
TOPOLOGY OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Research School on Singularities and Applications
University of Lille

June 23, 2023

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 1 / 44



HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

HYPERPLANE ARRANGEMENTS

§ An arrangement of hyperplanes is a finite collection A of
codimension 1 linear (or affine) subspaces in Cℓ.

§ Intersection lattice LpAq: poset of all intersections of A, ordered by
reverse inclusion, and ranked by codimension.
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H3H4

X1 X2
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L1pAq

L2pAq

§ Complement: MpAq “ Cℓz
Ť

HPA H.
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

EXAMPLE (THE BOOLEAN ARRANGEMENT)

§ Bn: all coordinate hyperplanes tzi “ 0u in Cn.

§ LpBnq: Boolean lattice of subsets of t0,1u
n.

§ MpBnq: complex algebraic torus pC˚qn.

EXAMPLE (THE BRAID ARRANGEMENT)

§ An: all diagonal hyperplanes tzi ´ zj “ 0u in Cn.

§ LpAnq: lattice of partitions of rns :“ t1, . . . ,nu, ordered by
refinement.

§ MpAnq: configuration space of n ordered points in C (a classifying
space for Pn, the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

§ We may assume that A is essential, i.e.,
Ş

HPA H “ t0u.

§ Fix an ordering A “ tH1, . . . ,Hnu, and choose linear forms
fi : Cℓ Ñ C with kerpfiq “ Hi . Define an injective linear map

ι : Cℓ Ñ Cn, z ÞÑ pf1pzq, . . . , fnpzqq.

§ This map restricts to an inclusion ι : MpAq ãÑ MpBnq. Hence,
MpAq “ ιpCℓq X pC˚qn is a Stein manifold.

§ Therefore, M “ MpAq has the homotopy type of a connected,
finite cell complex of dimension ℓ.

§ In fact, M has a minimal cell structure. Consequently, H˚pM,Zq is
torsion-free.

§ Let UpAq “ PpMpAqq “ CPℓ´1z
Ť

HPA PpHq be the projectivized
complement. Then MpAq – UpAq ˆ C˚.

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 4 / 44



HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

COHOMOLOGY RING

§ The Betti numbers bqpMq :“ rankHqpM,Zq are given by
ÿℓ

q“0
bqpMqtq “

ÿ

XPLpAq
µpX qp´tqrankpXq,

where µ : LpAq Ñ Z is the Möbius function, defined recursively by
µpCℓq “ 1 and µpX q “ ´

ř

Y ĽX µpY q.

§ The logarithmic 1-forms ωH “ 1
2πi d log fH P ΩdRpMq are closed.

§ Let E be the Z-exterior algebra on the degree 1 cohomology
classes eH “ rωHs dual to the meridians xH around H P A.

§ Let B : E˚ Ñ E˚´1 be the differential given by BpeHq “ 1, and set
eX “

ś

HĚX eH for each X P LpAq.

§ The cohomology ring ApAq “ H˚pM;Zq is isomorphic to the
Orlik–Solomon algebra E{I, where I “ xBeX : rankpX q ă |X |y.

§ Hence, ApAq is determined by LpAq.
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HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

EXAMPLE

‚ ‚

‚

‚

4
2 1 3 5 6

§ E “
Ź

pe1, . . . ,e6q

§ I “ xpe1 ´ e4qpe2 ´ e4q, pe1 ´ e5qpe3 ´

e5q, pe2 ´ e6qpe3 ´ e6q, pe4 ´ e6qpe5 ´ e6qy

§ The map eH ÞÑ ωH extends to a cdga quasi-isomorphism,
pH˚pMA,Rq,d “ 0q Ñ Ω˚

dRpMAq. Therefore, MpAq is formal.

§ MpAq is minimally pure (i.e., Hk pMpAq,Qq is pure of weight 2k , for
all k ), which again implies formality (Dupont 2016).

§ D. Matei: For each prime p, there is an A such that H˚pM;Zpq has
non-vanishing Massey products, and so M is not Zp-formal.

