)
Identify $\pi_{1}(\mathbb{C} \backslash\{n$ points $\})=F_{n}$, and $\operatorname{Hom}\left(F_{n}, \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{1}(\mathbb{C} \backslash\{n \text { points }\})= \begin{cases}\left(\mathbb{C}^{*}\right)^{n} & \text { if } s<n, \\ \{1\} & \text { if } s=n, \\ \varnothing & \text { if } s>n .\end{cases}
$$

CHARACTERISTIC VARIETIES OF ARRANGEMENTS

- Let \mathcal{A} be an arrangement of n hyperplanes, and let $\operatorname{Hom}\left(\pi_{1}(M(\mathcal{A})), \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{n}$ be the character torus.
- The characteristic variety $\mathcal{V}_{1}(\mathcal{A}):=\mathcal{V}_{1}^{1}(M(\mathcal{A}))$ lies in the subtorus $\left\{t \in\left(\mathbb{C}^{*}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\}$; it is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{*}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}_{1}(\mathcal{A})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}_{1}(\mathcal{A})$.
- All components of $\mathcal{V}_{1}(\mathcal{A})$ passing through the origin $1 \in\left(\mathbb{C}^{*}\right)^{n}$ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}_{1}(\mathcal{A})$, which are not a priori determined by $L(\mathcal{A})$.

(Denham-S. 2014)

- Suppose there is a multinet \mathcal{M} on \mathcal{A}, and there is a hyperplane H for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.
- Then $\mathcal{V}_{1}(\mathcal{A} \backslash\{H\})$ has a component which is a 1-dimensional subtorus, translated by a character of order m_{H}.

Example (The deleted B3 ARRANGEMENT)

The B_{3} arrangement supports a $(3,4)$-multinet; \mathcal{X} consists of 4 triple points $\left(n_{X}=1\right)$ and 3 quadruple points $\left(n_{X}=2\right)$. So pick H with $m_{H}=2$ to get a translated torus in $\mathcal{V}_{1}\left(\mathrm{~B}_{3} \backslash\{H\}\right)$.

The Milnor fibration(s) of an arrangement

- Let \mathcal{A} be a central hyperplane arrangement in \mathbb{C}^{ℓ}.
- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m=\left(m_{H}\right)_{H \in \mathcal{A}}$ with $m_{H} \in \mathbb{N}$, let

$$
Q_{m}:=Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}},
$$

a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.

- The map $Q_{m}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the multi-arrangement (\mathcal{A}, m),

$$
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}} \mathbb{C}^{*} .
$$

- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, of $\operatorname{dim} \ell-1$.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi i / N} z .
$$

- If all $m_{H}=1$, the polynomial $Q=Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.

ExAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A})=\mathbb{C}^{*}$, $Q_{m}(\mathcal{A})=z^{m}$, and $F_{m}(\mathcal{A})=\{m$-roots of 1$\}$.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

- Let \mathcal{B}_{n} be the Boolean arrangement, with $Q_{m}\left(\mathcal{B}_{n}\right)=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and

$$
F_{m}\left(\mathcal{B}_{n}\right)=\operatorname{ker}\left(\mathbb{Q}_{m}\right) \cong\left(\mathbb{C}^{*}\right)^{n-1} \times \mathbb{Z}_{\operatorname{gcd}(m)}
$$

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \rightarrow M\left(\mathcal{B}_{n}\right)$ restricts to a bundle map

$$
\begin{array}{cc}
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}(\mathcal{A})} \mathbb{C}^{*} \\
\downarrow & \downarrow \iota \\
F_{m}\left(\mathcal{B}_{n}\right) \longrightarrow M\left(\mathcal{B}_{n}\right) \xrightarrow{Q_{m}\left(\mathcal{B}_{n}\right)} \mathbb{C}^{*}
\end{array}
$$

- Thus,

$$
F_{m}(\mathcal{A})=M(\mathcal{A}) \cap F_{m}\left(\mathcal{B}_{n}\right)
$$

- (Zuber 2010) The mixed Hodge structure on $F=F(\mathcal{A})$ may be non-pure, and $\pi_{1}(F)$ may be non-1-formal.

TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)
Suppose $h_{*}: H_{1}(F ; \mathbb{Z}) \rightarrow H_{1}(F ; \mathbb{Z})$ is the identity. Then

- $\operatorname{gr}_{\geqslant 2}\left(\pi_{1}(F)\right) \cong \mathrm{gr}_{\geqslant 2}(G)$.
- $\operatorname{gr}_{\geqslant 2}\left(\pi_{1}(F) / \pi_{1}(F)^{\prime \prime}\right) \cong \mathrm{gr}_{\geqslant 2}\left(G / G^{\prime \prime}\right)$.

