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Abstract 

HOMOTOPY TYPE INVARIANTS OF 

FOUR-DIMENSIONAL KNOT COMPLEMENTS 

Alexandru Ion Suciu 

This thesis studies the homotopy type of smooth four 

dimensional knot complements. In contrast with the classi-

cal case, high-dimensional knot complements with fundamen-

tal group different from 2 are never aspherical. The sec­

ond homotopy group already provides examples of the way in 

which a knot in s4 can fail to be determined by its funda-

mental group (C. MeA. Gordon, S. P. Plotnick). 

A natural class of knots to investigate is ribbon knots. 

They bound immersed disks with "ribbon singularities". A 

method is given for computing n 2 of such knot complements. 

I show that there are infinitely many ribbon knots 1n s4 

with isomorphic n
1 

but distinct (viewed as ZTI -mod-
1 

ules). They appear as boundaries of distinct ribbon disk 

pairs with the same exterior. These knots have the funda-

mental group of the spun trefoil, but none is a spun knot. 

To a four-dimensional knot complement, one can associ-

ate a certain cohomology class, the first k-invariant of 

Eilenberg, MacLane and Whitehead. In a joint paper, Plotnick 

and I showed that there are arbitrarily many knots in s4 



whose complements have isomorphic n1 and (as 2n -1 

modules), but distinct k-invariants. Here I prove this 

result using examples which are somewhat more natural and 

easier to produce. They are constructed from a fibered 

knot with fiber a punctured lens space and a ribbon knot 

by surgery. 

The proofs involve writing down explicit cell com-

plexes, computing twisted cohomology groups, combinatorial 

group theory and calculations in group rings. 
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I. INTRODUCTION 

The study of the homotopy type of knot complements 

started around 1910, when Dehn and Wirtinger gave a method 

for presenting the fundamental groups of knots in s 3 . In 

1956, Papakyriakopoulos [41] proved that classical knot 

complements are aspherical; and hence, that their homotopy 

type is completely determined by their "algebraic 2-type" 

(i.e. the fundamental group). The situation is completely 

1 

different in higher dimensions. Andrews and Curtis [1] 

first gave an example of a knot in s 4 - the spun trefoil 

whose complement has nontrivial n 2 . D. B. A. Epstein [13] 

showed that the exterior of a spun knot is aspherical if 

and only if the knot is trivial. More generally, Dyer and 

Vasquez [11] proved that an aspherical knot complement in 

sn ( n ~ 4) has fundamental group 2' • Combined with re­

sults of J. Stallings [50], J. Levine [34], J. Shaneson and 

C. T. C. Wall [51], this implies that the knot is trivial 

if n ~ 5. M. H. Freedman [16] shows that this is also true 

for n = 4, in the topological category. 

The natural question to ask next is which homotopy 

type invariants can be used to distinguish among high-di­

mensional knot complements with the same fundamental group. 

Let K = (Sn+2 , Sn) be a (smooth) n-dimensional knot, and 

let X be its exterior, that is, the closure of the com-
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plement of a tubular neighborhood of sn in sn+2 . By the 

usual abuse of language, we will call the homotopy type ln­

variants of X the homotopy type invariants of the knot K. 

In [20], c. MeA. Gordon gave examples of knots in s 4 with 

isomorphic n 1 but different n 2 (viewed as ~n1 - modules). 

S. P. Plotnick (43] generalizes this to arbitrarily many 

knots. In [44], he produces infinitely many examples in 

the TOP category, using the results of Freedman [15]. We 

somewhat improve Plotnick's result and get examples in the 

DIFF category (Theorem 1.3). 

Now suppose we're given two knots in s 4 with isomor-

phic n 1 and n 2 (as ~n 1 -modules). How can we distinguish 

their complements? A knot exterior X = s 4 - s 2 
x o2 

has the homotopy type of a 3-dimensional CW-complex. To 

any 3-complex X, one can associate an element k(X) E 

H3 (n 1X,n 2X), the first k-invariant of Eilenberg, MacLane 

and Whitehead [12], [39]. It is the first obstruction to 

a retraction K(n 1x, 1)------~x. To identify it, let 

augmented chain complex of "' . X, the un1versal cover of X, 

so that Ci(X) is a free ~1x-module, with rank equal to 

the number of i-cells of X. This complex may fail to be 
..v N 

exact at c2 (X). Add to c3 (X) a free ~1 (X)-module c3 

and map 

so as to kill 1T X· 2 . 
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This is now a partial free resolution of 2' over 

::l''ITl X, and the map k = pa : c3 -+ TI2X determines a well-3 

defined class k(X) [k] E 3 = H ( Til X, TI2X) . 

The triple ( n
1
x, n2X,k(X)) is called the "algebraic 3-

~" of X [39]. A map ( n
1

X, n2X,k(X))----+ ( n
1
X', n2X' ,k(X')) 

consists of a homomorphism a : n1 X -+ n1 X' and an a-homo-

morphism S : TI2X -+ TI2X' satisfying * a(k(X'))= 

a3 ( n1 X, ( n2x' ) a>. When this condition holds, we say a and 

S preserve k-invariants. The complexes X and X' have 

the same algebraic 3-type when a and S are isomorphisms. 

A theorem of MacLane and Whitehead [39] asserts that there 

exists a map f:X -+ X' inducing a and S precisely when 

a and S preserve k-invariants. If a and S are 1so-

morphisms, and 
.,._ N 

H3 (X) = H3 (X') = 0, the Hurewicz and White-

head theorems show that f 1s a homotopy equivalence. Knots 

ln with exterior X satisfying are called 

quasi-aspherical. The reason, observed by S. J. Lomonaco, 

Jr., is that, in analogy with the classical case, the alge-

braic 3-type of a quasi-aspherical knot determines its ho-

motopy type. 



In [37], Lomonaco provides a way for computing the 

algebraic 3-type of a 2-knot from a motion picture. He 

asks (Problem 16) whether there are knots which are dis-

tinguished by their k-invariants. Plotnick [43] argues 

that the only reasonable candidates among fibered knots 

are, given the present status of 3-manifold theory, the 

5-twist spin trefoil and its 2-fold cover. The question 

whether their k-invariants correspond reduces to a diffi-

cult problem about Z [SL(2,5)]. Therefore, one should 

look at non-fibered knots for examples. The main theorem 

in [45] is: 
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Theorem 1.1: There are arbitrarily many knots in s4 whose 

complements have isomorphic n 1 and n 2 (as Zn 1-modules), 

but distinct k-invariants. 

We will prove Theorem 1.1 using examples which are 

somewhat more natural and easier to produce. In our paper 

[45], we relied on the fact that 

for I. closed, orientable, aspherical 3-manifolds ad-
1 

mitting no orientation reversing homotopy equivalence. 

Instead, we will use here J. H. C. Whitehead's classifi-

cation of lens spaces up to homotopy type. 

The knots constructed 1n [45] and here are quasi-

aspherical, so the k-invariant is the last obstruction to a 

homotopy equivalence. But not all knots are quasiaspheri-

cal [18], [46]. Hence one might ask (Problem 1 in [37]): 



does the algebraic 3-type of a knot exterior X determine 

its homotopy type? The invariants in the Postnikov tower 

of X to look at are n 3x and the second k-invariant 

k2 (X) E H4 (X2 ,n 3x), where n i (X2 ) = n i (X) for i ~ 2 and 

n i (X2 ) = 0 for i > 2. To answer this question seems a 

hard task. 
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Another question which arises 1s whether the exterior 

of a knot determines the knot. For classical knots the an-

swer is not known. For multi-dimensional knots, a given 

exterior corresponds to at most two distinct knots [17], [6], 

[34]. Examples of inequivalent n-knots with the same comple-

ment were given by Cappell-Shaneson [9] for n = 3, 4 and 

c. MeA. Gordon [22] for n = 2. One can ask the same ques­

tion about disk knots Dn CDn+2 . Hitt-Sumners [30], [31] 

construct arbitrarily many examples of distinct disk knots 

Dn c Dn+2 with the same exterior for n ~ 5, and three ex-

amples for n = 4. s. P. Plotnick [44] produces infinitely 

many examples for n ~ 3. For n = 3, his proof requires 

Freedman's solution to the four-dimensional Poincare con-

jecture, so he gets results in TOP. We give our own exam-

ples, which are somewhat simpler and also work in DIFF for 

n = 3. 

Ribbon disks constitute a natural class of examples 

to work with, one which is interesting 1n its own right. 

h b o d b ho 0 n+2 n 0 d 0 T ey are o ta1ne y pus 1ng 1n D a D 1mmerse 1n 

sn+1 with singularities of a certain type. Their exterior 

can be built with just 0-, 1- and 2-handles. Using a con-
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struction similar to that of Hitt-Sumners, we prove: 

Theorem 1.2: There exist infinitely many distinct ribbon 

disks Dn c Dn+2 , n ~ 3, with the same exterior. 

A nice feature of these disk knots is that n 
1 

is the 

trefoil knot group. The difference comes from the fact 

that their meridians are not equivalent under any automor-

phism of n 
1

. The boundary of a ribbon disk is called a 

ribbon knot. Analyzing the boundaries of the examples pro­

vided by Theorem 1.2, we prove: 

Theorem 1.3: There exist infinitely many ribbon knots in 

s4 with isomorphic n 
1 

but distinct n 2 (as zn1 -modules). 

The proof involves the study of the 2n1 -module structure 

of n 2 , and the reduction of the problem to a question about 

2 x 2 matrices. 

The simplest examples of ribbon knots are spun knots. 

We show in II.1 that, for most knots in s3 (including torus 

knots), the fundamental group of the knot determines the 

spun knot. Combining this with the above theorem yields: 

Corollary 1.4: There are infinitely many distinct knots 

1n s4 which are not spun but have the fundamental group 

of the spun trefoil. 



This thesis is organized as follows. Chapter II 

studies ribbon disks and knots. In §1 we discuss several 

definitions and look at n 1 . In §2 we give a method for 

computing n 2 of a ribbon 2-knot and derive some conse­

quences. We prove Theorem 1.2 in §3 and Theorem 1.3 in 

§4. 

Chapter III is devoted to the study of k-invariants, 

leading to the proof of Theorem 1.1. §1 interprets 

7 

Whitehead's homotopy classification of lens spaces in terms 

of the k-invariant. §2 describes certain fibered knots 

with fiber punctured lens spaces. In §3, a construction 

based on surgery yields knots K , our examples for p,q 

Theorem 1.1. In §4 we compute n 2 of the knot exteriors 

X p,q §5 describes a cell complex for X p,q and identifies 

k(X ) on p,q the cochain level. In §6 we compute 

and locate the k-invariant. §7 completes the proof of 

Theorem 1.1. It studies automorphisms of n1 and n 2 and 

their action on 3 
H ( Til' TI 2) . A long computation in group 

r1ngs wraps up the proof. 

All ~TI -modules are left-modules, unless otherwise 

stated. An element u E 2n induces the 2n -module map 

u : 2 n ~ 2 TI via right multiplication. Vectors 1n ( 2 n ) n 

are row vectors and matrices with entries in 2TI act on 

the right. For any unexplained fact about cohomology of 

groups, see Brown's book [7]. 



II. RIBBON DISKS AND KNOTS 

§1. Ribbon knots and n1 

In this section we introduce ribbon knots and disks 

and discuss several definitions. We recall a method for 

computing n1 of a ribbon knot and show that a spun knot 

is determined by its fundamental group. 

Ribbon n-knots were first defined by Fox [14], for 

n = 1, and Yajima [53], for n = 2. A knot K = (Sn+2 ,sn) 
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1s a ribbon knot if sn bounds an immersed disk Dn+1~0~---.~ 

sn+2 with no triple points and such that the components 

of the singular set are n-disks whose boundary (n-1)­

spheres either lie on sn or are disjoint from sn. 

