TOPOLOGY OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Research School on Singularities and Applications University of Lille

June 23, 2023

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite collection A of codimension 1 linear (or affine) subspaces in C^ℓ.
- ► Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.

• Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H.$

EXAMPLE (THE BOOLEAN ARRANGEMENT)

- \mathcal{B}_n : all coordinate hyperplanes $\{z_i = 0\}$ in \mathbb{C}^n .
- $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
- $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.

EXAMPLE (THE BRAID ARRANGEMENT)

- A_n : all diagonal hyperplanes $\{z_i z_j = 0\}$ in \mathbb{C}^n .
- ► L(A_n): lattice of partitions of [n] := {1,...,n}, ordered by refinement.
- ► M(A_n): configuration space of *n* ordered points in C (a classifying space for P_n, the pure braid group on *n* strings).

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- ▶ Fix an ordering $\mathcal{A} = \{H_1, ..., H_n\}$, and choose linear forms $f_i : \mathbb{C}^{\ell} \to \mathbb{C}$ with ker $(f_i) = H_i$. Define an injective linear map

 $\iota: \mathbb{C}^{\ell} \to \mathbb{C}^{n}, \quad z \mapsto (f_{1}(z), \dots, f_{n}(z)).$

- ► This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M(\mathcal{B}_n)$. Hence, $M(\mathcal{A}) = \iota(\mathbb{C}^{\ell}) \cap (\mathbb{C}^*)^n$ is a Stein manifold.
- ► Therefore, M = M(A) has the homotopy type of a connected, finite cell complex of dimension ℓ .
- In fact, *M* has a minimal cell structure. Consequently, *H*_∗(*M*, ℤ) is torsion-free.
- Let U(A) = P(M(A)) = CP^{ℓ-1}\U_{H∈A} P(H) be the projectivized complement. Then M(A) ≃ U(A) × C*.

COHOMOLOGY RING

▶ The Betti numbers $b_q(M) := \operatorname{rank} H_q(M, \mathbb{Z})$ are given by

$$\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)},$$

where $\mu \colon L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined recursively by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.

- The logarithmic 1-forms $\omega_H = \frac{1}{2\pi i} d \log f_H \in \Omega_{dR}(M)$ are closed.
- ▶ Let *E* be the \mathbb{Z} -exterior algebra on the degree 1 cohomology classes $e_H = [\omega_H]$ dual to the meridians x_H around $H \in \mathcal{A}$.
- ▶ Let ∂ : $E^* \to E^{*-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_X = \prod_{H \supseteq X} e_H$ for each $X \in L(A)$.
- The cohomology ring A(A) = H*(M; Z) is isomorphic to the Orlik–Solomon algebra E/I, where I = ⟨∂e_X : rank(X) < |X|⟩.</p>

• Hence, $A(\mathcal{A})$ is determined by $L(\mathcal{A})$. Alex Suciu (Northeastern) Topology of Arrangements

- $E = \bigwedge (e_1, \dots, e_6)$ • $I = \langle (e_1 - e_4)(e_2 - e_4), (e_1 - e_5)(e_3 - e_5), (e_2 - e_6)(e_3 - e_6), (e_4 - e_6)(e_5 - e_6) \rangle$
- ► The map $e_H \mapsto \omega_H$ extends to a cdga quasi-isomorphism, $(H^*(M_A, \mathbb{R}), d = 0) \to \Omega^*_{dR}(M_A)$. Therefore, M(A) is formal.
- ► M(A) is minimally pure (i.e., H^k(M(A), Q) is pure of weight 2k, for all k), which again implies formality (Dupont 2016).
- ▶ D. Matei: For each prime p, there is an A such that H^{*}(M; Z_p) has non-vanishing Massey products, and so M is not Z_p-formal.
- If L(A) is supersolvable, then A(A) admits a quadratic Gröbner basis, and thus it is a Koszul algebra. Does the converse hold?

ALEX SUCIU (NORTHEASTERN)

LINE ARRANGEMENTS

- Let A' = {H ∩ C²}_{H∈A} be a generic planar slice of A. Then the arrangement group, G = π₁(M(A)), is isomorphic to π₁(M(A')).
- So, for the purpose of studying π₁'s, it is enough to consider arrangements of affine lines in C², or projective lines in CP².

