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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

HYPERPLANE ARRANGEMENTS

» An arrangement of hyperplanes is a finite collection A of
codimension 1 linear (or affine) subspaces in C*.

» Intersection lattice L(A): poset of all intersections of A, ordered by
reverse inclusion, and ranked by codimension.

Hy H; La(A) Xy Xo X3 X4
X, "

X3

H;

A7 X Xo\ Li(A) Hy Hz H3 Hy

» Complement: M(A) = CA\ |y 4 H-
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

EXAMPLE (THE BOOLEAN ARRANGEMENT)
» Bp: all coordinate hyperplanes {z; = 0} in C".

» L(Bp): Boolean lattice of subsets of {0,1}".

» M(B,): complex algebraic torus (C*)".

EXAMPLE (THE BRAID ARRANGEMENT)
» Ap: all diagonal hyperplanes {z; — z; = 0} in C".

» L(Ap): lattice of partitions of [n] := {1,..., n}, ordered by
refinement.

» M(Ap): configuration space of n ordered points in C (a classifying
space for Py, the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

» We may assume that A is essential, i.e., (.4 H = {0}.

» Fix an ordering A = {Hj, ..., Hn}, and choose linear forms
f:: C* — C with ker(f;) = H;. Define an injective linear map

L CESC" ze (1(2),...,6(2)).
» This map restricts to an inclusion .: M(A) — M(B,). Hence,
M(A) = +(C) n (C*)"is a Stein manifold.

» Therefore, M = M(.A) has the homotopy type of a connected,
finite cell complex of dimension /.

» In fact, M has a minimal cell structure. Consequently, H.(M,Z) is
torsion-free.

» Let U(A) = P(M(A)) = CP" "\ |4 P(H) be the projectivized
complement. Then M(A) =~ U(A) x C*.
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HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

COHOMOLOGY RING
» The Betti numbers by(M) := rank Hq(M,Z) are given by

£ rank(X
S oMt = (-,

where 1: L(A) — Z is the Mdbius function, defined recursively by
1(CY =1 and p(X) = —2yox H(Y).

» The logarithmic 1-forms wy = 5 d log fyy € Qur(M) are closed.

» Let E be the Z-exterior algebra on the degree 1 cohomology
classes ey = [wy] dual to the meridians xy around H € A.

» Let 0: E* — E*~1 be the differential given by d(ey) = 1, and set
ex = | [y-x en for each X € L(A).

» The cohomology ring A(A) = H*(M; Z) is isomorphic to the
Orlik—=Solomon algebra E/I, where | = {0ex : rank(X) < | X|).

» Hence, A(A) is determined by L(.A).

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 5/ 44



HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

EXAMPLE
» E= /\(61,...765)
» | = {(e1 — es)(e2 — €4),(e1 — €5)(€3 —
4 €s5), (62— €p)(€3 — €5), (€1 — €6)(E5 — €5))
2 3 56

» The map ey — wy extends to a cdga quasi-isomorphism,
(H*(M4,R),d = 0) — Qi (M4). Therefore, M(A) is formal.

» M(A) is minimally pure (i.e., H*(M(A), Q) is pure of weight 2k, for
all k), which again implies formality (Dupont 2016).

» D. Matei: For each prime p, there is an A such that H*(M; Z,) has
non-vanishing Massey products, and so M is not Z,-formal.

» If L(A) is supersolvable, then A(.A) admits a quadratic Grébner
basis, and thus it is a Koszul algebra. Does the converse hold?
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

LINE ARRANGEMENTS

» Let A" = {H n C?} 44 be a generic planar slice of A. Then the
arrangement group, G = 71 (M(A)), is isomorphic to w1 (M(A')).

» So, for the purpose of studying 7’s, it is enough to consider
arrangements of affine lines in C2, or projective lines in CP2,

EXAMPLE
Z1 — 2o
Zo — Z Zy — Z
Zo— 23 2 4 1 2
Zo — Z3

1 — Z

! 3 Z1 — 23 21— 2Zn 23 — 24

G=P3>2FxZ G=Py=F3xP

3 2 4 3 3
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

FUNDAMENTAL GROUPS OF ARRANGEMENTS

» Let A’ = {H n C?}yc4 be a generic planar section of A. Then the
arrangement group, G(A) = m1(M(A)), is isomorphic to
T (M(A')).