I 

Figure 1 



Pushing Dn+1 into Dn+3 produces a ribbon disk 

(Dn+3 , Dn+1 ), with the ribbon knot (Sn+2 , Sn) on its 

boundary. It can be pictured via a motion picture, as 

shown in Figure 2. 

Figure 2 

The double of a ribbon (n+1)-disk is an (n+1)-ribbon knot. 

Every (n+1)-ribbon knot is obtained in this manner. 

Given a knot K = (S3, s1 ), the n-s2in of K, n ~ 1, 

lS the (n+1)-knot a (K) = a (K X Dn+1)' where K = K -n 

9 

standard d? I 
!)1). For n = 1, we get the usual sp1n of K. 

It is folklore that every n-spun knot is ribbon. One can 

see this from Figure 3. 
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Figure 3 

The spun trefoil is the double of the disk in Figure 2. 

The fundamental group of a ribbon n-knot can be com-

puted from a motion picture [14] 1 [54]. The equatorial 

n-1 n-1 n-1 S consists of disjoint spheres s 0 I ••• 1 sm (with 

meridians x . ) joined together by 
l 

m bands running from 

sg-1 to n-1 S . ( 1 ~ i ~ m) . Then 
l 

-1 
TT (Dn+2 _ Dn ) ( 

1 + + = x0 1 x1 1 • •• xm x
0 

= w . x . w. 1 ~ i ~ m) I 

l l l 

where w. = 
l 

and E:. . 
lJ 

E: . . 

II lJ 
xk. 

J 

= 

+1 1 if the i-th band goes over xk . 
J 

-1 1 if the i-th band goes under xk . 
J 

0 1 otherwise. 
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We call such a presentation of rr1 a "ribbon presentation". 

For example, the spun trefoil, with equatorial section the 

square knot (Figure 4), has 

rr1 ( s4 - s2 ) = (t,x I t = (xt) x (xt)-1 ) = (t,x 1 txt = xtx) . 

t X 

_r -1~ cs . 

Figure 4 

Does the fundamental group of a ribbon knot determine 

the knot? We will see in §4 that this is not the case. 

For spun knots, however, it is reasonable to conjecture an 

affirmative answer to this question. We can prove this for 

a large class of knots: 

Theorem 1 . 1: Let Kl and K2 be knots in $3 with 7T 
1x1 

~ rr 1 x2 · Assume K. are not (p,q)-cables, IP I ~ 2, of a 
1 

non-trivial knot . Then on(Kl) = an ( K2) . 
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Proof: Results of Johannsen, Feustel, Whitten, Burde and 

Zieschang (see [23, p. 9-10]), imply that either (i) K. are 
l 

prime knots, with x1 = x2 or (ii) Ki are composite knots, 

with the prime factors equal, up to orientations. In case 

( i) 1 an(Xl) = a n (X2 ), and by Gluck [17], for n = 1 and 

Cappell [8], for n ;> 1, a n (K1) = a n (K2). In case (ii), the 

argument in Gordon [21] yields the equivalence of a (K . ) . n 1 

0 

Remark: The aspherici ty of classical knots implies that 

spun knots with isomorphic 'IT 1 have homotopy equivalent 

exteriors. 

Not every ribbon 2-knot is spun . For example, the 

ribbon 2-knot with cross section the stevedore knot (Figure 

5) has 

--1 
x=at 

G = 

(t,x 

'IT (s4 - s2 ) = (t,a I t = (at-1 ) a (at-1 )-1 ) 
1 

I txt-1 = x 2 ) (compare [14, p. 136]). 

t a 

Figure 5 
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But G is not a 3-manifold group [25], [26], so the knot 

is not spun. This knot will play an important role in 

Chapter III. Even more striking, if we let the band on 

Figure 5 wrap k times around a and t ( k > 1), we get 

a ribbon 2-knot with n 1 ( s
4 - s2 ) = 

(t,a It= (at-1 )k a (at-1 )-k) 

a Baumslag-Solitar non-residually finite group. But, 

according to Thurston, 3-manifold groups are residually 

finite. 

Ribbon knots are, by definition, slice knots. Wheth-

er the converse is true 1s a famous question in classical 

knot theory, but in higher dimensions counterexamples 

abound [29], [ 48], [10] . All 2-knots are slice [31], but 

nom-twist spun 2-knot (m > 1) is ribbon [10]. This fact 

follows easily from [27, Cor. to Thm. 1], but unfortunate­

ly there is a gap in that paper. 

Here is another construction of ribbon disks and knots. 

Start with (Dn+3 ,Dn+1 ), the standard disk pair, with meri-

dian t. Add 1-handles h~ 
l 

(1 / · < ) t Dn+3 , w1'th core ~ 1 , m o 

circles x. , and 2-handles h~ 
l l 

along curves ri , with 

r. n Dn+1 = If and r. 
l l 

isotopic to 

By the handle cancelling theorem, 

x. 
l 

Dn+3 U { h~ } U { h~ } = 
l l 

Dn+3 and we get a new disk pair (Dn+3 , Dn+1 ), with 

1T1 ( Dn+ 3 n+ 1 ) ( t I ) Th d - D = ,x1 , ... ,xm r 1 , ... ,rm. e proce ure 
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is illustrated in the figure below. 

Figure 6 

Theorem 1.2 ([28], [5]): A disk pair is ribbon if and only 

if it can be obtained from the standard disk pair by adding 

1- and 2-handles in the above manner. 

In practice, one passes from the above presentation 

of to a ribbon presentation through Andrews-Curtis 

moves [2], and then draws the ribbon knot prescribed by 

this presentation. An example of the procedure is g1ven 

1n §3 . The exterior of the ribbon knot (Sn+2 ,sn) = 



15 

by performing surgery on the curves ri. For example, the 

knot in Figure 4 is the boundary of the disk pair in Figure 

6 d b t t d b r -- txt-lx-2 1'n , an can e cons rue e y surgery on 

s1 
x o3 # s1 x s3 : 

Figure 7 
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§2. ~2 of a ribbon 2-knot 

This section gives a method for calculating IT 2 of a 

ribbon 2-knot as a 2~-module. This method, briefly 

sketched in (45], yields explicit results for one-relator 

ribbon knots and spun knots. Let X be the exterior of a 

one-relator ribbon knot. It is obtained by surgery on a 

simple closed curve r 1n s1 x D3 # s 1 
x s3, where 

1 D3) = 2( t) 1 
1 S3) Z(x), and r(t,x) has IT 1 (s x IT 1 ( S X = 

exponent sum ±1 ln x. We write IT = IT X 1 = (t,x I r), 

IT2 = IT 2X. Let M be the cover of s1 x D3 # s1 x s3 

corresponding to the kernel of z * z (IT = 2 * 2/< r > ). 

If we perform equivariant surgery on the lifts of r in 

"" consists of copies D3, indexed M, we get X. M of IRX 

by the cosets TI /Z( t) I and copies of IR X s3, indexed by 

the cosets IT/2'(X) 1 tubed together by "connectors" s 3 
x I I 

indexed by IT . Figure 8 depicts the cover, together with 

three lifts of the surgery curve r = txt-1x-2 . The lifts 

of the "fiber" s 3 , gs3 = s! , are indexed by IT The 

lifts of r are indexed by their basepoint g E-'IT. 
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f-.. ~ !<-::> 
1"--. ../ 1'--- ..........-

tt 

~--- . -- ~ s3 
~---

s3 tt ...._ _./ t "--

xi ~- ----:.::-"--- X 

r-~ - ....... 
0 -' 

I' 

~------- ...... 

x1 <'-- . ---'::> 
ft 

.............. __., 
--. - . s3 ..-- ~ f-.- 1 

< 

3 l----
.c'-- --...., s -1 xt -f--- __..-' 1 

0 

~-, 3 
~- --:_;, 8 t-lx 3 

~---- - s -1 f--- v X 

tt 
-1 t 

' 1 
~----- ....... 

~--=--'::> 
ic:""".----, b ~----":> -

3 
S X R 

3 
D X R 

3 
S X R 

3 
D X R 

Figure 8 
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Let M = Mo 1 u <Us
1 

x n 3 ) I u S X s2 7T 

7T 

<Un2 
x S2). r-1 

1 u X = M 
s2 0 u S X 

7T 

7T 

The Mayer-Vietoris sequences corresponding to these decom-

positions yield: 

and 

Notice that H2 (M) = 0 and H3 (M) = ~ 7T , generated by the 

lifts of s 3 . These sequences simplify to give: 

¢ 
= ker (Z TI - Z TI) 

0 -+ coker ¢ ---+ H2 (X)--+ ker 1/J -+ 0. 

Let X e 0 U 1 e 1 U 2 be the 2-complex as-= et U er r X 

sociated to the presentation 7T = (t,x I r). The reduced 

chain complex of its universal cover is (see [7, p. 45-46] ) : 

a (_Q_f a r) (t-1) = a 1 = x-1 
2' 7T 2 a t a x E: 

ZTI $ Z TI Z TI z--+ o, ( *) 

where a 2 1s the matrix of Fox derivatives. The relation 

r 1s not a proper power, since the exponent sum of x is 

±1. Hence, by Lyndon's theorem [38], Xr is aspherical, 
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"' 
that 1s, 

xr .a r a r 
a 2 = ta t a x) is a monomorphism. 

To compute ¢ note first that the 11 fiber 11 s3 is 

a dual cycle to x . Hence, the algebraic sum of the lifts 

of s3 cut by the lift of r at l equals (arjQX)·S3 . 

3 Therefore ¢(S1 ) , which is the algebraic sum of the lifts 

of r which intersect s3 , equals 
1 ar;ax, where 

-1 2: n g g This is to say, 

example, if -1 -2 r = txt x 

¢ = ·a r/ ax 

¢(1) = t-1 
- X 

-1 - 1, which 

can be seen directly in Figure 8. We need the following 

lemma, which will be used repeatedly in Chapter III: 

Lemma 2.1: Let g E G be an element of infinite order 

in a group G. Then ZG-g~ 2G is a monomorphism. 

Proof: Suppose ( 2:nhh) · ( g-1) = 0. Then n _1 - nh = 0, 
hg 

an infinite sequence of and so nh = n = n = ... -1 -2 I 

hg hg 

equalities. Hence, nh = 0. 

0 

The exact sequence (*) gives 3rj()t ·(t-1) + 

()r/a x·(x-1) = 0. From the lemma and the injectivity of 

(dr/at a r/3 x) we deduce that 8 rjo x 1s injective. 

Hence, 1s a monomorphism, and 

Lyndon's theorem [38] also shows that the relation 

module H1 (M0 ) is freely generated by the lifts of r, 

so that \jJ : Z TI ~ 2' TI is an isomorphism. Hence ker \jJ = 

0. We sum up our computations in: 
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induces a ring homomorphism 2' 1T - ZZ , which takes the 

Jacobian matrix of Fox derivatives to the Alexander matrix. 

We thus recover the classical fact that the Alexander matrix 

of a knot in s3 is hermitian, up to trivial units [47, p. 

208]. 
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Proposition 2.2: One relator ribbon 2-knots are quasi-

aspherical, with 1T 2 = 21T/(()r/()x), where 1T 1 = (t,x lr). 

For example, the knot in Figures 5 and 7, with 

ZG/(1 

whereas the spun trefoil (Figure 4), with 

-1 + X 

1T1 = (t,xl txt= xtx) , has 1T 2 = Z1T/(1 + t-1x-1 - t-1 ). 

These calculations check the ones in [37, Appendix B]. 

Proposition 2.3: Let x1 and x2 be the exteriors of 

one relator ribbon 2-knots. If 1T1x1 ~ 1T1x2 and 

1T2X1 .:!:! 1T2x2 (as 21T1 -modules), then x1 ~ x2 . 