EXAMPLE

FUNDAMENTAL GROUPS OF ARRANGEMENTS

- ▶ Let $\mathcal{A}' = \{H \cap \mathbb{C}^2\}_{H \in \mathcal{A}}$ be a generic planar section of \mathcal{A} . Then the arrangement group, $G(\mathcal{A}) = \pi_1(M(\mathcal{A}))$, is isomorphic to $\pi_1(M(\mathcal{A}'))$.
- So let A be an arrangement of n affine lines in C². Taking a generic projection C² → C yields the braid monodromy α = (α₁,..., α_s), where s = #{multiple points} and the braids α_r ∈ P_n can be read off an associated braided wiring diagram,

The group G(A) has a presentation with meridional generators x₁,..., x_n and commutator relators x_iα_i(x_i)⁻¹.

ALEX SUCIU (NORTHEASTERN)

Associated graded Lie Algebra

- Let G be a group. The *lower central series* {γ_k(G)}_{k≥1} is defined inductively by γ₁(G) = G and γ_{k+1}(G) = [G, γ_k(G)].
- ▶ Here, if H, K < G, then [H, K] is the subgroup of *G* generated by $\{[a, b] := aba^{-1}b^{-1} \mid a \in H, b \in K\}$. If $H, K \lhd G$, then $[H, K] \lhd G$.
- The subgroups γ_k(G) are, in fact, characteristic subgroups of G. Moreover, [γ_k(G), γ_ℓ(G)] ⊆ γ_{k+ℓ}(G), ∀k, ℓ ≥ 1.
- ▶ In particular, it is a *central* series, i.e., $[G, \gamma_k(G)] \subseteq \gamma_{k+1}(G)$.
- ▶ In fact, it is the fastest descending central series for *G*.
- ▶ It is also a *normal* series, i.e., $\gamma_k(G) \lhd G$. Each quotient,

 $\operatorname{gr}_k(G) \coloneqq \gamma_k(G) / \gamma_{k+1}(G)$

lies in the center of $G/\gamma_{k+1}(G)$, and thus is an abelian group.

ALEX SUCIU (NORTHEASTERN)

- ▶ For a coefficient ring \Bbbk , we let $gr(G; \Bbbk) = \bigoplus_{k \ge 1} gr_k(G) \otimes \Bbbk$.
- ▶ This is a graded Lie algebra, with addition induced by the group multiplication and with Lie bracket $[,]: gr_k \times gr_\ell \rightarrow gr_{k+\ell}$ induced by the group commutator.
- The construction is functorial. Write $gr(G) = gr(G; \mathbb{Z})$.
- Example: if F_n is the free group of rank n, then
 - $\operatorname{gr}(F_n)$ is the free Lie algebra $\operatorname{Lie}(\mathbb{Z}^n)$.

• $\operatorname{gr}_{k}(F_{n})$ is free abelian, of rank $\phi_{k}(F_{n}) = \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$.

- $G/\gamma_k(G)$ is the maximal (k-1)-step nilpotent quotient of G.
- $G/\gamma_2(G) = G_{ab}$, while $G/\gamma_3(G) \leftrightarrow H^{\leq 2}(G; \mathbb{Z})$.

ALEX SUCIU (NORTHEASTERN)

TOPOLOGY OF ARRANGEMENTS

SINGULARITIES, LILLE, 2023 11 / 44

CHEN LIE ALGEBRAS

- Let $G^{(i)}$ be the *derived series* of *G*, starting at $G^{(1)} = G'$, $G^{(2)} = G''$, and defined inductively by $G^{(i+1)} = [G^{(i)}, G^{(i)}]$.
- ► The quotient groups, $G/G^{(i)}$, are solvable; $G/G' = G_{ab}$, while G/G'' is the maximal metabelian quotient of G.
- The *i*-th Chen Lie algebra of G is defined as $gr(G/G^{(i)}; \Bbbk)$.
- The projection q_i: G → G/G⁽ⁱ⁾, induces a surjection gr_k(G; k) → gr_k(G/G⁽ⁱ⁾; k), which is an iso for k ≤ 2ⁱ − 1.
- Assuming G is finitely generated, write θ_k(G) = rank gr_k(G/G") for the Chen ranks. We have φ_k(G) ≥ θ_k(G), with equality for k ≤ 3.
- Example (K.-T. Chen 1951): $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}$, for $k \ge 2$.