» So let A be an arrangement of n affine lines in C2. Taking a
generic projection C? — C yields the braid monodromy
a = (aq,...,as), where s = #{multiple points} and the braids
ar € P, can be read off an associated braided wiring diagram,

- 4
~ 3

— — 2

~ 1

» The group G(.A) has a presentation with meridional generators

X, ..., Xn and commutator relators xjoy(x;) .
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

—
—

—
—
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

ASSOCIATED GRADED LIE ALGEBRA
» Let G be a group. The lower central series {vx(G)} k=1 is defined
inductively by v1(G) = G and v«.1(G) = [G,%(G)].

» Here, if H, K < G, then [H, K] is the subgroup of G generated by
{[a,b] .= aba'b~'|ae H,be K}. If H,K < G, then [H,K] < G.

» The subgroups ~«(G) are, in fact, characteristic subgroups of G.
Moreover, [vk(G),7(G)] S Yk+¢(G), VK, £ = 1.

» In particular, it is a central series, i.e., [G,7(G)] < vk+1(G).
» In fact, it is the fastest descending central series for G.
» Itis also a normal series, i.e., 7x(G) < G. Each quotient,
gk(G) = (G)/1k+1(G)
lies in the center of G/« 1(G), and thus is an abelian group.

» If Gis finitely generated, then so are its LCS quotients. Set
ok (G) = rankgr, (G).
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

» For a coefficient ring k, we let gr(G; k) = Dy~ grk(G) ® k.

» This is a graded Lie algebra, with addition induced by the group
multiplication and with Lie bracket [, |: grx x gr, — grx, induced
by the group commutator.

» The construction is functorial. Write gr(G) = gr(G; Z).

» Example: if F, is the free group of rank n, then
o gr(Fp) is the free Lie algebra Lie(Z").

o gry(Fp) is free abelian, of rank ¢« (F,) = %Zd\k u(d)ng.
» G/vk(G) is the maximal (k — 1)-step nilpotent quotient of G.
» G/72(G) = Gap, While G/v3(G) « H<?(G; ).
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

CHEN LIE ALGEBRAS

» Let GU) be the derived series of G, starting at G() = G,
G = @, and defined inductively by GU/*+") = [G1), GU)].

» The quotient groups, G/G), are solvable; G/G' = G,,, while
G/G" is the maximal metabelian quotient of G.

» The i-th Chen Lie algebra of G is defined as gr(G/G"); k).

» The projection g;: G - G/G), induces a surjection
gri (G k) — gr (G/GY); k), which is an iso for k <2/ — 1.

» Assuming G is finitely generated, write 6, (G) = rankgr,(G/G") for
the Chen ranks. We have ¢x(G) = 0x(G), with equality for k < 3.

» Example (K.-T. Chen 1951): 6x(Fp) = (k — 1) (™K ?), for k > 2.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

HOLONOMY LIE ALGEBRA

» A quadratic approximation of the Lie algebra gr(G; k), where k is a
field, is the holonomy Lie algebra of G, defined as

h(Gi k) := Lie(Hy (G k) /im (1)),
where
o L = Lie(V) the free Lie algebra on the k-vector space V = H(G; k),
withLy =Vand L, =V A V;

o pg: Ho(G; k) — V A Vis the dual of the cup product map
pa: H'(G: k) A H'(G k) — H?(G; k).

» There is natural epimorphism of graded Lie algebras,
h(G; k) — gr(G; k), which restricts to isos in degrees 1 and 2.

» For each / > 2, this morphism factors through epimorphisms
h(Gik)/b(Gik)" — gr(G/GY; k).
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS
» The holonomy Lie algebra of G = G(.A) is determined by Lo (.A),

H(G) = Lie(xy : H e A)/ideal {[XH, %XK] :

He A, Yely(A) }
HoY '

» Since M is formal, the group G is 1-formal. Hence, gr(G) ® Q is
determined by H<?(M,Q), and thus, by L<>(A).