§ If LpAq is supersolvable, then ApAq admits a quadratic Gröbner
basis, and thus it is a Koszul algebra. Does the converse hold?
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

LINE ARRANGEMENTS

§ Let A1 “ tH X C2uHPA be a generic planar slice of A. Then the
arrangement group, G “ π1pMpAqq, is isomorphic to π1pMpA1qq.

§ So, for the purpose of studying π1’s, it is enough to consider
arrangements of affine lines in C2, or projective lines in CP2.

EXAMPLE

‚ z2 ´ z3

z1 ´ z2

z1 ´ z3

G “ P3 – F2 ˆ Z

‚ ‚

‚

‚

z2 ´ z4 z1 ´ z2

z1 ´ z4

z2 ´ z3

z1 ´ z3 z3 ´ z4

G “ P4 – F3 ¸ P3
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

FUNDAMENTAL GROUPS OF ARRANGEMENTS

§ Let A1 “ tH X C2uHPA be a generic planar section of A. Then the
arrangement group, GpAq “ π1pMpAqq, is isomorphic to
π1pMpA1qq.

§ So let A be an arrangement of n affine lines in C2. Taking a
generic projection C2 Ñ C yields the braid monodromy
α “ pα1, . . . , αsq, where s “ #tmultiple pointsu and the braids
αr P Pn can be read off an associated braided wiring diagram,

‚

‚ ‚
‚

4
3
2
1

§ The group GpAq has a presentation with meridional generators
x1, . . . , xn and commutator relators xiαjpxiq

´1.
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUPS OF ARRANGEMENTS

?
π

C

C2
C

r r r

r r r
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

ASSOCIATED GRADED LIE ALGEBRA

§ Let G be a group. The lower central series tγk pGqukě1 is defined
inductively by γ1pGq “ G and γk`1pGq “ rG, γk pGqs.

§ Here, if H,K ă G, then rH,K s is the subgroup of G generated by
tra,bs :“ aba´1b´1 | a P H,b P K u. If H,K Ÿ G, then rH,K s Ÿ G.

§ The subgroups γk pGq are, in fact, characteristic subgroups of G.
Moreover, rγk pGq, γℓpGqs Ď γk`ℓpGq, @k , ℓ ě 1.

§ In particular, it is a central series, i.e., rG, γk pGqs Ď γk`1pGq.

§ In fact, it is the fastest descending central series for G.

§ It is also a normal series, i.e., γk pGq Ÿ G. Each quotient,

grk pGq :“ γk pGq{γk`1pGq

lies in the center of G{γk`1pGq, and thus is an abelian group.

§ If G is finitely generated, then so are its LCS quotients. Set
ϕk pGq :“ rank grk pGq.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

§ For a coefficient ring k, we let grpG; kq “
À

kě1 grk pGq b k.

§ This is a graded Lie algebra, with addition induced by the group
multiplication and with Lie bracket r , s : grk ˆ grℓ Ñ grk`ℓ induced
by the group commutator.

§ The construction is functorial. Write grpGq “ grpG;Zq.

§ Example: if Fn is the free group of rank n, then
˝ grpFnq is the free Lie algebra LiepZnq.

˝ grk pFnq is free abelian, of rank ϕk pFnq “ 1
k

ř

d|k µpdqn
k
d .

§ G{γk pGq is the maximal pk ´ 1q-step nilpotent quotient of G.

§ G{γ2pGq “ Gab, while G{γ3pGq Ø Hď2pG;Zq.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

CHEN LIE ALGEBRAS

§ Let Gpiq be the derived series of G, starting at Gp1q “ G1,
Gp2q “ G2, and defined inductively by Gpi`1q “ rGpiq,Gpiqs.

§ The quotient groups, G{Gpiq, are solvable; G{G1 “ Gab, while
G{G2 is the maximal metabelian quotient of G.

§ The i -th Chen Lie algebra of G is defined as grpG{Gpiq; kq.

§ The projection qi : G ↠ G{Gpiq, induces a surjection
grk pG;kq ↠ grk pG{Gpiq; kq, which is an iso for k ď 2i ´ 1.

§ Assuming G is finitely generated, write θk pGq “ rank grk pG{G2q for
the Chen ranks. We have ϕk pGq ě θk pGq, with equality for k ď 3.