HOLONOMY LIE ALGEBRA

A quadratic approximation of the Lie algebra gr(G; k), where k is a field, is the *holonomy Lie algebra* of G, defined as

 $\mathfrak{h}(\boldsymbol{G}; \Bbbk) := \operatorname{Lie}(\boldsymbol{H}_1(\boldsymbol{G}; \Bbbk)) / \langle \operatorname{im}(\boldsymbol{\mu}_{\boldsymbol{G}}^{\vee}) \rangle,$

where

- L = Lie(V) the free Lie algebra on the k-vector space $V = H_1(G; k)$, with $L_1 = V$ and $L_2 = V \wedge V$;
- $\circ \ \mu_{G}^{\vee} \colon H_{2}(G; \Bbbk) \to V \land V \text{ is the dual of the cup product map} \\ \mu_{G} \colon H^{1}(G; \Bbbk) \land H^{1}(G; \Bbbk) \to H^{2}(G; \Bbbk).$
- ► There is natural epimorphism of graded Lie algebras, $\mathfrak{h}(G; \Bbbk) \twoheadrightarrow \mathfrak{gr}(G; \Bbbk)$, which restricts to isos in degrees 1 and 2.
- ► For each $i \ge 2$, this morphism factors through epimorphisms $\mathfrak{h}(G; \Bbbk)/\mathfrak{h}(G; \Bbbk)^{(i)} \twoheadrightarrow \operatorname{gr}(G/G^{(i)}; \Bbbk).$

LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

▶ The holonomy Lie algebra of G = G(A) is determined by $L_{\leq 2}(A)$,

$$\mathfrak{h}(G) = \operatorname{Lie}(x_H : H \in \mathcal{A}) / \operatorname{ideal} \left\{ \left[x_H, \sum_{\substack{K \in \mathcal{A} \\ K \supset Y}} x_K \right] : \begin{array}{c} H \in \mathcal{A}, Y \in L_2(\mathcal{A}) \\ H \supset Y \end{array} \right\}.$$

- Since *M* is formal, the group *G* is 1-formal. Hence, gr(*G*) ⊗ Q is determined by *H*^{≤2}(*M*, Q), and thus, by *L*_{≤2}(*A*).
- ▶ In fact, the surjection $\mathfrak{h}(G) \to \mathfrak{gr}(G)$ induces an isomorphism, $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G) \otimes \mathbb{Q}$.
- (Papadima−S. 2004) The Chen ranks θ_k(G) are also determined by L_{≤2}(A).
- Explicit combinatorial formulas for the LCS ranks φ_k(G) are known in some cases, but not in general.

- (Falk–Randell 1985) If \mathcal{A} is supersolvable with exponents d_1, \ldots, d_q , then $\phi_k(G) = \sum_{i=1}^q \phi_k(F_{d_i})$. (Also follows from Koszulity of $H^*(M, \mathbb{Q})$ and Koszul duality.)
- (Porter–S. 2020) The map h₃(G) → gr₃(G) is an isomorphism, but it is not known whether h₃(G) is torsion-free.
- ▶ (S. 2002) The groups $gr_k(G)$ may have non-zero torsion for $k \gg 0$. E.g., if G = G(MacLane), then $gr_5(G) = \mathbb{Z}^{87} \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}_3$.
- (S. 2002): Is the torsion in gr(G) combinatorially determined?
- (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!
- ▶ There are two arrangements of 13 lines, \mathcal{A}^{\pm} , each one with 11 triple points and 2 quintuple points, such that $\operatorname{gr}_k(G^+) \cong \operatorname{gr}_k(G^-)$ for $k \leq 3$, yet $\operatorname{gr}_4(G^+) = \mathbb{Z}^{211} \oplus \mathbb{Z}_2$ and $\operatorname{gr}_4(G^-) = \mathbb{Z}^{211}$.