» In fact, the surjection h(G) — gr(G) induces an isomorphism,
h(G)®Q = gr(G)®Q.

» (Papadima-S. 2004) The Chen ranks 6 (G) are also determined
by Lco(A).

» Explicit combinatorial formulas for the LCS ranks ¢, (G) are known
in some cases, but not in general.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

» (Falk—Randell 1985) If A is supersolvable with exponents
di, ..., dg, then ¢x(G) = 37, ¢« (Fy). (Also follows from Koszulity
of H*(M, Q) and Koszul duality.)

» (Porter—S. 2020) The map h3(G) — gr3(G) is an isomorphism, but
it is not known whether h3(G) is torsion-free.

» (S.2002) The groups gr,(G) may have non-zero torsion for k » 0.
E.g., if G = G(MacLane), then gr5(G) = 78" ® 74 @ Zs.

» (S.2002): Is the torsion in gr(G) combinatorially determined?
» (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!

» There are two arrangements of 13 lines, .A*, each one with 11
triple points and 2 quintuple points, such that gr, (G") =~ gr,(G™)
for k < 3, yetgr,(G") = Z°"" ® Zy and gry(G™) = 72",
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HYPERPLANE ARRANGEMENTS NILPOTENT QUOTIENTS

NILPOTENT QUOTIENTS

» The quotient G/~3(G) is determined by L<»(.A). Indeed, in the
central extension,

0 — gro(G) — G/13(G) — Gop — 0,

we have gr,(G) = (/)" and the k-invariant Hy(G.p) — gro(G) is
dual of the inclusion 2 — E2 = AZ G.p.

» (G. Rybnikov 1994): G/v4(G) is not always determined by Lo (.A).

» There are two arrangements of 13 lines, A*, each one with 15
triple points, such that L(A*) ~ L(A™), and therefore
G"/13(G") = G /3(G~) and gr3(G") = gra(G "), but
G"/1a(G") # G /7a(G).

» The difference can be explained in terms of (generalized) Massey
triple products over Zs.
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HYPERPLANE ARRANGEMENTS DECOMPOSABLE ARRANGEMENTS

DECOMPOSABLE ARRANGEMENTS

» Foreachflat X € L(A), let Ax := {He A| H> X} be the
localization of A at X.
» The inclusions Ax — A give rise to maps M(A) — M(Ax).
Restricting to rank 2 flats yields a map
J: M(A) — Tlxer,(a) M(Ax) .

» The induced homomorphism on fundamental groups, j;, defines a
morphism of graded Lie algebras,

b(s): 5(G) — Tlxerna) b(Gx)-

THEOREM (PAPADIMA-S. 2006)
The map h(js) is a surjection for each k > 3 and an iso for k = 2. (

DEFINITION
A is decomposable if the map h3(ji) is an isomorphism.
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HYPERPLANE ARRANGEMENTS DECOMPOSABLE ARRANGEMENTS

EXAMPLE
Let A(N) = {zi— 2z =0:(i,j) € E(I")} < A, be a graphic arrangement.
Then A(T) is decomposable if and only if I' contains no K4 subgraph.

THEOREM (PAPADIMA-S. 2006)
Let A be a decomposable arrangement, and let G = G(A). Then

» The map b'(j;): b'(G) — [ [xer,(a) b'(Gx) is an isomorphism of
graded Lie algebras.

» The map h(G) — gr(G) is an isomorphism

» Foreach k = 2, the group gr,(G) is free abelian of rank
Pk(G) = 2ixers(a) Ph(Fuix))-

THEOREM (PORTER-S. 2020)

Let A and B be decomposable arrangements with L.o(A) =~ L<o(B).
Then, for each k = 2,

G(A)/(G(A)) = G(B)/(G(B))-
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

RESONANCE VARIETIES

» Let X be a connected, finite cell complex,

Let A= H*(X,k), where chark # 2. Then: ae A' = a2 = 0.

v

v

We thus get a cochain complex

(A-a): A 2= A1 2. A2

The resonance varieties of X are the jump loci for the cohomology
of this complex

RI(X,k) = {aec A | dim HI(A,-a) > s}

v

» E.g., RI(X,k) ={ac A" |3be A, b # A\a, ab = 0}.