§ Example (K.-T. Chen 1951): θk pFnq “ pk ´ 1q
`n`k´2

k

˘

, for k ě 2.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO GROUPS

HOLONOMY LIE ALGEBRA

§ A quadratic approximation of the Lie algebra grpG;kq, where k is a
field, is the holonomy Lie algebra of G, defined as

hpG;kq :“ LiepH1pG;kqq{ximpµ_
Gqy,

where
˝ L “ LiepV q the free Lie algebra on the k-vector space V “ H1pG;kq,

with L1 “ V and L2 “ V ^ V ;

˝ µ_
G : H2pG;kq Ñ V ^ V is the dual of the cup product map

µG : H1pG;kq ^ H1pG;kq Ñ H2pG;kq.

§ There is natural epimorphism of graded Lie algebras,
hpG;kq ↠ grpG; kq, which restricts to isos in degrees 1 and 2.

§ For each i ě 2, this morphism factors through epimorphisms
hpG;kq{hpG; kqpiq ↠ grpG{Gpiq;kq.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

§ The holonomy Lie algebra of G “ GpAq is determined by Lď2pAq,

hpGq “ LiepxH : H P Aq

M

ideal
!”

xH ,
ÿ

K PA
K ĄY

xK

ı

:
HPA,Y PL2pAq

HĄY

)

.

§ Since M is formal, the group G is 1-formal. Hence, grpGq b Q is
determined by Hď2pM,Qq, and thus, by Lď2pAq.

§ In fact, the surjection hpGq ↠ grpGq induces an isomorphism,
hpGq b Q »ÝÑ grpGq b Q.

§ (Papadima–S. 2004) The Chen ranks θk pGq are also determined
by Lď2pAq.

§ Explicit combinatorial formulas for the LCS ranks ϕk pGq are known
in some cases, but not in general.
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HYPERPLANE ARRANGEMENTS LIE ALGEBRAS ASSOCIATED TO ARRANGEMENTS

§ (Falk–Randell 1985) If A is supersolvable with exponents
d1, . . . ,dq, then ϕk pGq “

řq
i“1 ϕk pFdi q. (Also follows from Koszulity

of H˚pM,Qq and Koszul duality.)

§ (Porter–S. 2020) The map h3pGq Ñ gr3pGq is an isomorphism, but
it is not known whether h3pGq is torsion-free.

§ (S. 2002) The groups grk pGq may have non-zero torsion for k " 0.
E.g., if G “ GpMacLaneq, then gr5pGq “ Z87 ‘ Z4

2 ‘ Z3.

§ (S. 2002): Is the torsion in grpGq combinatorially determined?

§ (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!

§ There are two arrangements of 13 lines, A˘, each one with 11
triple points and 2 quintuple points, such that grk pG`q – grk pG´q

for k ď 3, yet gr4pG`q “ Z211 ‘ Z2 and gr4pG´q “ Z211.
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HYPERPLANE ARRANGEMENTS NILPOTENT QUOTIENTS

NILPOTENT QUOTIENTS

§ The quotient G{γ3pGq is determined by Lď2pAq. Indeed, in the
central extension,

0 gr2pGq G{γ3pGq Gab 0,

we have gr2pGq “ pI2q_ and the k -invariant H2pGabq Ñ gr2pGq is
dual of the inclusion I2 ãÑ E2 “

Ź2 Gab.

§ (G. Rybnikov 1994): G{γ4pGq is not always determined by Lď2pAq.

§ There are two arrangements of 13 lines, A˘, each one with 15
triple points, such that LpA`q – LpA´q, and therefore
G`{γ3pG`q – G´{γ3pG´q and gr3pG`q – gr3pG´q, but
G`{γ4pG`q fl G´{γ4pG´q.

§ The difference can be explained in terms of (generalized) Massey
triple products over Z3.
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HYPERPLANE ARRANGEMENTS DECOMPOSABLE ARRANGEMENTS

DECOMPOSABLE ARRANGEMENTS

§ For each flat X P LpAq, let AX :“ tH P A | H Ą Xu be the
localization of A at X .

§ The inclusions AX Ă A give rise to maps MpAq ãÑ MpAX q.
Restricting to rank 2 flats yields a map

j : MpAq
ś

XPL2pAq MpAX q .