THEOREM (S. 2021)
Suppose $h_{*}: H_{1}(F, \mathbb{Q}) \rightarrow H_{1}(F, \mathbb{Q})$ is the identity. Then

- $\mathrm{gr}_{\geqslant 2}\left(\pi_{1}(F)\right) \otimes \mathbb{Q} \cong \mathrm{gr}_{\geqslant 2}(G) \otimes \mathbb{Q}$.
- $\mathrm{gr}_{\geqslant 2}\left(\pi_{1}(F) / \pi_{1}(F)^{\prime \prime}\right) \otimes \mathbb{Q} \cong \operatorname{gr} \geqslant 2\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$.
- $\phi_{k}\left(\pi_{1}(F)\right)=\phi_{k}(G)$ and $\theta_{k}\left(\pi_{1}(F)\right)=\theta_{k}(G)$ for all $k \geqslant 2$.

A PAIR OF ARRANGEMENTS

- Both \mathcal{A} and \mathcal{A}^{\prime} have 2 triple points and 9 double points, yet $L(\mathcal{A}) \not \equiv L\left(\mathcal{A}^{\prime}\right)$. Nevertheless, $M(\mathcal{A}) \simeq M\left(\mathcal{A}^{\prime}\right)$.
- Both Milnor fibrations have trivial \mathbb{Z}-monodromy.
- (S. 2017) $\pi_{1}(F) \nsupseteq \pi_{1}\left(F^{\prime}\right)$.
- The difference is picked by the depth-2 characteristic varieties:

$$
\mathcal{V}_{2}^{1}(F) \cong \mathbb{Z}_{3}, \text { yet } \mathcal{V}_{2}^{1}\left(F^{\prime}\right)=\{1\}
$$

The homology of the Milnor fiber

- Let (\mathcal{A}, m) be a multi-arrangement with $\operatorname{gcd}(m)=1$. Set $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The Milnor fiber $F_{m}(\mathcal{A})$ is a regular \mathbb{Z}_{N}-cover of the projectivized complement, $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$, defined by the homomorphism

$$
\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, \quad x_{H} \mapsto m_{H} \bmod N .
$$

- Let $\widehat{\delta_{m}}: \operatorname{Hom}\left(\mathbb{Z}_{N}, \mathbb{C}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U(\mathcal{A})), \mathbb{C}^{*}\right)$ be the induced map between character groups.
- The dimension of $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{C}\right)$ may be computed by summing up the number of intersection points of im $\left(\widehat{\delta_{m}}\right)$ with the varieties $\mathcal{V}_{s}^{q}(U(\mathcal{A}))$, for all $s \geqslant 1$.
- We now consider the simplest non-trivial case: that of an arrangement \mathcal{A} of n planes in \mathbb{C}^{3}, and its Milnor fiber, $F(\mathcal{A})$.
- Then $\operatorname{im}(\widehat{\delta}) \subset\left(\mathbb{C}^{*}\right)^{n}$ is generated by (ζ, \ldots, ζ), where $\zeta=e^{2 \pi \mathrm{i} / n}$.
- Let $\Delta_{\mathcal{A}}(t)=\operatorname{det}\left(t \cdot\right.$ id $\left.-h_{*}\right)$ be the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{1}(F(\mathcal{A}), \mathbb{C}) \rightarrow H_{1}(F(\mathcal{A}), \mathbb{C})$.
- Since $h_{*}^{n}=$ id, we may write

$$
\begin{equation*}
\Delta_{\mathcal{A}}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})} \tag{*}
\end{equation*}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

Problem

- Is the polynomial $\Delta_{\mathcal{A}}$ (or, equivalently, the exponents $e_{d}(\mathcal{A})$) determined by the intersection lattice $L(\mathcal{A})$?
- In particular, is the first Betti number $b_{1}(F(\mathcal{A}))=\operatorname{deg}\left(\Delta_{\mathcal{A}}\right)$ combinatorially determined?
- By a transfer argument, $e_{1}(\mathcal{A})=n-1$.
- Not all divisors of n appear in (\star). E.g., if d does not divide at least one of the multiplicities $\geqslant 3$ of the intersection points, then $e_{d}(\mathcal{A})=0$.
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{e_{3}}
$$

- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.

Example

Let $\mathcal{A}=\mathcal{A}_{4}$ be the braid arrangement. Then $\mathcal{V}_{1}(\mathcal{A})$ has a single 'essential' component,

$$
T=\left\{t \in\left(\mathbb{C}^{*}\right)^{6} \mid t_{1} t_{2} t_{3}=t_{1} t_{6}^{-1}=t_{2} t_{5}^{-1}=t_{3} t_{4}^{-1}=1\right\}
$$

Then $\operatorname{im}(\hat{\delta}) \cap T=\{(\omega, \ldots, \omega)\}$, where $\omega=\zeta^{2}=e^{2 \pi \mathrm{i} / 3}$. Hence, $\Delta_{\mathcal{A}}(t)=(t-1)^{5}\left(t^{2}+t+1\right)$.