0 

Proof: We saw during the proof of Proposition 2.2 that 

3 1T1 has a 2-dimensional K( 1T1 , 1) . Therefore H ( 1T1 , 1T2 ) = 0 

and the k-invariant vanishes. As x. are quasi-aspherical, 
l 

the theorem of Lomonaco [37] mentioned in the introduction 

0 

The exterior of a ribbon disk is homotopy equivalent 

to the 2-complex associated to the presentation of its fun-

damental group. Hence, by Lyndon's theorem, 

Proposition 2.4: One-relator ribbon disk exteriors are 

aspherical. 
0 

It is claimed in [5] that Proposition 2.4 1s valid 



§3. Meridians and ribbon disks 

In this section we produce the examples for Theorem 

I.l.2. The (n-2)-spun trefoil, n ~ 3, is a fibered knot 

with fiber (s1 
X sn-l # s 1 

X sn-l) - rP [4]. If u and 

v generate n
1 

of the fiber, the monodromy o is given 

by o (u) = v , o (v) 
-1 = u v. This knot bounds a fibered 

ribbon disk pair n
0 

= (Dn+2 , Dn) , with fiber vn+l = 

s 1 
x Dn q s 1 

x Dn and monodromy o The exterior 

v x s1 
0 

(t,u,v 

has meridian t and n 
1 

the trefoil knot group 

tut-l = v, tvt-l = u-1v). 

23 

We now construct other disk pairs Dk I with the same 

exterior, but different meridians. Add a 2-handle h2 to 

v X sl along a simple closed curve representing tk = ukt 
0 

with either framing. Since tk is homologous to t 1n 

V x s 1 , the Mayer-Vietoris sequence shows that the resulting 
0 

manifold gn+2 is acyclic. Its fundamental group is 

Andrews-Curtis equivalent to the trivial group: 

TI (jl+2) = (t,u,vl tut-1 tvt-l -1 ukt 1) = v = u v = 1 I I 

(u,v -k k -k k u- 1v) = 1 u uu = v u vu = I 

(v lv 
-k k -1 v) = v v = v 

= (v I v = 1). 

d d [ ] ~n+2 . d'ff h' n+2 By a stan ar argument 2 , ~ 1s 1 eomorp 1c to D . 

Then (gn+2 , cocore of 2-handle) is a knotted disk 

pair Dk = (Dn+2 
I Dn) with exterior v a s 1 

I and meridian 

tk. The fundamental group is n 1 = n1 (V 
0
x s 1 ) = (t,u,v 

-1 -1 -1 tut = v , tvt = u v), which is A-C equivalent to: 
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for arbitrary ribbon disks. The proof rests on an unproved 

assertion, erroneously attributed to Lomonaco. It amounts 

to proving ker ~ = 0 , for an arbitrary ribbon 2-knot. 

The asphericity of ribbon disks is implied by the Whitehead 

Conjecture (see [10, Question 2]). 

Let ~ = (t, x 1 , .... ,xm [ r 1 , .... ,rm) be a Wirtinger 

presentation of the group of a classical knot K • The spin 

of K is a ribbon knot with exterior X 
1 

obtained from 

by surgery on the curves r. . 
1 

3 r. 
With notation as before, we compute <I> = (--1) : (Zil)m ___ ax. 

J 

m ( 2' 7T) • The exterior X of K is an aspherical 2-complex 

,.... a r. a r. 
[ 41], with ax 1 __ 1 

) As the proof of Propo-= <-at 1n 2 3 X· 
. 

J 

"" ¢ 1s a monomorphism and H
3 

(X 1 )= 0 • It also sition 2.2, 

follows that the map 
8 r. 

1 (---ax.- ) 
J 

(ZTI)m ([7, p. 

43-46]), is a~ TI-isomorphism. Therefore ~ 1S an 1SO-

morphism. We have proved: 

Proposition 2.5: Spun 2-knots are quasi-aspherical, with 

~ 2 ~ ( Z ~) 1 ( : :~) , where ~ 1 ~ ( t, x1 , ... ,xm I r 1 , ... , rm) . 

0 
This complements Andrews' and Lomonaco's computation 

m/(a r.)t 
7T 2 = < z 11) 1 a x~ [3], [36]. The abelianization map 7T -+ Z 
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(t,u,v,tk 

Hence 

I tut-1 = v , tvt-1 = -1 u v 

-kt t-1 k = u-1v) u kv k u 

has a handle decomposition 
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with h 2 attached along a simple closed curve representing 
r 

-1 -k -1 k-1 r = r(tk,u) = tk utku tkutk u with the property 

r(l,u) = u . Now Dn+2 = v x s1 u h 2 = (h0 u h1 u h 2 ) 
0 tk 

u 

h~ U h; = ng+2 u h~ U h; , with Dn = cocore h 2 = standard 

n-disk in 

Dn+2 
0 u h 1 

u By Theorem 1.2, 

The pa1rs Do and D1 

conjugation map ]Jv : v -+ 

taking t to 

and r isotopic to u in 

Dk 1s a ribbon disk pair. 

are equivalent, since the 

V extends to a diffeomorphism 

The boundary of D = 0 

is the spun trefoil (Figure 4). In order to pic-

ture the other disk pairs, we give here a ribbon presenta-

tion of n 1 . 

1T 1 = ( tk 1 u 

= 
d -k+1 k-1 = u tku 
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= 

Figure 9 depicts the boundary of D2 = (D5 , D3 ) - a ribbon 

knot in s4 with its equatorial cross section drawn. 

c 

Figure 9 

The ribbon disk pairs Dk = (Dn+ 2
1 Dn) I k ~ 1 I have 

the same exterior v x s1 . To prove Theorem 1.1.2 1 we have 
a 

to show that they are all distinct. A diffeomorphism of 
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pairs restricts to a diffeomorphism of 

preserving meridians, thus taking tk to 

an automorphism of n = n (V x s1 ) taking 

It induces 

1 1 a 
to 

Rewriting n
1 

as: 

~1 = (t,u,v I tut-1 = v, tvt-l = u-1v) 

t ±l 
9, • 

=l (t,x I txt= xtx) =l (a,b 'I a
2 

= b
3

) 
u=t x t=b a 

-1 v=xt 

gives k 
tk = u t = (a-lb a 

that TI /Z ( TI) ::::: PSL(2,2) ' 

a A = (-~ ~) ' b 

characteristic, we are left 

-1 x=ab 

b-l)k b-la . It is well 

under the isomorphism 

B = (-~ i) . The center 

with proving: 

known 

being 

Lemma 3.1: Let Tk = (A-lB A B-l)k B-lA E PSL(2,2) . 

There 1s no automorphism of PSL(2,2) taking Tk to 

T~1 for k, 9- ):. 1 , k t- 9-

Proof: We compute A- 1 BAB-l = ( 2 -1) 
-1 1 

c2k -a2k-l) where a = a = 1 
-a2k-l a2k-2 0 1 ' ak 

are the Fibonacci numbers. Therefore T -k -

and tr(T~1 ) = a2k -a2k_ 3 = 2a2k_ 2 . As the automorphisms 

of PSL(2,2) come from conjugations by matrices in GL(2,2) 

(see Lemma 4.4) , we are done. 

0 
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§4. Ribbon knots with different n 2 

In the prev1ous section we produced ribbon disk pairs 

Dk = (Ds, D3) 

Kk = (S4, S2) 

The boundary of Dk is a ribbon knot 

We show in this section that the knots 

Kk provide the examples for Theorem I.1.3. The exterior 

xk is obtained from (s1 
X s2 # s1 

X s2 ) X s1 by deleting 
a 

k a neighborhood of the curve tk = u t. Actually, Xk 1s 

fibered over s1 , with fiber s1 
x s2 # s1 

x s2 - :03 and 

monodromy a k = J.l ka • As explained in [44], we "untwist" 
u 

the deleted curve, thereby "twisting" the monodromy. The 

fundamental group 1s 

k -k = u vu 

where We saw that n 1 Xk "' 7T = 

(t,u,v J 
-1 -1 -1 . tut = v , tvt = u v), the trefo1l knot group. 

Proposition 2.2 gives the following presentation for 

where = 

-1 -k -k -k+1 k-2 = 1- utk(u + ... +u ) + utku tk + tku (1+ ... +u ) 
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k -1 -1 -1 k -1 -1 k-1 -1 = 1- (u+ ... +u )tk u + tk u tk u + (u+ ... +u )tk 

[ k ( k-1) -1 + u-1t-2 + k-2 -1 ] -k-1 = u u - 1+ ... +u t (1+ ... +u )t u u . 

We have the following result, which proves Theorem !.1.3: 

Lemma 4.1: 

?1, ki=£. There is no a -isomorphism 6 :IT 2xk--t-1T 2x£. 

Proof: We start by studying the automorphisms of IT • a 

induces 

1 --+ ~ * ~ ----+- IT 1 xk-----+ ~ ---+ 1 

l l a 1 ±l 

1--r ~ * ~ ---+ IT1X£-----+ 2 ----.1 . 

Lemma 4.2: There is a diffeomorphism 

inducing -1 on 2. 

-+ vu -1 

Proof: We define fEAut(~*~) via -1 . 
-+ uvu 

We check that f = 0 kf ~ 

-1 k-1 -1 k-1 -k+1 k-1 -k k-1 -1 = ok((vu ) v(uv ) ) = u u vu u = vu 

k-1 -k -1 k-1 -1 -1 k 
~f ok(v) = okf(u vu ) = ok( (vu ) uvu (uv ) ) 

-1 k-2 -1 k-1 -k+2 k-1 -k k-1 -1 = ok( (vu ) v(uv ) ) = u u vu u = uvu 
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f can be realized by a diffeomorphism of s1 
x n3 q s1 x n3 

by handle slides and inversions (see [33, Lemma 2]). Up to 

conjugation, ok consists of handle slides and inversions 

also; hence f = Okfok geometrically. Restrict f to the 

Sl x s2 # sl 2 h f f. boundary x s . We can assume t at 1xes 

a ball n3 and that the relation still holds. The required 

diffeomorphism 1s F(x,t) = (f(x),l-t) . 

0 

Hence, replacing a by a oF* if need be, we may assume 

that a induces +1 on 2 . 

We have the central extension 

1 + 2 -------~'IT -------~L(2,2) + 1 

(~4 ) (a,bla2 ~b3 ) (a,bla2 =~3 , a4=1) 

The automorphism a of 'IT induces a E Aut(SL(2,2)). 

-Lemma 4.3: a is an 1nner automorphism. 

Assuming the lemma, we finish the proof. a = 11 h ex-

tends to an automorphism of 2(SL(2,2)). Define the ring 

homomorphism ~ : 2(SL(2,2)) m(2,2) by adding up 

the matrices in the formal sum. a extends via ~ to 

11 h E Aut ( 7J( ( 2, 2) ) . 

We now turn to studying isomorphisms of TI 2 . Given 

TI 2X~ an a -isomorphism, with inverse the 

-1 . . -1 . a -1somorph1sm S , they l1ft to 
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0 

0 ' 

where c, d, c, d E 2TI • From the commutativity of the 

diagram, we find 

a(wk) · c = C ·W .t 
-1 

d·wk a (w.t)·d = 
a( d)· c = Y·W + 1 

-1 
.t 

a (c)-d = Z·Wk +1 
' 

for some y, z E 2TI •· Projecting these equations to 

2(SL(2,2)), and then mapping them to ~(2,2) via ~ , we 

find 

hWkh-1-c = C·W t 

h-1W.th·D = D·W k 

hDh-1 -c = Y·W + I 
t 

h-1Ch·D = Z·W + I k 

These equations provide the commutative diagram 

-1-
h c 

2/(wk >---+ 

s( )s-1 

2f<wt)-+ 

0 

0 ' 
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showing that 

( *) 

Now recall that the projection 1T ------+SL(2~Z) 

takes -1 to T = (~ i) and uk (a-1 b a b-1)k t = b a = 

to uk =( a2k -a2k-l) . Hence 
-a2k-1 a2k-2 

-a2k-3 )( 1 0) 
a2k-4 -1 0 ( 

a2k-3 1-a2k-4) (-2 10) + (11 -01) 
1 -a2k-4 1+a2k-5 1 

( 

2a2k-1 

- 2-2a2k-2 

-
1
-a2k-3) 

- 1+a2k-4 

which g1ves 

detwk = 2 [a2k-1(a2k-4- 1 ) +1 - a2k-2 + a2k-3- a2k-2a2k-3] 

= 2 [(a2k-1- 1 )(a2k-4- 1 ) - a2k-2a2k-3] 

= 2 [(a2k-2+a2k-3-1 )(a2k-2-a2k-3-1 )-(a2k-1-a2k-3)a2k-3] 
2 = 2 (a2k-2 - 2 a2k-2 + 1 - a2k-1a2k-3) 

= 4(1 - a2k-2) 

where we used 

2 2 2 
ak- ak+1ak-1 = ak- (ak + ak-1)ak-1 = ak(ak- ak-1) - ak-1 

{ 

+1 I if k is even 

-1 1 if k is odd . 