§ The induced homomorphism on fundamental groups, j7, defines a
morphism of graded Lie algebras,

hpj7q : hpGq
ś

XPL2pAq hpGX q .

THEOREM (PAPADIMA–S. 2006)

The map hk pj7q is a surjection for each k ě 3 and an iso for k “ 2.

DEFINITION

A is decomposable if the map h3pj7q is an isomorphism.
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HYPERPLANE ARRANGEMENTS DECOMPOSABLE ARRANGEMENTS

EXAMPLE

Let ApΓq “ tzi ´ zj “ 0 : pi , jq P EpΓqu Ă An be a graphic arrangement.
Then ApΓq is decomposable if and only if Γ contains no K4 subgraph.

THEOREM (PAPADIMA–S. 2006)

Let A be a decomposable arrangement, and let G “ GpAq. Then
§ The map h1pj7q : h1pGq Ñ

ś

XPL2pAq h
1pGX q is an isomorphism of

graded Lie algebras.

§ The map hpGq ↠ grpGq is an isomorphism

§ For each k ě 2, the group grk pGq is free abelian of rank
ϕk pGq “

ř

XPL2pAq ϕk pFµpXqq.

THEOREM (PORTER–S. 2020)

Let A and B be decomposable arrangements with Lď2pAq – Lď2pBq.
Then, for each k ě 2,

GpAq{γk pGpAqq – GpBq{γk pGpBqq.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

RESONANCE VARIETIES

§ Let X be a connected, finite cell complex,

§ Let A “ H˚pX , kq, where char k ‰ 2. Then: a P A1 ñ a2 “ 0.

§ We thus get a cochain complex

pA, ¨aq : A0 a // A1 a // A2 // ¨ ¨ ¨ .

§ The resonance varieties of X are the jump loci for the cohomology
of this complex

Rq
s pX ,kq “ ta P A1 | dimk HqpA, ¨aq ě su

§ E.g., R1
1pX ,kq “ ta P A1 | Db P A1, b ‰ λa, ab “ 0u.

§ These loci are homogeneous subvarieties of A1 “ H1pX ,kq. In
general, they can be arbitrarily complicated.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

RESONANCE VARIETIES OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen, A.S., Libgober, and Yuzvinsky,
completely describes the varieties RspAq “ R1

spMpAq,Cq.
§ R1pAq is a union of linear subspaces in H1pMpAq,Cq – C|A|.

§ Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

§ RspAq is the union of those linear subspaces that have dimension
at least s ` 1.

§ Each k-multinet on a sub-arrangement B Ď A gives rise to a
component of R1pAq of dimension k ´ 1. Moreover, all
components of R1pAq arise in this way.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k ě 3 subsets
A1, . . . ,Ak , together with an assignment of multiplicities, m : A Ñ N,
and a subset X Ď L2pAq, such that:

§ D d P N such that
ř

HPAα
mH “ d , for all α P rks.

§ If H and H 1 are in different classes, then H X H 1 P X .

§ @ X P X , the sum nX “
ř

HPAα:HĄX mH is independent of α.

§
`
Ť

HPAα
H
˘

zX is connected, for each α.

§ Such a multinet is also called a pk ,dq-multinet, or k -multinet.

§ It is reduced if mH “ 1, for all H P A.

§ A net is a reduced multinet with nX “ 1, for all X P X .
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

EXAMPLE (BRAID ARRANGEMENT A4)

‚ ‚

‚

‚

4
2

1 3 5 6

R1pAq Ă C6 has 4 local components (from the triple points), and one
essential component, from the above p3,2q-net:

L124 “ tx1 ` x2 ` x4 “ x3 “ x5 “ x6 “ 0u,

L135 “ tx1 ` x3 ` x5 “ x2 “ x4 “ x6 “ 0u,

L236 “ tx2 ` x3 ` x6 “ x1 “ x4 “ x5 “ 0u,

L456 “ tx4 ` x5 ` x6 “ x1 “ x2 “ x3 “ 0u,

L “ tx1 ` x2 ` x3 “ x1 ´ x6 “ x2 ´ x5 “ x3 ´ x4 “ 0u.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

§ Let X be a connected, finite cell complex, let G “ π1pX , x0q, and
let HompG,C˚q be the affine algebraic group of C-valued,
multiplicative characters on G.