» These loci are homogeneous subvarieties of A" = H' (X, k). In
general, they can be arbitrarily complicated.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

RESONANCE VARIETIES OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen, A.S., Libgober, and Yuzvinsky,
completely describes the varieties Rs(A) = RL(M(A),C).

» R4(A) is a union of linear subspaces in H'(M(A),C) = CHI,

» Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

» Rs(A) is the union of those linear subspaces that have dimension
atleast s + 1.

» Each k-multinet on a sub-arrangement B < A gives rise to a
component of R+ (A) of dimension kK — 1. Moreover, all
components of R¢(.A) arise in this way.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k > 3 subsets
Aq, ..., A, together with an assignment of multiplicities, m: A — N,
and a subset X < L,(.A), such that:

» 3deNsuchthat >, my = d,forall ae [k].
» If H and H' are in different classes, then H n H' € X.

» V X e X, the sum nx = > 1 4. .y—x My is independent of «.

v

(Ukea, H)\X is connected, for each a.

v

Such a multinet is also called a (k, d)-multinet, or k-multinet.

v

Itis reduced if my = 1, for all H € A.
» A net is a reduced multinet with ny = 1, for all X € X.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

EXAMPLE (BRAID ARRANGEMENT .44)

R1(A) c C® has 4 local components (from the triple points), and one
essential component, from the above (3, 2)-net:

Liga = {X1 + X2 + X4 = X3 = X5
Lizs = {X1 + X3 + X5 = X2 = X4
Loze = {Xo + X3+ Xo6 = X1 = X4
Lase = {X4 + X5 + X = X1 = X2

L={X1+Xo+ X3 =Xy —Xg = Xo — X5 = X3 — Xq4 = 0}.

xs = 0},
Xs = 0},
x5 = 0},
x3 = 0},

4
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

» Let X be a connected, finite cell complex, let G = 71(X, xp), and
let Hom(G, C*) be the affine algebraic group of C-valued,
multiplicative characters on G.

» The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X:

VI(X) = {p e Hom(G,C*) | dim Hy(X,C,) > s}.

Here, C, is the local system defined by p, i.e, C viewed as a
C[G]-module via g - x = p(g)x, and H;(X,C,) = H;(C«(X,C) ®&c[q] C,).

» These loci are Zariski closed subsets of the character group. In
general, they can be arbitrarily complicated.

» The sets V! (X) depend only on G/G".

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 23 /44



COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have S' = R. Identify (S', %) = Z = (t) and CZ = C[t*']. Then:
C.(S,C): 0— [t L[t ——o0.

For p € Hom(Z,C*) = C*, we get
Cu(S1,0) ®¢iz C,: 0 cLc 0,

which is exact, except for p = 1, when Hy(S',C) = H(S',C) = C.
Hence: V9(S') = V! (S") = {1} and Vi(S") = &, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)
Identify 71 (C\{n points}) = F,, and Hom(F,, C*) = (C*)". Then:

(CH" ifs<n,
VI(C\{n points}) = {{1} ifs=n,
[0} if s> n.

v
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES OF ARRANGEMENTS

CHARACTERISTIC VARIETIES OF ARRANGEMENTS

» Let A be an arrangement of n hyperplanes, and let
Hom(mi (M(A)),C*) = (C*)" be the character torus.

» The characteristic variety V; (A) := V] (M(A)) lies in the subtorus
{te (C*)"| t;---tn, = 1}; it is a finite union of torsion-translates of
algebraic subtori of (C*)".

» If alinear subspace L = C" is a component of R1(.A), then the
algebraic torus T = exp(L) is a component of V{(A).

» All components of V;(A) passing through the origin 1 € (C*)"
arise in this way (and thus, are combinatorially determined).

» In general, though, there are translated subtori in V¢ (A), which
are not a priori determined by L(.A).
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES OF ARRANGEMENTS

(Denham-S. 2014)
» Suppose there is a multinet M on A, and there is a hyperplane H
for which my > 1 and my | nx for each X € X such that X < H.