This contradicts (*) 1 thus proving Lemma 4.1. 

D 
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In order to prove Lemma 4.3, we need two (presumably 

well known) lemmas about the outer-automorphism groups of 

PSL(2,2) and SL(2,2). 

Lemma 4.4: Out(PSL(2,2)) ~ 22 , generated by conjugation 

by ( ~ ~) 

Proof: PSL(2,2) is isomorphic to 22 (a) * z3 (b) . From 

the stucture theorem for subgroups of free products (see 

[40]), we infer that, up to conjugation, an automorphism 

of PSL(2,2) has the form 

a 
, with ±1 ±1 w = b a ... b a . 

Since a 1s onto, we can write -1 w 

with E = 0 or 1 . Hence 

b = w-1(b' )±1w = E b±1 -1 b±1 -1 b+1 -1 E a w w a ... aw w a ... w w a 

As there are no cancellations, we conclude that w = 1. 

This shows that the outer-automorphism group 1s generated 

1 
a + 

by 
b + 

a 

(01 10) . , which 1s conjugation by 

Lemma 4.5: Out(SL(2,2)) ~ z2 $ 22 , represented by 

0 
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Proof: We have the central extension 

1 ~ 2
2 
----~ SL(2,~) --------r PSL(2,13) ~ 1 , 

UJ tJ) 

g g 

where 2 2 .= { ±1}. Given aE Aut(SL(2,2')) , it induces 

aE Aut(PSL(2,~. )). Conjugating by an element of GL(2,~), 

we get a = id . Hence a (g) = ±g = A(g)·g , where 

A: PSL(2,~)- {±1} . As {±1} is central, we see that 

A is a homomorphism ~2 * 23--~~2 . The only nontriv-

ial such homomorphism is the projection {-: ~ -1 As 
~ 1 

-1 

at: ~ a -1 we get -a = a ' 
~ b 

0 

Proof of Lemma 4. 3: We are given a€ Aut 1i inducing +1 on 

Tr/ Tr' = 2 . Up to conjugation, the induced automorphism a E 

Aut( SL( 2, :i)) has the form a {: 

Hence a has the form 
~ a±1a4i 

~ b±1a4j 

, by Lemma 4.5. 

The abelian-

ization map y: Tr -+2 1s g1ven by Y (a) = 3, Y (b) = 2. 

Since a induces +1 on 2 , we get 

-
which rules out everything except a = id. 

D 
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III. k- IWARIANTS OF KNOTS IN s4 

§1. Lens spaces 

From now on, p and q will be coprime integers, 

p odd , 0 < q < p • The lens space L(p,q) is the 2-fold 

branched cover of s3 
, branched over a 2-bridge knot 

B (Schubert [49]) • L(p,q) can be expressed as two p,q 

solid tori sewn together along their boundaries by the 

matrix (q r) h , w ere 
p s 

qs - pr = 1 . The branched covering 

involution T is a 180° rotation in the axes shown below. 

See Rolfsen [47, p. 303] for a picture of the branched set 

downs·tairs. 

Figure 10 

A cell decomposition for L(p,q) 
0 

consists of e 

the core of 1 2 e2 (S x D )
2

, a meridinal disk of 

, 
t . 
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(Sl 2 3 2 
is 

1 
X D )l I and e The cell e attached to e by 

a map of degree p . The fundamental group is l: = (a J ap= 
p 

where a= 
1 

for further use, that T (a) e Note, = 
* 
~ 

The resulting augmented chain complex for L(p,q) = 

s a -1 N a-1 t 

o- Zl: -----. zz -zl zz z -a , 
p p p p 

where N = 1 + a + • • • + p-1 
a is the norm element. 

0 

-1 
a 

s3 is 

Let L(p,q) be the punctured lens space, with cell 

0 1 2 0~ 3 p 3 
decomposition e U e U e • Since L(p,q) = S - ~ D , 

N o 
0 ~ Z ___,.zz· - rr (L(p,q))----+ 0 is an exact sequence of 

p 2 
0 

ZZP-modules • This gives rr 2(L(p,q)) = Z~~/N , generated by 

the boundary 2 sphere 
s 2 

b = (a -1) e • To identify the 

0 

k-invariant of L(p,q), we use the partial free resolution 

~ 

of Z over zz· provided by C*(L(p,q)} and pull it nack 
p 

to the standard resolution: 

N a-1 N a-1 

zz ~zz ~z ---~zz ---- zz --~z ~a 
p lp p p p 
~ s s(q-1} 
k= l+a + ••• +a 

1 s 
a -1 a - 1 N e 

Since 
i · i m 

H ( Z ·, Z:Z } = H ( L ( p) , fl~, } = 
p p p 

for i > 0 , the exact sequence defining rr
2 

gives 

1) , 
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3 . 5 4 
O~H (Zp' Z:lp/N)--"""-~H (Zp, Z)-O • From the diagram 

we have 
3~ ~ s s(q-1) 

d k ( 1) = k (N) = N • ( l+a + ••• +a ) = q • N , so 

q· e that ok is zz--~---~~z . This means that the connecting 

homomorphism 5 takes (k] to q. [ e ] • Since [ e ] 

4 
generates H (Zp' Z) ~ ZP , we conclude 

3 0 0 0 4 
H (TTl L(p,q), rr 2L (p, q)) H (i!p,!) """ 

"""' w 
~ 

k(L(p,q)) 

(Compare with Plotnick [42j). 

0 

Zp 

UJ 
q 

The punctured lens spaces L(p,q) have the same 

2-ske leton, independent of q , and so are homotopy equi-

0 

valent for all q • A homotopy eq~ivalence L(p,q) ~ 

0 

L(p,q ' ) (rel o ) extends to L(p,q} :::>.< L(p,q') • A 

well known t heorem of J.H.C. Whitehead [52] asserts that 

L(p,q) """ L(p,q•) if, and only if, ±qq• is a quadratic 

residue (mod p). In fa c t, given a homot opy equivalence 

f: L(p,q)~L(p,q ' ) I f indu ces n :Z ~z on 
p p 

with (n,p) = 1 , a nd, via duality and cup p r oduct, f 

induces We can assume f = ±id on 
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0 
oL(p,q) . Hence f induces ±l on TT2 As f 

k-invariants, 
2 = ±q (mod p). The preserves n q• converse 

follows from the theorem of MacLane-Whitehead [3 9J by 

reversing the argument (or directly, by constructing a 

chain equivalence of the chain complexes of the universal 

covers). 
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§2. 2-twist spun 2-bridge knots 

In this section we analyze the algebraic 3-type of 

0 

certain fibered knots with fiber L(p,q). We show thatthe 

k-invariant of the knot exterior restricts to the k-invariant 

of the fiber. Although that can be seen via a spectral 

sequence argument [43], we will need this specific approach 

in proving Theorem I.l.l. Besides, the calculations here 

serve as a good warmup for the later sections. 

Let K be a knot in 83 and m a positive 

integer. The m-twist S:Qin of K I 
Km 

I is a fibered 

knot in 84 whose fiber i ·s the punctured m-fold cyclic 

branched cover of 
3 

(8 , K) , and whose. monodromy is the 

canonical branched covering transformation [55]. With the 

notation from §1 , the exterior of the 2-twist spin of the 

2-bridge knot 

0 

B 
p,q 

is 
2 0 1 

B =L(p,q) X 8 
p,q ,. 

The boundary 

of L(p,q) is a 2-sphere b , intersecting the branch set 

in two points. If * is one of them, then 
1 * X S is a 

meridian of The fundamental group is H - ;rl(B2 ) = 
p,q 

(a,x I ap = 1 
-1 p 

xax = 'T"*(a)) = (a,x 1 a = 1 
-1 -1 

, xax = a ) = 

2 0 

Z><lZ As a ;r.~ -module, ;r2(B ) is just 1i2(L(p,q)) = 
p p p,q 

z~ /N • generated by the boundary sphere b . As a 
p •(x-1) 

2 
ZH-module , rr 2 (Bp,q) = coker(ZH/N l:H/N) = 

l:H/(x~l) , by a result of Andrews-8umners [4]. In fact, 
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r-12 
B 
p,q 

~ 
0 = L(p 1 q) X R and is •3'enerated by b 1 subject to 

the relations Nb = 0 , (x-l)b = 0 • 

A cell decomposi ·tion for 

2 
e (the cells of 

0 1 
L(p,q)) 1 e 

X 

B2 
plq 

0 = e 

consists of 

1 1 1 
x S , e x S a 

0 1 
e 1 e , 

a 

and 

2 1 
e x S The boundary maps in the augmented chain complex 

of ""'2 
B 
plq 

can be computed from the picture below: 

•I 
Q.~__;_.....:...;.;:._ __ :p....;;;.__ ____ ~ 

i 

We have that 

"-'2 
B p,q 

2 1 o
3

(e X S ) = 

This gives 

.X. 

Figure 11 

-1 1 -1 1 
( 1-a ) • ex + (a + x) • ea 

1 1 
N • ea x S 

s 2 
( 1 + xa ) e • 

(Fox 
derivatives) 
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S 1-a-1 -1 1 
( ( ) ) ( a +x) ( x- ) 
N,- l+xa 2 0 N 2 a-1 · e 

ZH ------~ (~H) -------- (il:H) ZH --4 Z~ o 

Note that 
1 s 2 1 s s 2 o 

3 
( b x S ) = o 

3 
( (a -1) e x S ) = - (a -1) ( 1 +xa ) e 

s 2 
(x-1) (a ·-1) e = (x-1) b , confirming the computation of n 

2 
• 

We now fit into a n exact sequence, similar to 

0 

that defining n
2

(L(p,q)) • 

Lemma 2.1: 
2 n

2
(B ) is given by the following exact 

p,q 

sequence of ZH-modules: 

o~Z(H/Z ) ( -N,x-l) 
p 

(x:;l\ 
ZH EB Z(H/Z )~lH~n --o 

p 2 

Proof: is the induced module 

= 

The abelian izat ion map H ~H/lp = Z induces a ring homo­

morphism ZH-l! , 1; ~---+- s • The homomorphism Z::(H/lp) ~ lH , 

is induced f rom 
N 

Z ~ zz::p , and so is injective. 

Lemma II.2.1 shows that the homomorphism zz (x-1) iZ?l: 
I 

; .-- ; (x-1) , is injective. 