NILPOTENT QUOTIENTS

The quotient G/γ₃(G) is determined by L_{≤2}(A). Indeed, in the central extension,

 $0 \, \longrightarrow \, \operatorname{gr}_2(G) \, \longrightarrow \, G / \gamma_3(G) \, \longrightarrow \, G_{\operatorname{ab}} \, \longrightarrow \, 0,$

we have $\operatorname{gr}_2(G) = (I^2)^{\vee}$ and the *k*-invariant $H_2(G_{ab}) \to \operatorname{gr}_2(G)$ is dual of the inclusion $I^2 \hookrightarrow E^2 = \bigwedge^2 G_{ab}$.

- (G. Rybnikov 1994): $G/\gamma_4(G)$ is not always determined by $L_{\leq 2}(A)$.
- There are two arrangements of 13 lines, A[±], each one with 15 triple points, such that L(A⁺) ≅ L(A⁻), and therefore G⁺/γ₃(G⁺) ≅ G⁻/γ₃(G⁻) and gr₃(G⁺) ≅ gr₃(G⁻), but G⁺/γ₄(G⁺) ≇ G⁻/γ₄(G⁻).
- ► The difference can be explained in terms of (generalized) Massey triple products over Z₃.

ALEX SUCIU (NORTHEASTERN)

DECOMPOSABLE ARRANGEMENTS

- For each flat X ∈ L(A), let A_X := {H ∈ A | H ⊃ X} be the localization of A at X.
- ▶ The inclusions $A_X \subset A$ give rise to maps $M(A) \hookrightarrow M(A_X)$. Restricting to rank 2 flats yields a map

 $j: M(\mathcal{A}) \longrightarrow \prod_{X \in L_2(\mathcal{A})} M(\mathcal{A}_X).$

► The induced homomorphism on fundamental groups, j[±], defines a morphism of graded Lie algebras,

$$\mathfrak{h}(j_{\sharp}) \colon \mathfrak{h}(G) \longrightarrow \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}(G_X).$$

THEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_k(\mathfrak{j}_\sharp)$ is a surjection for each $k \ge 3$ and an iso for k = 2.

DEFINITION

 \mathcal{A} is *decomposable* if the map $\mathfrak{h}_3(j_{\sharp})$ is an isomorphism.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE

Let $\mathcal{A}(\Gamma) = \{z_i - z_j = 0 : (i, j) \in \mathsf{E}(\Gamma)\} \subset \mathcal{A}_n$ be a graphic arrangement. Then $\mathcal{A}(\Gamma)$ is decomposable if and only if Γ contains no K_4 subgraph.

THEOREM (PAPADIMA-S. 2006)

Let A be a decomposable arrangement, and let G = G(A). Then

- The map h'(j_↓): h'(G) → ∏_{X∈L₂(A)} h'(G_X) is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ is an isomorphism
- ► For each $k \ge 2$, the group $\operatorname{gr}_k(G)$ is free abelian of rank $\phi_k(G) = \sum_{X \in L_2(\mathcal{A})} \phi_k(F_{\mu(X)}).$

THEOREM (PORTER-S. 2020)

Let \mathcal{A} and \mathcal{B} be decomposable arrangements with $L_{\leq 2}(\mathcal{A}) \cong L_{\leq 2}(\mathcal{B})$. Then, for each $k \ge 2$,

$$G(\mathcal{A})/\gamma_k(G(\mathcal{A})) \cong G(\mathcal{B})/\gamma_k(G(\mathcal{B})).$$

RESONANCE VARIETIES

- Let X be a connected, finite cell complex,
- Let $A = H^*(X, \Bbbk)$, where char $\Bbbk \neq 2$. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- We thus get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{} \cdots$$

The resonance varieties of X are the jump loci for the cohomology of this complex

$$\mathcal{R}^{q}_{s}(X, \Bbbk) = \{ a \in A^{1} \mid \dim_{\Bbbk} H^{q}(A, \cdot a) \geq s \}$$

- E.g., $\mathcal{R}_1^1(X, \Bbbk) = \{a \in A^1 \mid \exists b \in A^1, b \neq \lambda a, ab = 0\}.$
- ► These loci are homogeneous subvarieties of $A^1 = H^1(X, \Bbbk)$. In general, they can be arbitrarily complicated.