MODULAR INEQUALITIES

- Let $A=H^{\bullet}(M(\mathcal{A}), \mathbb{k})$, and let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma) .
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.
ThEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)
$e_{p^{m}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $m \geqslant 1$.

THEOREM (PAPADIMA-S. 2017)

- Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.
- If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

COMBINATORICS AND MONODROMY

THEOREM (PS)

Suppose \mathcal{A} has no points of multiplicity $3 r$ with $r>1$. Then \mathcal{A} admits a reduced 3 -multinet iff \mathcal{A} admits a 3-net iff $\beta_{3}(\mathcal{A}) \neq 0$. Moreover,

- $\beta_{3}(\mathcal{A}) \leqslant 2$.
- $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

Corollary

Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3 . Then $\Delta(t)$, and thus $b_{1}(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)
Suppose \mathcal{A} supports a 4-net and $\beta_{2}(\mathcal{A}) \leqslant 2$. Then

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A})=2
$$

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for the Milnor fibration of an arrangement \mathcal{A} of rank at least 3 is given by the combinatorial formula

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

- The conjecture has been verified for
- All sub-arrangements of non-exceptional Coxeter arrangements (Măcinic, Papadima).
- All complex reflection arrangements (Măcinic, Papadima, Popescu, Dimca, Sticlaru).
- Certain types of complexified real arrangements (Yoshinaga, Bailet, Torielli, Settepanella).
- A counterexample was given by Yoshinaga (2020): there is an arrangement of 16 planes in \mathbb{C}^{3} with $e_{2}=0$ but $\beta_{2}=1$.

Torsion in the homology of the Milnor fiber

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^{3} with

$$
Q_{m}(\mathcal{A})=x^{2} y\left(x^{2}-y^{2}\right)^{3}\left(x^{2}-z^{2}\right)^{2}\left(y^{2}-z^{2}\right)
$$

Then $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)=\mathbb{Z}^{7} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

We now can generalize and reinterpret these examples, as follows.
A pointed multinet on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

Theorem (Denham-S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}. There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_{1}^{1}\left(M\left(\mathcal{A}^{\prime}\right), \mathbb{k}\right)$ varies with char (\mathbb{k}).

To produce p-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

$(\mathcal{A}, m) \leadsto \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to $\operatorname{rank} \mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

Corollary (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
Q(\mathcal{A}) & =x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) . \\
& \left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

THE ICOSIDODECAHEDRAL ARRANGEMENT

- The icosidodecahedron is a quasiregular polyhedron in \mathbb{R}^{3}, with 20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices, given by the even permutations of $(0,0, \pm 1)$ and $\frac{1}{2}\left(\pm 1, \pm \phi, \pm \phi^{2}\right)$, where $\phi=(1+\sqrt{5}) / 2$.
- One can choose 10 edges to form a decagon; there are 6 ways to choose these decagons, thereby giving 6 planes.
- Each pentagonal face has five diagonals; there are 60 such diagonals in all, and they partition in 10 disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals.
- These 16 planes form a arrangement $\mathcal{A}_{\mathbb{R}}$ in \mathbb{R}^{3}, whose complexification is the icosidodecahedral arrangement \mathcal{A} in \mathbb{C}^{3}.
- The complement M is a $K(\pi, 1)$. Moreover, $P_{U}(t)=1+15 t+60 t^{2}$; thus, $\chi(U)=36$ and $\chi(F)=576$.
- In fact, $H_{1}(F, \mathbb{Z})=\mathbb{Z}^{15} \oplus \mathbb{Z}_{2}$. Thus, the algebraic monodromy of the Milnor fibration is trivial over \mathbb{Q} and $\mathbb{Z}_{p}(p>2)$, but not over \mathbb{Z}.
- Hence, $\operatorname{gr}\left(\pi_{1}(F)\right) \cong \operatorname{gr}\left(\pi_{1}(U)\right)$, away from the prime 2. Moreover,

$$
\begin{aligned}
& \circ \operatorname{gr}_{1}\left(\pi_{1}(F)\right)=\mathbb{Z}^{15} \oplus \mathbb{Z}_{2}, \operatorname{gr}_{2}\left(\pi_{1}(F)\right)=\mathbb{Z}^{45} \oplus \mathbb{Z}_{2}^{7} \\
& \circ \operatorname{gr}_{3}\left(\pi_{1}(F)\right)=\mathbb{Z}^{250} \oplus \mathbb{Z}_{2}^{43}, \operatorname{gr}_{4}\left(\pi_{1}(F)\right)=\mathbb{Z}^{1405} \oplus \mathbb{Z}_{2}^{?}
\end{aligned}
$$

- (Yoshinaga 2020) For this arrangement: $e_{2}=0$ but $\beta_{2}=1$.
- (Ishibashi, Sugawara, Yoshinaga 2022) For any arrangement \mathcal{A} : $e_{2}(\mathcal{A})<\beta_{2}(\mathcal{A})$ if and only if $H_{1}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion.