The standard free ZZP-res6lution of induces a free 

7-H-resolution, which gives ker(a-1) = ImN, k e rN = Im(a-1) • 

All that is left to prove is exactness at ZH E9 Z (H/~) . 
(x-1) 

Let ( IJ , v ) E ker ( ZH E9 Z ( H/Z : ) N ZH) From p 

\l (x-1) + VN 0, get 0 = \l (x-1) (a-1) = IJ (l-a) (l+a 
-1 

x) = we 

Since 
-1 

a x has infinite order, IJ (l-a) = 0 , and so IJ - sN 
Now (s (x-1) + v ) N = o implies v = -s (x-1) + !; ' (a-1 ) and 

hence v = -s (x-1) , which shows ( \l , \J) = (-s ) · (-N, x-1) • 
0 
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We now describe 

summand c
3

(B) = lH(b) 

kill 

k(B
2 

) • 
plq 

and map 

The natural inclusion 

extends to 

s 
a -1 N 

41 

add a free 

so as to 

a-1 

We see from this diagram that the cocycle representing 

0 

k(B
2 

) 
plq 

restricts to the cocycle repr~senting k(L(p~q)) • 

To identify k(B
2 

) 
plq 

as an element of 
I 

1T (B;2' )) = 3 
facts the cohomolo-H (H 1 TI

2
) I we need some about 

2 plq 

gy of H . Note that H has L oo (p) ·x sl as a K(H 1 1) I 

Hi (H 1 ZH) = Hi (L(X) (p) 1 't. 

m> 1. ( soo Rl Z!:) = 0 so X s = Hf X I 

'T" 

for i>l • (Since [H 1 Z] = p < (X) I this also follows from 

Shapiro's lemma: Hi(H 1 ZH) = Hi(lt 1 1ZZ)) • To compute the 

cohomology with coefficients in l(H/Zp) 1 first note that 
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l(H/Z) = ZH ® Z = $ ~, as ~z -modules. Since K(Z ,1) = 
p ~ p p 

oo z~p z 
L (p) has one cell in each dimension, the cohomology of 

Z commutes with direct sums. Hence 
p 

i 
= H (Z , $ Z) 

p ~ 

The Wang sequence for the fibration 

with coefficients Z(H/Z ) yields 
p 

EBZ ;i even>O 
l p 

0; i odd • 

Since x acts trivially on 
4 

H (~ ,Z), the action of x on 
p 

$z is just the permutation of the cosets Z = H/Z 
~ p p 

Hence H
4

(H,Z(H/Z )) -=0 and H
5

(H,Z(H/Z )) ""' Z 
p p p 

The exact sequence from Lemma 2.1 breaks into the 

short exact sequences 

o~ A ~zH ____.TI2 ---o (*) 

and 

(-N, x-1) 
o-Z(H/Z'> )----..?Z:B EB Z(H/Z )---.A~O (**) 

p p 

These two coefficient sequences yield : 



and 

3 5 4 
H (H,n2}~H (H,A) 

:::>< 

4 
o-H (H,A) 
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As 
5 

H (H,l(H/Z )) = coker (x-1) , multiplication by 
p 

(x-1) 

induces the zero map on it. Hence 

Remark 1 _The Mayer-Vi etoris sequence of the extension 

H = Z ><l Z ( = the Wang sequence for the fibration 
p 

00 1 
L (p)_.K.(H,l}-s } ends in 

which gives the short exact sequence 

Comparing the long exact sequences associated 

to this sequence and (**) , we find H
4 (H,A) """' H

4
(H,Z) • 

The Mayer-Vietoris sequence of the extension H = ilp~ Z 

We thus recover the above 

result. 

The ZH-module Z(H/~ ) = ZH 0 ~ is an induced 
P Zlp 

Remark 2 

module which is not coinduced. For if it were, Shapiro's 

lemma would give H*(H,ZH ® 

z::z 
p 

il) 2! H* ( l , lZ) 
p 

, which is not the 

case. 



As a consequence of these computations we get the 

following proposition, which is a particular case of a 

theorem of Plotnick [43}: 

Proposition 2.2: The inclusion 
0 2 

TI1 (L(p,q))~1il(B ) p,q 

induces an isomorphism 

3 2 2 
H ('rr

1
B ,TI B ) under which k-invariants correspond, 
p,q 2 p,q 

namely 

H
3

(H, TI
2

) ~ H3 (Zp,Z?l~N) =< Zp 
w \l) 

k (B 
2 )--------~ q 
p,q 

The knot exteriors B
2 

have the same 3-skeleton, 
p,q 

independent of q , and so are homotopy equivalent for 

44 

0 

all q • An algebraic way of seeing this will be given at 

the end of §7 • On the other hand, (relo) 

if, and only if, L(p,q) ~ L(p,q') [4 31. 



§3. The knots K p,q 
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We now describe our examples of knots with different 

k-invariants. We start by giving a general construction of 

"companion" knots, and interpret this construction in terms 

of surgery. 

Let K. = 
1 

(sn+2 , sn) , n > 1 · 1 2 b k t ' th , 1= , , e no s w1 

exteriors x. and meridians t.. Let c be a simple 
1 1 

closed curve in x
1 

. If we remove a tubular neighborhood 

of c from x
1 

n 2 

we get a space z
1 

diffeomorphic to 

S ~ D - N(K
1

). Let 

the space X 1s the exterior of a knot K 

meridian t
1

. 

Figure 12 

Since 

1n sn+2 , with 

c=t 
2 
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The knot K has fundamental group 

7T1X = 7T1X1 * (TI1X2 /< t~l = 
Z/lcl 

1)) 1 

where ICI is the order of c in 7T 1 x1 · If c has in-

finite order, 

Another construction is the following. Surgery on 

yields 

do surgery on the curve Call the resulting man1-

fold X' (see Figure 13). It is the exterior of a knot K' 

in 8n+2 Indeed, adding Dn x 82 to X' along 

s1 x 0n+1 kills t1. The result is 8n+2 
# y2 with sur-

gery performed on the curve t2 I which is precisely 8n+2_ 

t~---

0 

X 
1 

Proposition 3.1: 

are diffeomorphic. 

0 
y 

2 

Figure 13 

The knot exteriors X and X' 
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Proof: Note first that xl # y2 with a tubular 

neighborhood of -1 removed is zl u x2. Hence c t2 
I X sn 

X' = (Zl u x2) u o2 
X sn = 

I X sn s 1 
x sn 

= zl 1 u x2 = x. 
S X sn 

0 

Remark 1: If c = t 1 , the knot K' is just K1 # K2 . 

The above argument is similar to the one showing that (inte-

gral) surgery on a composite classical knot is x 1 U x 2 [24, 

pp. 700-701]. 

Remark 2: If we choose the right framings, we actu-

ally get K = K'. 

Our examples of knots with different k-invariants are 

obtained as follows. Start with s 1 
x o3 # s 1 

x s 3 , and 

let n1 (s1 x o3 ) = ::E(t), n 1 (s1 x s 3 ) = ~(y). Perform 

surgery on the curve tyt-ly-2 to get the (ribbon) knot 

exterior X, with n1x = G = (t,y! tyt-1 = y 2 ) (see II, 

§1). Let Y = B
2 

2 u 1 o3 
x s 1 = L(p,q) x s 1 

p,q p,q S X S T 

be surgery on the 2-twist spun 2-bridge knot from §2. 

n 1 (Y ) is the semi-direct product H = 2 ><l z p,q p 

= 1, xax-l = a-1 ). Apply the above construction 

with X = X X - B2 
1 I 2 - p,q I 

s 4 , with exterior X p,q 

c = y , to get a knot K p,q 

According to Proposition 3.1, 

X is the result of surgery on the curve p,q 
-1 y X in 

in 



X# y p,q 

Notice that 
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s1 
x s3 # Y , with surgery on the p,q 

-1 is just curve y X y Hence X can be described p,q p,q 

as the manifold obtained from s1 x D3 # y 
p,q by perform-

ing surgery on the curve -1 -2 txt x (Figure 14). 

L (p, q) 

Figure 14 

We write: 

-1 -2 
n = n (X ) = z * H / <txt x > = 1 1 p,q 

P -1 -1 = (t,a,x J a = 1, xax = a , txt-1 = x-2 ) = G * H 
Z(x) 

TI2 = TI2 (X ) • p,q 

The classification of the knot exteriors X mirrors the p,q 

classification of the "fibers" L(p,q). We will prove in 

§7 the following theorem: 
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I 

Theorem 3.2: Assume ±qq is not a quadratic residue 

mod p. Then the knots K and Kp,q' have isomorphic p,q 

1Tl and 1T2 (as ~1Tl -modules), but there lS no map 

f: X xp,q' realizing an isomorphism on 1T 1 and 1T2. p,q 

By choosing p to contain enough distinct primes of 

the form 4i+l 1n its factorization, we can produce arbi­

trarily many pairs q, q' with ±qq' :J- n2 (mod p), thus 

proving Theorem I.l.l. 

Remark 3: If we take xl = B2 p,q and 

c =a, we get the Gonzalez-Acufia and Montesinos knots [18], 

with 1Tl = (t,a,x I aP = 1, tat-l = a-1 , axa-l = x2 ) having 

infinitely many ends. If we perfonn surgery on one of these knots, 

-1 . and then remove a neighborhcx:xi of the curve xt , we get the exter1or 

of a quasi-aspherical knot with infinitely many ends [19] • 



---------
so 

§4. Computation of rr~,~ 

Let M be the cover of 8
1 

X n3 # Y corresponding 
p,q 

to the kernel of 
-1 -2 

il*H ~ Z*H/ <txt x > = rr • Equivariant 

surgery on the lifts of 
-1 -2 

txt x in M produces X 
p,q 

M consists of copies of Y = 8
3 

X R , indexed by the 
p,q 

cosets rr/H , and copies of n3 x R , indexed by the cosets 

rr/Z(t) , tubed together by "connectors" 8
3 x I , indexed 

by rr • Here is a schematic picture of the c overing 

M--+8
1 x n3 # Y , together with two lifts of the surgery 

p,q 

curve: 



···// 
- V--- ...... 

···// 
6/-----

51 

---. 

~-· 

Figure 1 5 
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Let 11~1 3 ~ (~ x n ) , x = M0 p,q u 2 <lin 2 x s 2) • 
ils1 s 1i 

1i X 

The Mayer-Vietoris sequences corresponding to these decem-

positions (see II, §2) yield: 

0 
-+-

o~coker C(.l --~H2 (M0)-H2 (M) - -..;.0 

~ 
H2(X ) p,q 

1 
ker v 
t 
0 

where 

We saw during ' the proof of Proposition II.2.2 that 

t/!G: :!G --~~G is an isomorphism. Hence ''' = 1 ® 1fr • 'i' I G • 

~n ~GlG~z1i ~ zG is also an isomorphism and ker 1/J = 0 • 

Also, H
2 

(M) = ~1i ® H
2 
(Y ) = 0 • 

:lH p, q 

coker cp • 

the "fiber" L {p,q) • Notice that 

Therefore TT
2 

= H
2 

(X ) = 
p,q 

,...._ 

L -1 = sl + Sa+ ••• + 
X 

S in H1M). The proof of Lemma 
p-1 3 

2.1, together with 
a 

Zn = Z1i ~HZH , yields t he short exact sequence 

-1 
O~ "' ( rr/'"' ) <-N, 1-x ) . EB ?? ( 1'1? ) H (1\JfL_____,.,_o 

'41 ""'p :en "" TT ""p ~ 3L·~ • (1) 
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To compute '9 I examine the lifts of 
-1 -2 

txt x which cut 

83 
,...._ 

through and Ll (Figures 8 and 
1 

15) and get 

3 1 + -1 -1 -1 -2 
(1 cp < sl > = X t - t - X = -1 -1 1 

-X ) (1 +X - t- ) 

and cp (L
1

) = N(1 + x-l -t-1 ) • This means that cp lifts 

to 

( 2) 

•rhe map 
-1 -1 . 

(1+x -t ) : Zrr--Zrr is injective, since 

(1+x-1-t-1 ) (1-x-1 ) = (1-x- 2) (1-t-1 ), and the maps (1-x-1 ) , 

(1-x- 2) and (1-t-
1

) are injective by Lemma II.2 .1. 