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen, A.S., Libgober, and Yuzvinsky, completely describes the varieties $\mathcal{R}_s(\mathcal{A}) = \mathcal{R}_s^1(\mathcal{M}(\mathcal{A}), \mathbb{C})$.

- $\mathcal{R}_1(\mathcal{A})$ is a union of linear subspaces in $H^1(\mathcal{M}(\mathcal{A}),\mathbb{C})\cong\mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}_s(\mathcal{A})$ is the union of those linear subspaces that have dimension at least s + 1.
- ► Each *k*-multinet on a sub-arrangement B ⊆ A gives rise to a component of R₁(A) of dimension k − 1. Moreover, all components of R₁(A) arise in this way.

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A *multinet* on \mathcal{A} is a partition of the set \mathcal{A} into $k \ge 3$ subsets $\mathcal{A}_1, \ldots, \mathcal{A}_k$, together with an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, such that:

- ▶ $\exists d \in \mathbb{N}$ such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$.
- ▶ If *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$.
- $\forall X \in \mathcal{X}$, the sum $n_X = \sum_{H \in \mathcal{A}_{\alpha}: H \supset X} m_H$ is independent of α .
- $(\bigcup_{H \in \mathcal{A}_{\alpha}} H) \setminus \mathcal{X}$ is connected, for each α .
- ▶ Such a multinet is also called a (*k*, *d*)-multinet, or *k*-multinet.
- It is *reduced* if $m_H = 1$, for all $H \in A$.
- A *net* is a reduced multinet with $n_X = 1$, for all $X \in \mathcal{X}$.

EXAMPLE (BRAID ARRANGEMENT A_4)

 $\mathcal{R}_1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 local components (from the triple points), and one essential component, from the above (3, 2)-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, let G = π₁(X, x₀), and let Hom(G, C*) be the affine algebraic group of C-valued, multiplicative characters on G.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X:

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}) = \{ \rho \in \operatorname{Hom}(\boldsymbol{G}, \mathbb{C}^*) \mid \dim H_{\boldsymbol{q}}(\boldsymbol{X}, \mathbb{C}_{\rho}) \geq \boldsymbol{s} \}.$

Here, \mathbb{C}_{ρ} is the local system defined by ρ , i.e, \mathbb{C} viewed as a $\mathbb{C}[G]$ -module via $g \cdot x = \rho(g)x$, and $H_i(X, \mathbb{C}_{\rho}) = H_i(C_*(\widetilde{X}, \mathbb{C}) \otimes_{\mathbb{C}[G]} \mathbb{C}_{\rho})$.

- These loci are Zariski closed subsets of the character group. In general, they can be arbitrarily complicated.
- The sets $\mathcal{V}_s^1(X)$ depend only on G/G''.

EXAMPLE (CIRCLE)

We have $\widetilde{S}^1 = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{C}\mathbb{Z} = \mathbb{C}[t^{\pm 1}]$. Then:

$$C_*(\widetilde{S^1},\mathbb{C}): \ \mathbf{0} \longrightarrow \mathbb{C}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{C}[t^{\pm 1}] \longrightarrow \mathbf{0}$$

For $\rho \in \operatorname{Hom}(\mathbb{Z}, \mathbb{C}^*) = \mathbb{C}^*$, we get

$$\mathcal{C}_*(\widetilde{S}^1,\mathbb{C})\otimes_{\mathbb{C}[\mathbb{Z}]}\mathbb{C}_{\rho}: \ \mathbf{0} \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow \mathbf{0}$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \mathbb{C}) = H_1(S^1, \mathbb{C}) = \mathbb{C}$. Hence: $\mathcal{V}_1^0(S^1) = \mathcal{V}_1^1(S^1) = \{1\}$ and $\mathcal{V}_s^i(S^1) = \emptyset$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE) Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\operatorname{Hom}(F_n, \mathbb{C}^*) = (\mathbb{C}^*)^n$. Then: $\mathcal{V}_s^1(\mathbb{C}\setminus\{n \text{ points}\}) = \begin{cases} (\mathbb{C}^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