§ The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X :

Vq
s pX q “ tρ P HompG,C˚q | dimHqpX ,Cρq ě su.

Here, Cρ is the local system defined by ρ, i.e, C viewed as a
CrGs-module via g ¨ x “ ρpgqx , and HipX ,Cρq “ HipC˚prX ,Cq bCrGs Cρq.

§ These loci are Zariski closed subsets of the character group. In
general, they can be arbitrarily complicated.

§ The sets V1
s pX q depend only on G{G2.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have ĂS1 “ R. Identify π1pS1, ˚q “ Z “ xty and CZ “ Crt˘1s. Then:

C˚pĂS1,Cq : 0 // Crt˘1s
t´1 // Crt˘1s // 0 .

For ρ P HompZ,C˚q “ C˚, we get

C˚pĂS1,Cq bCrZs Cρ : 0 // C ρ´1 // C // 0 ,

which is exact, except for ρ “ 1, when H0pS1,Cq “ H1pS1,Cq “ C.
Hence: V0

1 pS1q “ V1
1 pS1q “ t1u and V i

spS1q “ H, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify π1pCztn pointsuq “ Fn, and HompFn,C˚q “ pC˚qn. Then:

V1
s pCztn pointsuq “

$

&

%

pC˚qn if s ă n,
t1u if s “ n,
H if s ą n.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES OF ARRANGEMENTS

CHARACTERISTIC VARIETIES OF ARRANGEMENTS

§ Let A be an arrangement of n hyperplanes, and let
Hompπ1pMpAqq,C˚q “ pC˚qn be the character torus.

§ The characteristic variety V1pAq :“ V1
1 pMpAqq lies in the subtorus

tt P pC˚qn | t1 ¨ ¨ ¨ tn “ 1u; it is a finite union of torsion-translates of
algebraic subtori of pC˚qn.

§ If a linear subspace L Ă Cn is a component of R1pAq, then the
algebraic torus T “ exppLq is a component of V1pAq.

§ All components of V1pAq passing through the origin 1 P pC˚qn

arise in this way (and thus, are combinatorially determined).

§ In general, though, there are translated subtori in V1pAq, which
are not a priori determined by LpAq.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES OF ARRANGEMENTS

(Denham–S. 2014)
§ Suppose there is a multinet M on A, and there is a hyperplane H

for which mH ą 1 and mH | nX for each X P X such that X Ă H.

§ Then V1pA z tHuq has a component which is a 1-dimensional
subtorus, translated by a character of order mH .

EXAMPLE (THE DELETED B3 ARRANGEMENT)

2

2

2

The B3 arrangement supports a p3,4q-multinet; X consists of 4 triple
points (nX “ 1) and 3 quadruple points (nX “ 2). So pick H with
mH “ 2 to get a translated torus in V1pB3ztHuq.
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MILNOR FIBRATION THE MILNOR FIBRATIONS OF AN ARRANGEMENT

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

§ Let A be a central hyperplane arrangement in Cℓ.

§ For each H P A, let fH : Cℓ Ñ C be a linear form with kernel H.

§ For each choice of multiplicities m “ pmHqHPA with mH P N, let

Qm :“ QmpAq “
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N “
ř

HPA mH .

§ The map Qm : Cℓ Ñ C restricts to a map Qm : MpAq Ñ C˚.

§ This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement pA,mq,

FmpAq // MpAq
Qm // C˚.

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 27 / 44



MILNOR FIBRATION THE MILNOR FIBRATIONS OF AN ARRANGEMENT

§ The typical fiber, FmpAq “ Q´1
m p1q, is called the Milnor fiber of the

multi-arrangement.

§ FmpAq is a Stein manifold. It has the homotopy type of a finite cell
complex, with gcdpmq connected components, of dim ℓ ´ 1.

§ The (geometric) monodromy is the diffeomorphism

h : FmpAq Ñ FmpAq, z ÞÑ e2πi{Nz.