Tensoring the exact sequence given by Lemma 2 .1 with ?l1T 

gives the exact sequence of ?lrr-modules 

Therefore the se~~ence 

(
(x-1) · ( l+x -l-t =~>) 

( -N,x-1} N • (l+x-1-t ) 
0 ~ ~ ( TI/ ?l" ) ----'----~ __;_ _ __:.._~ 7liT 61 Z ( TI/Z· ) ----~-----..:,;?lTI 

p p 
(3) 

is exact. Hence H
3 

(X ) = ker cp = 0 , and ,. is given by 
p,q 2 

the exact sequence 
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(4) 

Splicing together the se~~ences (2)-(4) yields 

Proposition 4.1 : The knot K 
p,q 

is quasiaspherical, with 

n
2

(x ) given by the following exact sequence of 
p,q 

zrr-modules: 

~x-1) (l+x=~-t=~) 
o~ l{rr/:Z ) (-N,x-l) Zrr !Il Z(rr/Z ) N (l+x -t ) z·,T-4'!i ~0 

p p 2 • 

Remark 1.: 

extends to 

-1 -1 2 
The map ·(l+x -t ) : n

2
(B )~rr2 (x ) 

p,q p,q 

( -1 -1) · l+x -t 

0 

RGmark 2: The ~~asi-asphericity of K can also be seen 

directly from rr
1 

= G* H • 
7l 

The group 

p,q 

H=ZXIZ 
p 

has two 

ends, whereas G = Z*' 
7l 

has one end (write the Mayer-

Vietoris sequence with 7lG coefficients). The Mayer-

Vietoris se~~ence for the decomposition G*H with z 
coefficients shows that TT has one end. Hence K is 

p,q 

quasiaspherical [46], [19]. 
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§5. A cell complex for X 
p,q 

Recall is obtained from surgery on 
-1 -2 

X txt x 
p,q 

in 
1 D3 # Figure 16 shows 

1 3 # s X y s X D y , 
p,q 

the surgery curve and its intersections \vith two finers 

of y . 

Figure 16 

-1 -2 
Remove a neighborhood of txt x from 

1 3 
S X D # Y . The 

( 1 3)0 
0 

resulting space consists of S x D and Y-neighborhood 

of arcs, glued together along the four-times punctured 

"connector" s3 
: 
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Figure 17 

The outer shell of y is 
2 0 

B = L(p,q) 
1 

X 8 Notice also 
p,q 

that 8
1 x n3-neighborhood~ of arcs has been deformed to 

8
3 

with two 1-handles, plus a 2-cell 

I I 

to Q R 

2 . e connect1ng PR 
c 

Now glue in 8 2 x n2 along the boundary of a neigh-

borhood of the surgery curve. A deformation retraction of 

8
2 

x n2 
onto 8

2 
x I via 



brings us to Figure 18, where 

-1 -2 
txt x • 

Figure l 8 

2 
e 

c 
is attached along 

57 
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we have that 

(see Figure 19) 

0 

L {p, q) 

Figure 19 

Finally, collapse 4 and 
4 

and cancel 
3 3 

against el e2 I e 2' e3 

Q,R replacing 
3 

by 
3 

This gives c*(X ) : I el e . p,q 

3 
0 

EB ( l;"rT c
3 

(B)) 
3 

l;1i ( p) 
2 

(l:rr ~Hc2 (B)) l:r1(e ) ,g, EB 1;::r(e ) EB 
l;H c 

where 



59 

--.J 

0. I = 1 ® 0~ 
~ ·Z·rr c. <B'> ~ 

0ZH ~ 

3 -1 -1 o
3

(e ) = b - (l+x -t ) P 

o
2 

(P) = 0 

1 2 1 = (t-x-l)·ex + (1-x )·et (Fox derivatives). 

Putting this together with the explicit description of 

( Z1i) 
2 

from §2 ex :presses c (5{ ) as: * p,q 

( -1 -1 0 0 
s ) 

t -x

0 

-1 a -1 

0 N - (l+xa s) 

( Zrr) 
4 

(

t-1) 
x-1 

a-1 
€ ---- - - --';!oo l 11 --~ :l ~0 • 

0 0 

0 1-a 

0 0 

0 

0 
-1 

N 

From the proof of Proposition 4.1 (or from Lyndon ' s 

(Zrr )
3 

theorem), we deduce that 
2 

ec does not contribute to k e r o
2

• 



"' 
We know from §2 that ker oB = ZH(b) , where N b = 0 

2 

and Hence 

p , subject to the relations 

-1 -1 
N(l+x -t )P= 0 • Therefore, 

Zrr ( P) /(( x-1) · ( 1 +x = ~- t = ~ ) P = 0
0

) 
\ N · ( l+x -t ) P = 

rr
2

X = H
2
X is generated by 

-1 -1 
(x-1) ( l+x -t ) P = 0 , 

TI2(x ) = p,q 

We now describe k(X ) • Add a free module 
p,q 

c
3

(x) = ZTI(P) to c
3

(x) and map c
3 

° 3~ker o
2 

c c
2 

to 

kill the 2-cycles: o
3

(P) = P • In §2 we defined 

C 
3

(B) = ZH , o
3

(b) = b • The natural inclusion 

c* (B)~ :lir .0H c* (B) 
. 7! 

extends to a chain· map 

c*(B) ~ c3 (B)--.c*(X) $ c
3

(x) by defining 

- 3 c
3 

(B) ---.,.c
3 

(X) $ iZrr(e ) 

b ~------~(l+x-1-t~1 )P + e 3 
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We collect the information obtained in this section in the 

following diagram 



0 
3 

02 01 € /q2 (B> c1 (B') ~:m-z----o c
3 

(B) EBc
3 

(B) 

-
o

2 
= ZH(b) c 3 (B) = ?lH ker 

~ 
-1 -1 TT B 

1+x -t 2 = lo/( x~1) 

-1 -1 
1+x -t c

3
(X) = lrr 

- 3 ~ a3 I 2 ~ a2 ~ al • e 
c

3
(x)EB;lrr(e )ffi(Zrr® c

3
(i3)) lrr(P)EBl:rr(e )EB(Ilrr& c

2
(B)) llm~ c

1
(i3) ,.~rr ~z-o 

;eH \ 1 

1 
zH ZH 

k(X ) 
p,q 

ker o
2 

= lrr(P)EBzrr(b) 

l 
I~ -1 -1~ = Zrr (x-1) (1+x -t ) 

-1 -1 
N ( 1+x -t ) 

0'1 
~ 



This shows that the cocycle representing k(X ) 
p,q 
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restricts 

to the cocycle representing 
2 

k(B ) , followed by the map 
p,q 

-1 -1 2 
• ( l+x -t ) : TT B ---"rr

2
X • 2 p,q p,q 



§6. Computation of the k-invariant 

We now identify k(X ) -p,q as an element of 

In addition to the facts about the cohomology of H mentioned 

in §2 we need the following: 

(1) The cohomological dimension of G is 2 by Lyndon's 

theorem or from t he Mayer-Vietoris sequence for the 

HNN extension G = ~z'; 

(2) H = ~ ~Z has a K(H,l) with finitely many cells 
p 

* * in each dimension, so H (H, ~ M.) = ~ H (H,M.) • 
1. 1. 

The Mayer-Vietoris sequence for the amalgamation 1T = G*H z 
yields, for i > 3 

i 
H ( n ,Zrr ) = i 

H (H,Zrr) = 0 • 

We also have to compute 
i 

H (IT,Z(rr/Zp}), fori= 4,5. In 

order to do that, we need the following lemma from [45], the 

proof of which we include for completeness: 

Lemma 6.1: Given a free product with amalgamation 

A*B , 
c 

a'aa' 
-1 

Proof: 

form 

let a E A be such that there is no a' E A with 

E c . -1 
Then waw 

Recall that each 

E A implies w E A . 

w E A*B c has a uniqu e normal 

w = cd1 •• • dn , where the di are chosen alternately 
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from fixed coset representatives for c"'. A and c"'. B • 

We say that any w as above has length n [ 40]. Elements 

of A and B have length < 1. Suppose -1 E If waw A . 
d ; - A -1 

cd1 ••• dna 
-1 -1 -1 

I waw = dn ••• d 1 c has length 2n+l > 1 n 

contradiction. Thus d E A Since d a 
-1 ~ - c -1 a . d I waw n n n 

has length 2n-l • Hence, n=l , and w=cd E A • 
n D 

z(rr/Z ) is the induced module Zrr ~l:Z Z The projec-
p p 

tion rr--+rr/z , g~g induces a homomorphism 
p 

H acts on ~(rr/~) via h·s = 

hs . Suppose h·g = g , for some g E rr , h E- H • Then 

-1 
g hg E Z , so h is a torsion element and thus equals 

p 

aj E- z As aj 
p 

cannot be conjugated into a power of 

Lemma 6.1 gives g E H . Hence, for g E 1T - H I 

X 

hE~ Z [hg] ~ ZH . As for g E H I h~HZ[hg] ~ Z(H/~) . We 

thus get the direct sum decomposition of ZH-modules 

Z(rr/Z ) ~ ( $ ZH) ffi Z(H/l: ) • 
p ~-H·l p 

I 

The Mayer-Vietoris sequence for the amalgamation rr = G*zH • 

together with the above direct sum decomposition, facts (1) 

and (2), and the cohomology computations from §2, yield (for 

i=4,5) 
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i i 
Hi (H, ZH) i H ( rr, Z ( rr/Z· ) ) 2!! H (Fh Z hr hz ]) ~ EB E9 H ( H, Z ( H/z. ) ) p p ~ 

-H·l p 

2!! Hi(H,Z(Hf:l )) ~{~ ; i = 4 

i = 5 p ; 

Recall from § 4 the short exact sequences of Zrr-modules 

(-N,x-1) 

The long exact sequences for these coefficient se~~ences 

yield 

3 0 4 
H · (rr,rr 2)---~H (rr,H3 (M).) 

""' 

As in the proof of Proposition 2. 2, we see that ·(x-1) is 

the 5 zero map on H (tr,z(rr/z ) ) , and so p 

3 4 5 
H (TT,TT2) ~ H (rr,H

3 
(M)) == H ( rr, Z ( rr/Z ) ) ::::.. z p p 

This, together with Proposition 2.2, Remark 1 from §4, and 

the results from §s, proves 
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0 2 
Proposition 6.2: The inclusions rr1 (L{p,q))~rr1 (Bp,q).._c_~~ 

3 0 . 0 """' 
induce isomorphisms H (rr

1
L{p,q), rr

2
L{p,q))._ ____ _ n (X ) 

1 p,q 
3 2 2 """' 3 

H (rr
1

B n
2
B )~H (rr

1
x , rr

2
x ) p,qJ p,q p,q p,q 

under which 

k-invariants correspond, namely 

::::.. '>H
3 

( zP, ZZp/N) ~ zP 

w w w U) 

k{X )-----':!ook(B
2 )------~k(L{p,q))~q 

p,q p,q 

0 
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§7. Proof of the Theorem 

We now prove Theorem 3.2. Assume there is a map 

f: X -.---'~X 1 inducing an isomorphism a. : 11
1

X ~111X 1 p,q p,q p,q p,q 

and an a.-isomorphism S: rr
2

X ~rr2X , • Then a. and 
p,q p,q 

S preserve k-invariants. If we precede f by a map 

X ~x , or follow 
p,q p,q 

f by a map X ~X , , the 
p,q p,q 

composed maps on and still preserve the k-invariants. 

Recall that 1T = G* oz!I , where 
-1 2 

G = (t,x I txt = x ) and 

H = ~ p ,q Z = (a , x ! ap = 1, xax -l = a -l) • 

Proposition 7.1: Let a. E Aut TI • Up to conjugation, a. 

{ a~an±l a. : , (n,p) = 1 . 
x--.x 

has the form 

Proof: First not e that G is torsion-free and that the 

only subgroup of H = ~pX\ ~ isomorphic to ~ is Zp (a) 

From the structure theorem for subgroups of amalgamated 

products [40, p. 243], a. (~) is a conjugate of lp . 