» Then Vy(A\ {H}) has a component which is a 1-dimensional
subtorus, translated by a character of order my.

EXAMPLE (THE DELETED B3 ARRANGEMENT)

The B3 arrangement supports a (3, 4)-multinet; X’ consists of 4 triple
points (nx = 1) and 3 quadruple points (nx = 2). So pick H with
my = 2 to get a translated torus in V; (B3\{H}).
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MILNOR FIBRATION THE MILNOR FIBRATIONS OF AN ARRANGEMENT

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

» Let A be a central hyperplane arrangement in C*.
» Foreach H e A, let fy: C* — C be a linear form with kernel H.

» For each choice of multiplicities m = (my)gea With my € N, let

Qm = Qum(A) = [ ",
He A

a homogeneous polynomial of degree N = > ;. , m4.
» The map Qp,: C’ — C restricts to a map Qn: M(A) — C*.

» This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement (A, m),

Qm

Fn(A) —— M(A) 27 C*,
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MILNOR FIBRATION THE MILNOR FIBRATIONS OF AN ARRANGEMENT

v

The typical fiber, Fn(A) = Q;'(1), is called the Milnor fiber of the
multi-arrangement.

v

Fm(A) is a Stein manifold. It has the homotopy type of a finite cell
complex, with gcd(m) connected components, of dim ¢ — 1.

v

The (geometric) monodromy is the diffeomorphism

h: Fp(A) — Fn(A), z— e®/Nz,

v

If all my = 1, the polynomial Q = Q(.A) is the usual defining
polynomial, and F(.A) is the usual Milnor fiber of A.
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MILNOR FIBRATION THE MILNOR FIBRATIONS OF AN ARRANGEMENT

EXAMPLE

Let A be the single hyperplane {0} inside C. Then M(A) = C*,
Qm(A) =2z", and Fp(A) = {m-roots of 1}.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F(A) is a
thrice-punctured torus, and h is an automorphism of order 3:

\_/a
W e F)

More generally, if A is a pencil of n lines in C2, then F(A) is a Riemann
surface of genus ("), with n punctures.

v

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 29 / 44



MILNOR FIBRATION THE MILNOR FIBRATIONS OF AN ARRANGEMENT

» Let B, be the Boolean arrangement, with Qn,(B8,) = 21’771 sz,
Then M(B,) = (C*)" and

Fin(Bp) = ker(@m) = (C*)"" x Zgea(m)
» Let A = {H,,..., Hy} be an essential arrangement. The inclusion
v: M(A) — M(Bp) restricts to a bundle map
Qm(A)

Fm(A) M(A) ——C*
Fm(isn)%/vl(izs’) QAnlBn)_ s

» Thus,
Fm(A) = M(A) n Fn(Bp)

» (Zuber 2010) The mixed Hodge structure on F = F(A) may be
non-pure, and 71 (F) may be non-1-formal.
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MILNOR FIBRATION TRIVIAL ALGEBRAIC MONODROMY

TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose h,.: H{(F;Z) — Hy(F;Z) is the identity. Then
> groo(mi(F)) = groo(G).
> groo(mi(F)/m1(F)") = groo(G/G").

THEOREM (S. 2021)
Suppose h,.: Hi(F,Q) — Hy(F,Q) is the identity. Then
» groo(m(F) ®@Q = gro»(G) ® Q.
> gro(mi(F)/m(F)") @ Q = gr-»(G/G") ® Q.
» ok(m(F)) = ¢k(G) and Oy (1 (F)) = 0k(G) for all k = 2.
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MILNOR FIBRATION TRIVIAL ALGEBRAIC MONODROMY

A PAIR OF ARRANGEMENTS

Both A and A’ have 2 triple points and 9 double points, yet
L(A) % L(A"). Nevertheless, M(A) ~ M(A").

v

Both Milnor fibrations have trivial Z-monodromy.

v

(S.2017) m1(F) % m(F").

v

v

The difference is picked by the depth-2 characteristic varieties:
VI(F) = Zs, yet VI(F') = {1}
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THE HOMOLOGY OF THE MILNOR FIBER

Let (A, m) be a multi-arrangement with gcd(m) = 1. Set
N = ZHG.A M.