CHARACTERISTIC VARIETIES OF ARRANGEMENTS

- ► Let \mathcal{A} be an arrangement of *n* hyperplanes, and let $\operatorname{Hom}(\pi_1(\mathcal{M}(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^n$ be the character torus.
- The characteristic variety V₁(A) := V¹₁(M(A)) lies in the subtorus {t ∈ (ℂ*)ⁿ | t₁ ··· t_n = 1}; it is a finite union of torsion-translates of algebraic subtori of (ℂ*)ⁿ.
- If a linear subspace L ⊂ Cⁿ is a component of R₁(A), then the algebraic torus T = exp(L) is a component of V₁(A).
- All components of V₁(A) passing through the origin 1 ∈ (ℂ*)ⁿ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in V₁(A), which are not a priori determined by L(A).

(Denham–S. 2014)

- Suppose there is a multinet \mathcal{M} on \mathcal{A} , and there is a hyperplane H for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.
- ► Then V₁(A \ {H}) has a component which is a 1-dimensional subtorus, translated by a character of order m_H.

EXAMPLE (THE DELETED B_3 ARRANGEMENT)

The B₃ arrangement supports a (3, 4)-multinet; \mathcal{X} consists of 4 triple points ($n_X = 1$) and 3 quadruple points ($n_X = 2$). So pick *H* with $m_H = 2$ to get a translated torus in $\mathcal{V}_1(B_3 \setminus \{H\})$.

The Milnor Fibration(s) of an Arrangement

- Let \mathcal{A} be a central hyperplane arrangement in \mathbb{C}^{ℓ} .
- ▶ For each $H \in A$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- ▶ For each choice of multiplicities $m = (m_H)_{H \in A}$ with $m_H \in \mathbb{N}$, let

$$Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H},$$

a homogeneous polynomial of degree $N = \sum_{H \in A} m_H$.

- The map $Q_m : \mathbb{C}^{\ell} \to \mathbb{C}$ restricts to a map $Q_m : M(\mathcal{A}) \to \mathbb{C}^*$.
- ► This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- *F_m(A)* is a Stein manifold. It has the homotopy type of a finite cell complex, with gcd(*m*) connected components, of dim ℓ − 1.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

▶ If all $m_H = 1$, the polynomial Q = Q(A) is the usual defining polynomial, and F(A) is the usual Milnor fiber of A.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE

Let \mathcal{A} be the single hyperplane {0} inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = \{m \text{-roots of } 1\}$.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

▶ Let $\mathcal{A} = \{H_1, ..., H_n\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \rightarrow M(\mathcal{B}_n)$ restricts to a bundle map

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$

► (Zuber 2010) The mixed Hodge structure on *F* = *F*(*A*) may be non-pure, and π₁(*F*) may be non-1-formal.

ALEX SUCIU (NORTHEASTERN)

TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose $h_*: H_1(F; \mathbb{Z}) \to H_1(F; \mathbb{Z})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F)) \cong \operatorname{gr}_{\geq 2}(G).$
- $\operatorname{gr}_{\geq 2}(\pi_1(F)/\pi_1(F)'') \cong \operatorname{gr}_{\geq 2}(G/G'').$

THEOREM (S. 2021)

Suppose $h_*: H_1(F, \mathbb{Q}) \to H_1(F, \mathbb{Q})$ is the identity. Then

- $\operatorname{gr}_{\geq 2}(\pi_1(F)) \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(G) \otimes \mathbb{Q}.$
- $\operatorname{gr}_{\geq 2}(\pi_1(F)/\pi_1(F)'') \otimes \mathbb{Q} \cong \operatorname{gr}_{\geq 2}(G/G'') \otimes \mathbb{Q}.$
- $\phi_k(\pi_1(F)) = \phi_k(G)$ and $\theta_k(\pi_1(F)) = \theta_k(G)$ for all $k \ge 2$.