Thus, up to conjugation, a. ( Zp) = ZP • Since x normalizes 

-1 irp· , a. (x) • a • a. (x) E Zp • Applying Lemma 6.1, we see 

that a. (x) E H , so a. (H) c H • The same argument gives 

-1 
a. (H) c H • 

Suppose the r e is no h ~ H with h O. (x)h-l E -Z(x) 

Then, since a. (t)' a. (x) • a. (t) -l = a. (txt -l) = a. (x2) E' -H , 

Lemma 6.1 implies O. (t) E -H. Since H
1

( n ) = Z(t) a n d 
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H c [TI,TI] , this is a contradiction. Hence, up to conjuga-

tion by an element h E H , a{x) E z(x) • Since 

a I HE -Aut H 

Following 

and H
1 

(H) = !{x) , a (x) 

f by a map X ~X p,q• p,q• which realizes 
D 

conjugauon by a suitable element, we may assume a has the 

f f ( ) -1 f. . above orm. I a x = x , construct a ~ber-preserv~ng 

diffeomorphism 

F (x) = x-l 
* 

(This is possible since 

the monodromy T is an involution). We may assume F 

preserves a n3 x s1 
, in which we take connected sum with 

s1 x n3 
and do surgery, so that F extends to a homotopy 

equivalence Replacing f by f oF permits F:X ~X 
p,q p,q 

us to assume that a has the form 

a: 

n 
a~a 

x~x , (n,p) = 1 . 

Note that a(t) can be quite complicated. For example, we 

might have a(t) or 
m 

a(t) = a t , or a composition 

of such. Later on we will further modify a until it 

projects to id 
G 



Now we examine k-invariants. Since a(H) = H and 

a(~ ) = l: , we get the following commuting diagram of p p 

isomorphisms: 

k(X ,) E p,q 

l 
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As :qq' is not a ~~adratic residue mod p , all we have to 

show in order to derive a contradiction is 13 = ±1 • 
* 

Before proceeding with the proof, let us collect some 

facts about ZIT that will be needed. 

( i) 
·(g-1) 

l'IT --=--~Zn is a monomorphism, far g E TT of 

infinite order (Lemma II 2.1). 
-1 -1 

( ~~) 7TT •(l+x -t ) ~TT 
~· ~ ~ is a monomorphism (proof of 

Proposition 4.1). 
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(iii) Tensoring the standard left (right) Z~-resolution 

of ~ with Z TI on the left (right) 

induces the free left (right) Zrr-resolution of z 
a-1 N a-1 · e 

~ ::ZTI -~ZiT-~"> ~TI -~') llTI ~z-0 This gives 

ker N =- Im(a-1) and ker (a-1) = ImN 1 where the 

maps are multiplication on the right (left). 

(iv) The augmentation ideal has 

presentation 

(l~ox2 :~:=i x+No a -1) (:~~) 
( ~-)3 0 )3 a-1 "" " --------------=.;.(Zrr --'---~Irr ~o I 

where the map 
3 3 

( il'fT ) ~ ( :lTI ) i s the "Jacobian 

matrix" of Fox der ivatives associated to the 

presentation of TI (see [7 1 p. 45-46] 1 or look 

we now start the study of the action of S* on 

cohomology. The a -map S lifts to an a -map 'e : Zrr~ l n 

-1 -1 ) (<x-lH l+x_ 1-t _1 ) 
N · (l+x -t } 

~iT EB ZTT i!'fT ·rr 0 

l e =(: :) 19=(u) 
2 

1 s (*) 

Zrr E9 Zrr Z 'fT TT 2 0 1 
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with u, a, b, c, d E l n • There is considerable freedom in 

choosing e we can replace u by 
-1 -1 

u + ~(x-1) (l+x -t ) + 

-1 -1 
~N (l+x -t ) , with ~, ~ E l n • We will do this repeatedly 

towards the end of the proof. As for now, we fix 9 and try 

to find a convenient lift 9 , namely one which projects to 

a map 9 : Zn ~ Z(n/Zp)--~:ln ~ :!( IT IZP) . This will per-

mit us to analyze the action of 
3 

~ * on H (n 1 , n 2) . 

From the commutativity of the diagram(*), we find 

-1 -1 - -1 -1 
(x-1) (l+x - a (t )) · u = (a(x-1) + bN) (l+x -t ) (la) 

-1 -1 - -1 -1 
N (l+x -a(t ) ) · u = (c(x-1) + dN) (l+x -t ) • (lb) 

Since S is an isomorphism, there is u' E l n satisfying 

equations (1') analogous to (1) and 

~ 
-1 

a (u)·u • 

a (u 1 ) • u 

-1 -1 = (u0 (x-l) + u1N) (l+x -t ) + 1 

= (u~(x-1) + uiN) {l+x-
1
-t-

1
) + 1 

( 2) 

( 2 j) 

Left-multiplying equation (lb) by (a-1) gives 

- -1 -1 
(a-1) (c(x-1) + dN) (l+x -t ) = 0 , 

or, by (ii) 

(a-1) (c(x-1) + dN) = 0 • 
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Hence, by (iii), there is u E ~~ suqh that 

C(x-1) + dN = N u (3) 

Combining equations (lb) and (3) yields 

-1 -1 - -1 -1 
N (l+x - a(t )) u = N u (l+x - t ) (4) 

From (l'b) we deduce an analogous equation (4 1
) • 

We use the information gained so far to improve further 

the map a • Consider the projection A.: 1i = G*:tJ~G. 

This induces a ring homomorphism A.: Z11~ ZG • Also, 

a E Aut 1i induces a E Aut G with A. a = a A. • Equations 

(4), (4') , (2) ,(2'), when projected to ZG , become 

-1 - -1 - -1 -1 
(l+x - a (t ) ) A.(u) = A.(u) (l+x -t ) (5) 

-1 - -1 . - -1 -1 
(l+x - a (t ))A.(u 1

) = A.(u') (l+x -t ) (5') 

c:t -
1

(A.(u)) A.(u 1 ) = w(l+x-1-t-1
) (6) 

c:t (A. (u 1 ) ) A. (u) 
-1 -1 = W 1 (l+x -t ) 

Recall the alternate description of X 
p,q 

(6 I) 

as surgery on 

X # Y , where X is a ribbon knot exterior with 11
1
x = G 

p,q 

(II, §2) • Equations (5), (5 1
), (6); 

( 6') provide an a -isomorphism S: 1i 
2 

X-'> 1i 
2 

X. Since the 

k-invariant of X vanishes (cdG = 2) , we can find a 
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homotopy equivalence H: x__,.x with H* = a • Since 

a(x) = x , we may assume that H preserves a neighborhood 

of x , in which we take connected sum with y 
p,q 

and do surgery, so that H extends to a homotopy equivalence 

"" H: X ~X Replacing f by 
...... -1 

foH enables us to 
p,q p,q 

assume that a E Aut rr projects to a = id E Aut G • 

We now continue our ques·t for the right 9 • Recall 

equation (3): c(x-1) = Nu - dN Let t = e(d) = e(u) E- z 

The element d - t belongs to Irr By fact (iv) above, 

there are 1-l, v, s E Zn such that 

d = ~(t-1) + v(x-1) + s(a-1) + t . ( 7) 

Combining equations (3) and (7) yields 

c(x-1) = N(u-t) - (jJ(t-1) + v(x-l))N, (8) 

or, after left-multiplying both sides by (a-1): 

(a-1) (c~·N) (x-1) = -(a-1)1-l(t-l)N • (9) 

Right-multiplying by (a-1) gives 

0 = (a-1) (c+VN) (x-1) (a-1) 
- -1 = (a-1) (c+VN) (1-a) (l+a x) 

By (i), (a-1) (c+vN) (1-a) = 0 , which implies (a-1) (c+VN) = 
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c
1

N , for some c
1 

E Zrr • This combines with (9) to give 

c
1

(x-1)N = -(a-1)1J,(t-1)N. 

Consequently, there is 1; 1 E- ZiT such that 

c 1 (x-1) + (a-l)!J,(t-1) = ~ 1 (a-l) • 

The abov e equation provides a relation among the generators 

of Irr • Looking at the coefficient of (t-1) in this 

relation, and recalling the presentation of I rr given in 

(iv) , we find such that 

(a-1) IJ 
- 2 

- IJ.(1-x ) (10) 

Left-multiplying by N gives 
- 2 

NlJ.{l ·-x ) = 0 • Hence 

N!J. = 0 , whic h implies 1J. = (a-1) ~J1 • 1Equation {10) becomes 

2 
(a-1) (!J,-IJ.

1
(1-x )) = 0, and so 

2 
IJ. - NIJ

2 
+ 14

1 
( 1-x ) 

Combining this with (8) yields 

c(x-1) 2 = N(u-t) - (NIJ
2
(t-l) + IJ.1 (1-x) {t-1) + V(x-l))N 

= N(u-t-IJ. 2 (t-l)N) - (IJ1 (l+x-t) + v )N(x-1) , 
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which, if we set y = ~1 (1+x-t) + ~, gives 

(a-1) (c + yN) (x-1) = 0 , 

or 

c + yN = Nc • 

Now return to e~Jation (3): 

Nu = c(x-1) + dN = (N:c-yN) (x-1) + dN = Nc(x-1) + d 1N , 

where 

~(x-1) + ~ (a-1) + t 

= N~2 (t-1) + (-y+~1 (1+x-t)+~) (x-1) + s(a-1) + t 

= N~2 (t-1) + ~(a-1) + t . 

Therefore Nu = Nc(x-1) + N~2 (t-1)N + tN • Setting 

d = ~ 2 (t-1) , we get Nu = N(c(x-1) + dN + t) . Equation 

(1b) now becomes 

-1 -1 -1 -1 
N(1+x -a(t ))u = N(c(x-1) + dN + t) (1+x -t ) 

( 11) 



We just proved that 9 lifts to the a-map e = 

' 2 2 
(Zii) ~(ZTT) : 

(-N,x-1) ~ 
-1 -1 ) (x-1) (l+x_

1
-t_1 ) 

N (l+x -t ) 

Zrr ---- l rr$Zii ----------+ ilTT --..;.rr ----+0 
2 

e = (u) s 

In order to analyze the action of s 
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want to lift 9 to e = (v): Zrr~Zii • Unfortunately, the 

above complex fails to be exact at zn ~ Zii • But it is easy 

to see that ker ((x-l) (l+x=i-t=~)) is generated by 
N (l+x -t ) 

Im(-N,x-1) and 0 ~ Im(a-1) (c.f. the proof of Lemma 2.2). 