§ If all mH “ 1, the polynomial Q “ QpAq is the usual defining
polynomial, and F pAq is the usual Milnor fiber of A.
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EXAMPLE

Let A be the single hyperplane t0u inside C. Then MpAq “ C˚,
QmpAq “ zm, and FmpAq “ tm-roots of 1u.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F pAq is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F pAq

h

F pAq

More generally, if A is a pencil of n lines in C2, then F pAq is a Riemann
surface of genus

`n´1
2

˘

, with n punctures.
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§ Let Bn be the Boolean arrangement, with QmpBnq “ zm1
1 ¨ ¨ ¨ zmn

n .
Then MpBnq “ pC˚qn and

FmpBnq “ kerpQmq – pC˚qn´1 ˆ Zgcdpmq

§ Let A “ tH1, . . . ,Hnu be an essential arrangement. The inclusion
ι : MpAq Ñ MpBnq restricts to a bundle map

FmpAq //

��

MpAq
QmpAq //

ι
��

C˚

FmpBnq // MpBnq
QmpBnq // C˚

§ Thus,
FmpAq “ MpAq X FmpBnq

§ (Zuber 2010) The mixed Hodge structure on F “ F pAq may be
non-pure, and π1pF q may be non-1-formal.
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TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose h˚ : H1pF ;Zq Ñ H1pF ;Zq is the identity. Then
§ grě2pπ1pF qq – grě2pGq.

§ grě2pπ1pF q{π1pF q2q – grě2pG{G2q.

THEOREM (S. 2021)

Suppose h˚ : H1pF ,Qq Ñ H1pF ,Qq is the identity. Then
§ grě2pπ1pF qq b Q – grě2pGq b Q.

§ grě2pπ1pF q{π1pF q2q b Q – grě2pG{G2q b Q.

§ ϕk pπ1pF qq “ ϕk pGq and θk pπ1pF qq “ θk pGq for all k ě 2.
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A PAIR OF ARRANGEMENTS' $

& %�
�
�
��@

@
@
@@

A

' $

& %�
�
�
�
��

A1

§ Both A and A1 have 2 triple points and 9 double points, yet
LpAq fl LpA1q. Nevertheless, MpAq » MpA1q.

§ Both Milnor fibrations have trivial Z-monodromy.

§ (S. 2017) π1pF q fl π1pF 1q.

§ The difference is picked by the depth-2 characteristic varieties:
V1

2 pF q – Z3, yet V1
2 pF 1q “ t1u
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THE HOMOLOGY OF THE MILNOR FIBER

§ Let pA,mq be a multi-arrangement with gcdpmq “ 1. Set
N “

ř

HPA mH .

§ The Milnor fiber FmpAq is a regular ZN -cover of the projectivized
complement, UpAq “ PpMpAqq, defined by the homomorphism

δm : π1pUpAqq ↠ ZN , xH ÞÑ mH mod N.

§ Let xδm : HompZN ,C˚q Ñ Hompπ1pUpAqq,C˚q be the induced map
between character groups.

§ The dimension of HqpFmpAq,Cq may be computed by summing up
the number of intersection points of impxδmq with the varieties
Vq

s pUpAqq, for all s ě 1.
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§ We now consider the simplest non-trivial case: that of an
arrangement A of n planes in C3, and its Milnor fiber, F pAq.

§ Then imppδq Ă pC˚qn is generated by pζ, . . . , ζq, where ζ “ e2πi{n.

§ Let ∆Aptq “ detpt ¨ id´h˚q be the characteristic polynomial of the
algebraic monodromy, h˚ : H1pF pAq,Cq Ñ H1pF pAq,Cq.

§ Since hn
˚ “ id, we may write

∆Aptq “
ź

d |n

Φd ptqed pAq, (‹)

where Φd ptq is the d-th cyclotomic polynomial, and ed pAq P Zě0.

PROBLEM

§ Is the polynomial ∆A (or, equivalently, the exponents ed pAq)
determined by the intersection lattice LpAq?

§ In particular, is the first Betti number b1pF pAqq “ degp∆Aq

combinatorially determined?
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§ By a transfer argument, e1pAq “ n ´ 1.