A PAIR OF ARRANGEMENTS

- ▶ Both \mathcal{A} and \mathcal{A}' have 2 triple points and 9 double points, yet $L(\mathcal{A}) \cong L(\mathcal{A}')$. Nevertheless, $M(\mathcal{A}) \simeq M(\mathcal{A}')$.
- ▶ Both Milnor fibrations have trivial Z-monodromy.
- (S. 2017) $\pi_1(F) \ncong \pi_1(F')$.
- The difference is picked by the depth-2 characteristic varieties: $\mathcal{V}_2^1(F) \cong \mathbb{Z}_3$, yet $\mathcal{V}_2^1(F') = \{1\}$

The homology of the Milnor Fiber

- Let (\mathcal{A}, m) be a multi-arrangement with gcd(m) = 1. Set $N = \sum_{H \in \mathcal{A}} m_H$.
- ► The Milnor fiber *F_m(A)* is a regular Z_N-cover of the projectivized complement, *U(A)* = P(*M*(*A*)), defined by the homomorphism

 $\delta_m \colon \pi_1(\mathcal{U}(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, \quad x_H \mapsto m_H \mod N.$

- Let $\widehat{\delta_m}$: Hom $(\mathbb{Z}_N, \mathbb{C}^*) \to \text{Hom}(\pi_1(U(\mathcal{A})), \mathbb{C}^*)$ be the induced map between character groups.
- The dimension of H_q(F_m(A), C) may be computed by summing up the number of intersection points of im(δ_m) with the varieties V^q_s(U(A)), for all s ≥ 1.

- We now consider the simplest non-trivial case: that of an arrangement A of n planes in C³, and its Milnor fiber, F(A).
- Then $\operatorname{im}(\widehat{\delta}) \subset (\mathbb{C}^*)^n$ is generated by (ζ, \ldots, ζ) , where $\zeta = e^{2\pi i/n}$.
- Let Δ_A(t) = det(t · id −h_{*}) be the characteristic polynomial of the algebraic monodromy, h_{*}: H₁(F(A), C) → H₁(F(A), C).
- Since $h_*^n = id$, we may write

$$\Delta_{\mathcal{A}}(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},\tag{(\star)}$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

PROBLEM

- Is the polynomial ∆_A (or, equivalently, the exponents e_d(A)) determined by the intersection lattice L(A)?
- In particular, is the first Betti number b₁(F(A)) = deg(∆_A) combinatorially determined?

ALEX SUCIU (NORTHEASTERN)

- By a transfer argument, $e_1(A) = n 1$.
- Not all divisors of *n* appear in (*). E.g., if *d* does not divide at least one of the multiplicities ≥ 3 of the intersection points, then *e_d*(*A*) = 0.
- ▶ In particular, if A has only points of multiplicity 2 and 3, then $\Delta_A(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

EXAMPLE

Let $\mathcal{A} = \mathcal{A}_4$ be the braid arrangement. Then $\mathcal{V}_1(\mathcal{A})$ has a single 'essential' component,

$$T = \{t \in (\mathbb{C}^*)^6 \mid t_1 t_2 t_3 = t_1 t_6^{-1} = t_2 t_5^{-1} = t_3 t_4^{-1} = 1\}.$$

Then $\operatorname{im}(\widehat{\delta}) \cap T = \{(\omega, \dots, \omega)\}\)$, where $\omega = \zeta^2 = e^{2\pi i/3}$. Hence, $\Delta_{\mathcal{A}}(t) = (t-1)^5(t^2+t+1)$.

MODULAR INEQUALITIES

- Let $A = H^{\bullet}(M(\mathcal{A}), \mathbb{k})$, and let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$.
- Assume k has characteristic p > 0, and define

 $\beta_{p}(\mathcal{A}) = \dim_{\mathbb{k}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{\rho}(\mathcal{A}) = \max\{\boldsymbol{s} \mid \sigma \in \mathcal{R}^{1}_{\boldsymbol{s}}(\mathcal{A}, \Bbbk)\}.$

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{\rho^m}(\mathcal{A}) \leq \beta_{\rho}(\mathcal{A}), \text{ for all } m \geq 1.$

THEOREM (PAPADIMA-S. 2017)

- ▶ Suppose A admits a *k*-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \ge k 2$, otherwise.
- If A admits a reduced k-multinet, then $e_k(A) \ge k 2$.