Hence there are v,w
1

,w
2 

E ilTT such that 

-vN = - Na + (x-l)Nc + w1 (a-1) ( 12a) 

v(x-1) = -Nb + (x-1) (Nd+t) + w
2

(a-l) (12b) 

Equation (12b) can be rewritten as 

(v-t) (x-1) = N(-b +(x-l)d) + w
2

(a-l) ; 

Or, if We set -b + (x-l)d = ~ (t-1) + V(x-1) + s(a-1) 1 



-N~(t-1) + (v-t-Nv) (x-1) - (Ns + w
2

) (a-1) = o • 

The presentation of ITI given in (iv) provides elements 

~, v such that 

- -1 
v-t-Nv = ~(t-x-1) + v(l-a ) • 

(13a) 

(13b) 

- 2 
Equation (13a) gives (a-1)~(1-x) = 0 , or (a-1)~ = 0 • 

Hence ~ = N~1 , and equation (13b) becomes: 

or 

- -1 
v-t = N(v+~1 (t-x-l)) + v(l-a ) , 

induces well defined maps 

( 14) 
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and · Nc: ?l ( TI/Z )___.,. " ( 'IT/l ) • The map 
p p 

· (a-1): ZTI~ZTI induces the zero map Z('IT/Z ) 0 'Z(TI/Z ) 
p p 

Therefore 13 lifts to: 

( -N,x-1) 
(x-1) (l+x_1-t_1 ) 

( 
-1 -1 ) 

N (l+x -t ) 

9=(u) B 

o~z('IT/Z )----~t!rr61z('IT/:l )--------~z'IT - 'IT -o • 
p p 2 

Recall from §6 that 
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HS(H,Z(H/Zp)) ~ H
4

(H,Z) ~ Zp • Hence S* acts on H
3

(rr
1

,rr
2

) 

via •(Nv
1
+t): H

5 
(rr,Z(rr/Zp) )-H

5 
(rr,Z(rr/iZp) a) • From the 

naturality of the above isomorphisms comes the commuting 

diagram 

N 
H

5 
(rr,.Z(rr/Zp} }--~H5 

(rr,!l(rr/z ) ) 

lR l" P a 

H4 (H,Z) N H4 (H,Z) 

}t 0 
Zp ---------'U---~ Zp I 

and so the term Nv
1 

does not contribute to the action of 

S* • Therefore is the map 

·t: z~z 
p p 

All that is left to show is that t = ±l 

(mod p} • 

We now go back and modify u until we find a suitable 

lift 9 of s • Recall that u satisfies eqJation (11) 

-1 -1 -1 -1 N(l+x -a(t ))u = N (c(x-l)+d N+t) (l+x -t ) and that we 

can replace u by 
-1 -1 -1 -1 

u + U(x-1) (l+x -t ) + v N(l+x -t ) 

without changing S • This replaces c by c+(l+x-1- o:.(t-1 )}~ 

and d by 
-1 -1 

d + (l+x - a(t ))v • Project (11) to ZG via 

\: Zrr~lG and recall that a = idG • We get 

-1 -1 -1 -1 
(l+x -t ) \(u) = (\(c) (x-1) + p\(d) + t) (l+x -t ) (15) 



79 

Lemma 7.2: There is a lift e = (u): Zn ~Zn of S such 

that A(u) f- ~ and A(u) = ~ (mod p) • 

Assuming the lemma, we finish the proof. Let u and u' 

be lifts of S and 
-1 S as in Lemma 7..2. Recall equation 

( 6) : 
-1 -1 

A(u) A(u') = w(l+x -t ) , with w f -ZG. The 

abelianization map G~Z extends to a ring homomorphism 

ZG~zz • Projecting equation (6) to zz , we find 

-1 
uu' = w(2-t ) + 1 , 

where u and u' are integers . Writing 

k 
w = E ~t E Zz , we get 

kEll 

whd.ch gives 

for k 'I 0 • 

Since only finitely many nk are nonzero, we easily see that 

nk = 0 , fo r all k Hence uu' = 1 , which gives u = ±1 • 

Therefor e S = t = ± 1 (mod p) , completing the p r oof of the 
* 

theorem. 
0 

Proof of Lemma 7.2: From now on, all computations will take 

place in ZG • For simplicity, we will write A(u) = u , etc, 
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-1 -1 
so that equation (15) reads (l+x -t )u = (c(x-l)+pd+ -l..)· 

-1 -1 
(l+x -t ) • We are allowed to replace u by u + ~(x-1)· 

-1 -1 -1 -1 (l+x -t ) + p v (l+x -t ) 1 where ~ ~ v E-· za , replacing 

in the process c by 
-1 -1 

c + (l+x -t )~ and d by 

-1 -1 
d +(l+x -t )v • 

Notice that G = G.' )<l Z 1 where a·· = Z [1/21 is a 

torsion-free abelian group generated by [t -j x tj ; j > 0} • 

i 
we write a typical element g E G as g = t h , with 

r -j. k. j . . k . 
h = II t ~ x: ~t -~ = t-Jx tJ E G' 1 where j is always 

i::;;:l 
chosen to be as small as possible. Notice also that 

-1 -1 i i -i -1 i i-1 
(l+x -t )t h = t (h+t x t h) - t h • Since we can add 

lt . 1 f (l+x-1-t-1 ) to d d 1 mu ~p es o c an 1 we ma y rep a.ce 

equation (15) by 

-1 -1 r -1 -1 
(l+x -t ) u = (u · t + t) (l+x -t ) , (16) 

where u E ZG' , e(u) = 0 (mod p), and r > 1. 

We now determine what sort of u E ~G 1 u E ZG' can 

satisfy {16). Write 

Equation (16) yields 

-t 

n + n - n = t g xg tg 

u = u = 

; 
-1 g = t 

g = 1 or 

r-1 

X 

n + n + n -r -r+l 
g=ht or 

\...0 

-r 
gt gxt gt 

; otherwise 1 

-1 

htr 

... , 



where n = 0 if g ~ G'. 
g 
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i For g = t h , i < -2 , we have n . + n i -n i+l = 0 • 
t~h xt h t h 

Since only a finite number of the 

an integer L such that n = 
tih 

n = 0 for ~ 
/ -1 ..__ . 

tih 
I 

For i > r+l , we again have 

0 

n 
g 

are nonzero, there is 

for I i I > L • Hence 

n . + n . -n i+l = 0 • 
t~h xt~h t h 

Let j be the largest integer > r+l such that there is ~n 

h E G' with n . f 0 • 
t]h 

= -n . . . 
tJt-JxtJh 

= 

Then 

= (-l)s 

+ n . = 0 , and so 
xtJh 

This is an infinite seq-uence of equalities, since x has 

infinite order. 

for i > r+l ~ 

Hence n . = 0 , 
t]h 

which proves 

-1 ={--to For g = t h , we have n _
1 

+ n _
1 

-nh 
t h xt h 

;h=l 
i hfl • 

Hence nl 

have nh 

n = 0 • 
th 

= 

+ 

t and ~ = 0 

'11 
xh - nth ={ ~ 

For 1 < i < r-2, we have 

which implies n . = 0 , for 
t~h 

Finally, from 

for h ~ 1 For g = h I we 
-1 

;h=l,x 
which gives 

-1 
i h;el, X 

n . 
~ 

t h 
+ n . 

~ 
xt h 

2< i < r-1 

n . 1 = 0 ' 
~+ 

t h 
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n 1~ n 1- n r-1 
htr- xhtr- tht 

= n + n r-1 -r 
ht t 

-n r-1 -r r-1-r+l 
ht xt ht , t 

n +n - n = , 
htr xhtr thtr 

we get 

( 17) 

n + n = nh + nhx ..;r. 
htr xhtr ~ 

, (18) 

which combine to give 

= n -1 r + n 2r -1 r 
tht t thx t t 

(19) 

Replacing h by 
-1 

t ht , we find 

n = n + n 
htr t-1httr xt-1httr 

( 20 ) 

Let j be the largest integer >0 such that there is an 

h = t-jxktj E G' with n f 0 • 
htr 

(20) gives 

n = -n 
2
r+l r = 

htr x ht 
... = { -1) 

which implies = 0 • Hence 

For such h , equation 

s 
n 

2
r+s 

x htr 

= 0 , for 

= • • • I 

k 
X 



Let j be the largest positive integer such that 

n . i 0 • Equation (19) gives 
xJtr 

= -n j+l r + n '2j r + n 2r+l+2' 
X t X t X Jtr 

= 0 • 

Hence n k = 0 , for k > 0 • The conclusion of these 
x tr 

computations is 

k r 
u=.t+(I: nk x)t 

k<O X tr 
( 21) 

To see what u can be, we go back to equation (17), 

which implies nh = 0 , for 
-i k i 

h = t x t , i > 2 or 

k 
h = x , k > 0 • Combining (17) and (18) gives 

n -1 + n -1 • 
t ht t xht 

S 't' h -- t-lxkt , k odd, · th b t' · ld e~ ~g 1n e a ove equa 1on y1e s 

n -1 k + n -1 k 2r 
t X t t X tx 

= 0 This gives 
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n -1 k 
t X t 

n -1 k 2r = 
t x tx 

( -l)s-1 = n -1 k 2r+s= .•• , 
t x tx 

which implies 

u = ~ 

k <O 

n -1 k 
t X t 

= 0 • 

k 
n k x 

X 

The upshot is 

( 22) 



If· we set u = 
1 

equations (16), (21) and 

(22) combine to give 

-1 -1 
(l+x -t ) u

1 
= u 

-2r -1 
( l+x -t ) , 

or 
- -1 

tut and 
-1 

(l+x ) u
1 

Lemma 7.3: Given a polynomial 

2 2r 
P(x ) (l+x) = (l+x )P(x) , then 

Proof: Let P(x) = 
i k 
2: ~X 

k=O 

- -2r 
= u ( l+x ) 

P(x) f Z[XJ satisfying 
r 

P(x) = m • ( 2i:-lxk) • 
k=O 

Comparing degrees yields 

r 
i = 2 -1 • Comparing coefficients proves the lemma. 

The lemma, with P(x) = "' k . 1" L. n kx , ~mp ~es 

k>O X 

0 k 
m ( 2:: x ) 

r k==-2 +1 
In particular, e (u) 

r 
= m · 2 • 

u = 

But 

€(u) = 0 (mod p) and p is odd, hence m = pm
1 

. We now 

have 

u = 
0 
2:: 

r 
k=-2 +1 

2k r 
X t 

0 

0 0 2k r -l 
= ,(.,+p(m . ~ x t ) (l+x ) = 

= 

,r., + m ( 2: 
r-1 

k=-2 +1 1 k=-2r-l+l 
"---v----1 

\)1 

-1 -1 ° 2k r 1 
t + pv

1
(l+x -t ) + m • i: x t -

r-1 
k=-2 +1 
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Induction on r produces an element ~ E ~G such that 

-1 -1 
u = t + p~(l+x -t ) + m , 

thus proving lemma 7.2. 

Why does this proof work for these examples, but not 

for the 2-twist spun knots? That is, why is it that 

X 'f X , , but p,q p,q 
"""'B2 ? 

p,q' . We can see this 

algebraically as follows. Recall that 
2 

rr B = H , and 
1 p,q 

is given by the exact sequence 

Take a = id S is given 

by 

z.q EB ZH 
(x;l) 

la~(: :) }~"f:---0 
ZH EB ZH z_q _______,. TT 

2 
----.-0 

This imposes the conditions 
{ 

(x-1) u = (x-1) a + Nb 

N u = (x-l)c + Nd 

Since S is an isomorphism, we also want a u' satisfying 

0 

analogous conditions and uu' = (u
1

(x-l) + v 1 N) + 1 • These 

conditions are not hard to satisfy. For example, if p = 5 , 

q = 1, q' = 2 I we need a u with s* = ~ (U) = 2 

pick u =a+ a' , u' = -1 
1 + a +a Then 9 =(u 0) 

0 u 

We may 

and 

uu' = N + 1 • With the more complicated module structure on 



'li (X ) , these ·u' s are no longer available. 
2 p,q 
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One might also ask, why not project G-n
3 

=(t,x I txt -l = 

2 
X I , and work in ~D3 , as in [45}. Equations 

( la) 1 ( lb) I ( 2) 1 ( 2 I ) project to 

-1 -1 
p(l+x -t )u 

uu' 

u'u 

- -1 -1 
(a(x-1) + pb) (l+x -t ) 

- -1 -1 
= (c(x-1) + pd) (l+x -t ) 

-1 -1 
= (u0 (x-l) + pu

1
) (l+x -t ) + 1 

-1 -1 = (u0(x-l) + pui> (l+x -t ) + 1 

Unfortunately, one can produce examples which satisfy these 

equations and have the required augmentations. For example, 

if p = 5, pick u = 2 + tx • We get 

(
(x-1) (l+x -l-t-1) ) 

-1 -1 
5 ( l+x -t ) 

Zn
3 

EBZn
3 
---------------~ZD 

3
------» ~D3/ (~) --o 

0 ) 
-1 

2+tx 
u~2+tx j S 

Zn3 EBzo3~--------------~zn3~~D3/(*)~0 

Pick also u' = 2tx + 1 • We have 

uu' = (2+tx) (2tx+l) = 5tx + 4 -1 -1 -1 
= (x+tx ) • 5 ( l+x -t ) -1 

So it really seems necessary to work in ZG as we did in 

order to prove the theorem. 
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