§ Not all divisors of n appear in (‹). E.g., if d does not divide at least
one of the multiplicities ě 3 of the intersection points, then
ed pAq “ 0.

§ In particular, if A has only points of multiplicity 2 and 3, then
∆Aptq “ pt ´ 1qn´1pt2 ` t ` 1qe3 .

§ If multiplicity 4 appears, then also get factor of pt ` 1qe2 ¨ pt2 ` 1qe4 .

EXAMPLE

Let A “ A4 be the braid arrangement. Then V1pAq has a single
‘essential’ component,

T “ tt P pC˚q6 | t1t2t3 “ t1t´1
6 “ t2t´1

5 “ t3t´1
4 “ 1u.

Then imppδq X T “ tpω, . . . , ωqu, where ω “ ζ2 “ e2πi{3. Hence,
∆Aptq “ pt ´ 1q5pt2 ` t ` 1q.
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MODULAR INEQUALITIES

§ Let A “ H.pMpAq,kq, and let σ “
ř

HPA eH P A1.

§ Assume k has characteristic p ą 0, and define

βppAq “ dimk H1pA, ¨σq.

That is, βppAq “ maxts | σ P R1
spA,kqu.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

epm pAq ď βppAq, for all m ě 1.

THEOREM (PAPADIMA–S. 2017)

§ Suppose A admits a k-net. Then βppAq “ 0 if p ∤ k and
βppAq ě k ´ 2, otherwise.

§ If A admits a reduced k-multinet, then ek pAq ě k ´ 2.

ALEX SUCIU (NORTHEASTERN) TOPOLOGY OF ARRANGEMENTS SINGULARITIES, LILLE, 2023 36 / 44



MILNOR FIBRATION THE HOMOLOGY OF THE MILNOR FIBER

COMBINATORICS AND MONODROMY

THEOREM (PS)

Suppose A has no points of multiplicity 3r with r ą 1. Then A admits a
reduced 3-multinet iff A admits a 3-net iff β3pAq ‰ 0. Moreover,

§ β3pAq ď 2.

§ e3pAq “ β3pAq, and thus e3pAq is combinatorially determined.

COROLLARY

Suppose all flats X P L2pAq have multiplicity 2 or 3. Then ∆ptq, and
thus b1pF pAqq, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and β2pAq ď 2. Then
e2pAq “ e4pAq “ β2pAq “ 2.
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CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for
the Milnor fibration of an arrangement A of rank at least 3 is given by
the combinatorial formula

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

§ The conjecture has been verified for
˝ All sub-arrangements of non-exceptional Coxeter arrangements

(Măcinic, Papadima).

˝ All complex reflection arrangements (Măcinic, Papadima, Popescu,
Dimca, Sticlaru).

˝ Certain types of complexified real arrangements (Yoshinaga, Bailet,
Torielli, Settepanella).

§ A counterexample was given by Yoshinaga (2020): there is an
arrangement of 16 planes in C3 with e2 “ 0 but β2 “ 1.
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TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement pA,mq such that
H1pFmpAq,Zq has non-zero p-torsion.

1

2

1

1

2 2
3 3

Simplest example: the arrangement of 8 hyperplanes in C3 with

QmpAq “ x2ypx2 ´ y2q3px2 ´ z2q2py2 ´ z2q

Then H1pFmpAq,Zq “ Z7 ‘ Z2 ‘ Z2.
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We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement A is a multinet structure,
together with a distinguished hyperplane H P A for which mH ą 1 and
mH | nX for each X P X such that X Ă H.

THEOREM (DENHAM–S. 2014)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH . There is then a
choice of multiplicities m1 on the deletion A1 “ AztHu such that
H1pFm1pA1q,Zq has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V1
1 pMpA1q,kq

varies with charpkq.
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To produce p-torsion in the homology of the usual Milnor fiber, we use
a “polarization" construction:

} ;

pA,mq ; A}m, an arrangement of N “
ř

HPA mH hyperplanes, of rank
equal to rankA ` |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 “ AztHu

such that HqpF pBq,Zq has p-torsion, where B “ A1}m1 and
q “ 1 `

ˇ

ˇ

␣

K P A1 : m1
K ě 3

(ˇ

ˇ.
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COROLLARY (DS)
For every prime p ě 2, there is an arrangement A such that
HqpF pAq,Zq has non-zero p-torsion, for some q ą 1.