COMBINATORICS AND MONODROMY

THEOREM (PS)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a reduced 3-multinet iff A admits a 3-net iff $\beta_3(A) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2.$
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

COROLLARY

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for the Milnor fibration of an arrangement \mathcal{A} of rank at least 3 is given by the combinatorial formula

 $\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$

The conjecture has been verified for

- All sub-arrangements of non-exceptional Coxeter arrangements (Măcinic, Papadima).
- All complex reflection arrangements (Măcinic, Papadima, Popescu, Dimca, Sticlaru).
- Certain types of complexified real arrangements (Yoshinaga, Bailet, Torielli, Settepanella).
- A counterexample was given by Yoshinaga (2020): there is an arrangement of 16 planes in C³ with e₂ = 0 but β₂ = 1.

TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (A, m) such that $H_1(F_m(A), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement A is a multinet structure, together with a distinguished hyperplane $H \in A$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM-S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1^1(M(\mathcal{A}'), \Bbbk)$ varies with char(\Bbbk).

ALEX SUCIU (NORTHEASTERN)

TOPOLOGY OF ARRANGEMENTS

SINGULARITIES, LILLE, 2023 40 / 44

To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} || m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has *p*-torsion, where $\mathcal{B} = \mathcal{A}' || m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|$.

COROLLARY (DS)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

 $Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2)(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1) \cdot (x - 4$

 $((x-y)^2 - w_2^2)((x+y)^2 - w_3^2)((x-z)^2 - w_4^2)((x-z)^2 - 2w_4^2) \cdot ((x+z)^2 - w_5^2)((x+z)^2 - 2w_5^2).$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

ALEX SUCIU (NORTHEASTERN)

THE ICOSIDODECAHEDRAL ARRANGEMENT

- ► The icosidodecahedron is a quasiregular polyhedron in \mathbb{R}^3 , with 20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices, given by the even permutations of $(0, 0, \pm 1)$ and $\frac{1}{2}(\pm 1, \pm \phi, \pm \phi^2)$, where $\phi = (1 + \sqrt{5})/2$.
- One can choose 10 edges to form a decagon; there are 6 ways to choose these decagons, thereby giving 6 planes.
- Each pentagonal face has five diagonals; there are 60 such diagonals in all, and they partition in 10 disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals.

ALEX SUCIU (NORTHEASTERN)

TOPOLOGY OF ARRANGEMENTS

SINGULARITIES, LILLE, 2023 43 / 44

- ► These 16 planes form a arrangement A_R in R³, whose complexification is the icosidodecahedral arrangement A in C³.
- The complement *M* is a $K(\pi, 1)$. Moreover, $P_U(t) = 1 + 15t + 60t^2$; thus, $\chi(U) = 36$ and $\chi(F) = 576$.
- In fact, H₁(F, Z) = Z¹⁵ ⊕ Z₂. Thus, the algebraic monodromy of the Milnor fibration is trivial over Q and Z_p (p > 2), but not over Z.
- ► Hence, $\operatorname{gr}(\pi_1(F)) \cong \operatorname{gr}(\pi_1(U))$, away from the prime 2. Moreover, $\circ \operatorname{gr}_1(\pi_1(F)) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$, $\operatorname{gr}_2(\pi_1(F)) = \mathbb{Z}^{45} \oplus \mathbb{Z}_2^7$ $\circ \operatorname{gr}_3(\pi_1(F)) = \mathbb{Z}^{250} \oplus \mathbb{Z}_2^{43}$, $\operatorname{gr}_4(\pi_1(F)) = \mathbb{Z}^{1405} \oplus \mathbb{Z}_2^7$
- (Yoshinaga 2020) For this arrangement: $e_2 = 0$ but $\beta_2 = 1$.
- (Ishibashi, Sugawara, Yoshinaga 2022) For any arrangement A:
 e₂(A) < β₂(A) if and only if H₁(F(A), Z) has 2-torsion.