The Milnor fiber Fp(A) is a regular Zy-cover of the projectivized
complement, U(A) = P(M(A)), defined by the homomorphism

v

v

Om: 7T1(U(.A)> — ZN, XH — My mod N.

v

Let 5m: Hom(Zy, C*) — Hom(m; (U(A)), C*) be the induced map
between character groups.

v

The dimension of Hy(Fn(.A),C) may be computed by summing up
the number of intersection points of im(d,) with the varieties
VI(U(A)), forall s > 1.
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MILNOR FIBRATION THE HOMOLOGY OF THE MILNOR FIBER

v

We now consider the simplest non-trivial case: that of an
arrangement A of n planes in C3, and its Milnor fiber, F(A).

v

Then im(3) = (C*)" is generated by (¢, ..., (), where ¢ = e2™i/1,

v

Let A 4(f) = det(t - id —h,) be the characteristic polynomial of the
algebraic monodromy, h,.: H{(F(A),C) — Hi(F(A),C).

v

Since h}] = id, we may write
Aat) =[] oalt)®, (%)
dln
where ®4(t) is the d-th cyclotomic polynomial, and e4(A) € Z~o.
PROBLEM
» Is the polynomial A 4 (or, equivalently, the exponents e4(.A))
determined by the intersection lattice L(A)?

» In particular, is the first Betti number by (F(A)) = deg(A )
combinatorially determined?
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MILNOR FIBRATION THE HOMOLOGY OF THE MILNOR FIBER

» By atransfer argument, e{(A) = n—1.

» Not all divisors of n appear in (). E.g., if d does not divide at least
one of the multiplicities > 3 of the intersection points, then
eq4(A) =0.

» In particular, if A has only points of multiplicity 2 and 3, then
Ap(t) = (t—1)"1 (2 + t 4 1),

» If multiplicity 4 appears, then also get factor of (f 4 1)% - (2 + 1)

EXAMPLE
Let A = A4 be the braid arrangement. Then V;(.A) has a single
‘essential’ component,

T={te(C"° | tibty=tity ' = bots ' =tat, " = 1}.

A~

Thenim(6) n T =
Da(t) = (t— )(
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MILNOR FIBRATION ~ THE HOMOLOGY OF THE MILNOR FIBER
MODULAR INEQUALITIES
» Let A= H*(M(A),k),and leto = >, s ey A"
» Assume k has characteristic p > 0, and define
Bp(A) = dim H'(A, -0).
Thatis, Bp(A) = max{s | o € RL(Ak)}.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)
epm(A) < Bp(A), forallm = 1.

THEOREM (PAPADIMA-S. 2017)

» Suppose A admits a k-net. Then ,(A) = 0 ifp{ k and
Bp(A) = k — 2, otherwise.

» If A admits a reduced k-multinet, then ey (A) > k — 2.

V.
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MILNOR FIBRATION THE HOMOLOGY OF THE MILNOR FIBER

COMBINATORICS AND MONODROMY

THEOREM (PS)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a
reduced 3-multinet iff A admits a 3-net iff 53(.A) # 0. Moreover,

> B3(A) < 2.

» e3(A) = B3(A), and thus e3(.A) is combinatorially determined.

COROLLARY

Suppose all flats X € Lo(A) have multiplicity 2 or 3. Then A(t), and
thus by (F(A)), are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and 52(A) < 2. Then
e2(A) = e4(A) = B2(A) = 2.

v
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MILNOR FIBRATION THE HOMOLOGY OF THE MILNOR FIBER

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for
the Milnor fibration of an arrangement A of rank at least 3 is given by
the combinatorial formula

Aa(t) = (t—= DA+ 1) +1)2D (2 4 1+ 1)5A),

» The conjecture has been verified for

o All sub-arrangements of non-exceptional Coxeter arrangements
(M&cinic, Papadima).

o All complex reflection arrangements (Macinic, Papadima, Popescu,
Dimca, Sticlaru).

o Certain types of complexified real arrangements (Yoshinaga, Bailet,
Torielli, Settepanella).
» A counterexample was given by Yoshinaga (2020): there is an
arrangement of 16 planes in C2 with e, = 0 but 5, = 1.
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TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

THEOREM (COHEN-DENHAM-S. 2003)

For every prime p > 2, there is a multi-arrangement (A, m) such that
Hy(Fm(A),Z) has non-zero p-torsion.