Simplest example: the arrangement of 27 hyperplanes in C8 with
QpAq “ xypx2 ´ y2qpx2 ´ z2qpy2 ´ z2qw1w2w3w4w5px2 ´ w2

1 qpx2 ´ 2w2
1 qpx2 ´ 3w2

1 qpx ´ 4w1q¨

ppx ´ yq2 ´ w2
2 qppx ` yq2 ´ w2

3 qppx ´ zq2 ´ w2
4 qppx ´ zq2 ´ 2w2

4 q ¨ ppx ` zq2 ´ w2
5 qppx ` zq2 ´ 2w2

5 q.

Then H6pF pAq,Zq has 2-torsion (of rank 108).
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THE ICOSIDODECAHEDRAL ARRANGEMENT
DOUBLE COVERING 5
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FIGURE 1. (A deconing of the icosidodecahedral arrange-
ment) AID = {H1, . . . , H15}

In particular, the equality αk(ω) = ρk(ω) holds if and only if Hk(X
ω,Z)

and Hk−1(X
ω,Z) do not have non-trivial 2-torsion elements.

Proof. We compute the rank of the mod 2 cohomology group rankZ2 H
k(Xω,Z2)

in two ways. First we apply the Universal coefficient theorem for cohomol-
ogy (see e.g. [5, Theorem 3.2]). We have

(2.10) Hk(Xω,Z2) ≃ Hom(Hk(X
ω,Z),Z2)⊕ Ext(Hk−1(X

ω,Z),Z2).

Using the equality 2.4 and definitions, it is easily seen that the Z2-rank of the
right-hand side is equal to bk(X)+ ρk(ω)+ τk(X

ω)+ τk−1(X
ω). Secondly,

using the formula [14, Theorem 3.7], we obtain the following.

(2.11) rankZ2 H
k(Xω,Z2) = bk(X) + αk(ω).

Thus we have the formula (2.9). �
As a special case of k = 1, we have the following.

Corollary 2.5.
(2.12) α1(ω) = ρ1(ω) + τ1(X

ω).

Thus the strict inequality α1(ω) > ρ1(ω) holds if and only if H1(X
ω,Z) has

non-trivial 2-torsion elements.

Proof. Since H0(X
ω,Z) is torsion free, we have τ0(X

ω) = 0. �
Combining (2.4) and Theorem 2.4, we have the following.

§ The icosidodecahedron is a quasiregular polyhedron in R3, with
20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices,
given by the even permutations of p0,0,˘1q and 1

2p˘1,˘ϕ,˘ϕ2q,
where ϕ “ p1 `

?
5q{2.

§ One can choose 10 edges to form a decagon; there are 6 ways to
choose these decagons, thereby giving 6 planes.

§ Each pentagonal face has five diagonals; there are 60 such
diagonals in all, and they partition in 10 disjoint sets of coplanar
ones, thereby giving 10 planes, each containing 6 diagonals.
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§ These 16 planes form a arrangement AR in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

§ The complement M is a K pπ,1q. Moreover,
PUptq “ 1 ` 15t ` 60t2; thus, χpUq “ 36 and χpF q “ 576.

§ In fact, H1pF ,Zq “ Z15 ‘ Z2. Thus, the algebraic monodromy of
the Milnor fibration is trivial over Q and Zp (p ą 2), but not over Z.

§ Hence, grpπ1pF qq – grpπ1pUqq, away from the prime 2. Moreover,
˝ gr1pπ1pF qq “ Z15 ‘ Z2, gr2pπ1pF qq “ Z45 ‘ Z7

2

˝ gr3pπ1pF qq “ Z250 ‘ Z43
2 , gr4pπ1pF qq “ Z1405 ‘ Z?

2

§ (Yoshinaga 2020) For this arrangement: e2 “ 0 but β2 “ 1.

§ (Ishibashi, Sugawara, Yoshinaga 2022) For any arrangement A:
e2pAq ă β2pAq if and only if H1pF pAq,Zq has 2-torsion.
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