2 o 2

Simplest example: the arrangement of 8 hyperplanes in C3 with
Qm(A) = X2y (X2 — y2)P(x% — 22)3(y2 - 22)

Then Hy(Fn(A),Z) = 7" ® 7o ® Zs.
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MILNOR FIBRATION TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement .4 is a multinet structure,
together with a distinguished hyperplane H € A for which my > 1 and
my | ny for each X € X’ such that X c H.

THEOREM (DENHAM-S. 2014)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing my. There is then a
choice of multiplicities m’ on the deletion A’ = A\{H} such that
Hi(Fqy (A’),Z) has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V! (M(A'), k)
varies with char(k).
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MILNOR FIBRATION TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

To produce p-torsion in the homology of the usual Milnor fiber, we use
a “polarization" construction:

(A, m) ~ A|m, an arrangement of N = > ., , my hyperplanes, of rank
equal to rank A + [{H e A: my = 2}|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing my.

There is then a choice of multiplicities m’ on the deletion A’ = A\{H}

such that Hy(F(B),Z) has p-torsion, where B = A'|m’ and
g=1+|{KeA:m=>3}|
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MILNOR FIBRATION TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

COROLLARY (DS)

For every prime p > 2, there is an arrangement A such that
Hq(F(A),Z) has non-zero p-torsion, for some q > 1.

7
77 X
7

Simplest example: the arrangement of 27 hyperplanes in C8 with
QA) = xy(x* = y)(x* = 22)(¥* = 22)wy wawgwgws (x® — wP) (x® — 2w5) (x® — Buf) (x — 4wy)-
((x = )2 = wB) ((x + )2 — w5 ((x — 2)% — Wi)((x — 2)% — 20) - (x + 2)® — wd) ((x + 2)® — 2u).
Then Hg(F(A),Z) has 2-torsion (of rank 108).
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MILNOR FIBRATION THE ICOSIDODECAHEDRAL ARRANGEMENT

THE ICOSIDODECAHEDRAL ARRANGEMENT

133 8

2
12
- 11
15 !
6

» The icosidodecahedron is a quasiregular polyhedron in R3, with
20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices,
given by the even permutations of (0,0, +1) and (+1, ¢, £¢?),
where ¢ = (1 ++/5)/2.

» One can choose 10 edges to form a decagon; there are 6 ways to
choose these decagons, thereby giving 6 planes.

» Each pentagonal face has five diagonals; there are 60 such
diagonals in all, and they partition in 10 disjoint sets of coplanar
ones, thereby giving 10 planes, each containing 6 diagonals.
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MILNOR FIBRATION THE ICOSIDODECAHEDRAL ARRANGEMENT

v

These 16 planes form a arrangement Ay in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

v

The complement M is a K(m, 1). Moreover,
Py(t) = 1 + 15t + 60¢?; thus, x(U) = 36 and x(F) = 576.

v

In fact, Hy (F,Z) = Z'° ® Z,. Thus, the algebraic monodromy of
the Milnor fibration is trivial over Q and Z, (p > 2), but not over Z.

v

Hence, gr(m1(F)) = gr(m (U)), away from the prime 2. Moreover,
o gri(mi(F)) = Z'° @ Z2, gro(mi(F)) = Z*® ®Z3
o gra(m(F)) = Z®° @ Z33, gru(mi(F)) = Z2"® @ Z}

» (Yoshinaga 2020) For this arrangement: e> = 0 but 8, = 1.
» (Ishibashi, Sugawara, Yoshinaga 2022) For any arrangement A:

ex(A) < B2(A) if and only if Hy(F(A),Z) has 2-torsion.
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