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Abstract. We use augmented commutative differential graded algebra (acdga) models
to study G-representation varieties of fundamental groups π “ π1pMq and their embedded
cohomology jump loci, around the trivial representation 1. When the space M admits a
finite family of maps, uniformly modeled by acdga morphisms, and certain finiteness
and connectivity assumptions are satisfied, the germs at 1 of Hompπ,Gq and of the em-
bedded jump loci can be described in terms of their infinitesimal counterparts, naturally
with respect to the given families. This approach leads to fairly explicit answers when
M is either a compact Kähler manifold, the complement of a central complex hyperplane
arrangement, or the total space of a principal bundle with formal base space, provided the
Lie algebra of the linear algebraic group G is a non-abelian subalgebra of sl2pCq.
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2 STEFAN PAPADIMA AND ALEXANDER I. SUCIU

1. Introduction and statement of results

1.1. Representation varieties and jump loci. Sheaf cohomology is ubiquitous in ge-
ometry and topology. The parameter space for rank n locally constant sheaves on a path-
connected, pointed CW-complex X with finitely many 1-cells may be identified with the
GLn-representation variety of the fundamental group of X. Twisted cohomology on X is
encoded by the filtrations of these varieties by the (embedded) jump loci. While GL1-
representation varieties are finite unions of affine tori, the picture changes dramatically in
higher rank. For instance, the universality theorem of Kapovich and Millson [18] states
that PSL2-representation varieties may have arbitrarily bad singularities, away from the
origin 1 (the trivial representation). This is the reason why we focus here on analytic
germs at the origin of the embedded cohomology jump loci. The general case is ana-
lyzed by Budur and Wang in [4], but it seems that explicit computations away from 1 are
intractable in full generality.

By the main result from [9], Theorem B, the germs at 1 of the embedded jump loci
of X are isomorphic to the germs at 0 of the infinitesimal embedded jump loci of a com-
mutative, differential graded algebra A, provided this cdga models X, and certain mild
finiteness assumptions are satisfied. Furthermore, in the abelian case, this identification
is natural. One of our main goals here is to extend this natural comparison to the non-
abelian setting, by studying the behavior of jump loci under suitable continuous maps
between spaces and cdga maps between their models.

By construction, both representation varieties and their infinitesimal analogues are
(bi)functorial. The naturality properties of both types of jump loci are summarized in
Corollaries 5.8 and 5.10. As we point out in Example 5.9, naturality at this level requires
connectivity assumptions for maps, defined in §3.1. What greatly simplifies things in the
abelian case is the existence of a global, exponential map which relates representation
varieties to their infinitesimal counterparts. By way of contrast, it follows from Example
7.10 that no such map exists in the PSL2 case, even for compact Riemann surfaces.

To avoid this major difficulty, we construct local analytic isomorphisms between the
two types of jump loci by means of Artin approximation. That is, we replace the respective
local analytic rings by their completions (or by functors of Artin rings), and deduce local
analytic naturality from naturality at the level of completions. This we do in Proposition
2.3, which is a general result about simultaneous Artin approximation. We need this
‘simultaneous’ framework in view of the applications to be derived later on, which involve
families of maps between spaces.

The condition that makes our approach to a natural comparison between embedded
jump loci work is based on the q-equivalence relation for morphisms between augmented
commutative differential graded algebras (acdgas), denoted by »q, and detailed in Def-
inition 3.2. The primary examples we have in mind are the acdga morphisms Ωp f q
between Sullivan–de Rham models induced by pointed, continuous maps between topo-
logical spaces.
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1.2. Natural comparison with respect to finite families of maps. In more detail, the
embedded jump loci we consider in this paper are as follows. First let X be a pointed, path-
connected space with fundamental group π, and let ι : G Ñ GLpVq be a representation.
For each i, r ě 0, the embedded jump locus of X with respect to ι is the pair

(1.1)
`

Hompπ,Gq,V i
r pX, ιq

˘

,

where V i
r pX, ιq is the set of homomorphisms ρ for which the i-th cohomology group of X

with coefficients in the local system Vι˝ρ has dimension at least r.
Next, let A be a cdga, and let θ : g Ñ glpVq be a Lie algebra representation. The

infinitesimal analog of the representation variety is the set F pA, gq Ď A1 b g of g-valued
flat connections on A. For each i, r ě 0, the infinitesimal embedded jump locus of A with
respect to θ is the pair

(1.2)
`

F pA, gq,R i
rpA, θq

˘

,

where R i
rpA, θq is the set of flat connections ω for which the i-th cohomology group of the

cochain complex pAb V, dωq defined in (5.2) has dimension at least r.
Assume now that ι is a rational representation of linear algebraic groups, and both g

and V are finite-dimensional. Under mild q-finiteness conditions on X and A (explained
in §3.2), both Hompπ,Gq and F pA, gq are affine varieties, and their jump loci are closed
subvarieties, for all i ď q and r ě 0.

We may now state our first main result. Let t f : X Ñ X f u fPE be a finite family of
continuous maps between pointed, path-connected spaces. For each f P E, we denote
by f7 : π Ñ π f the induced homomorphism on fundamental groups. Let also tΦ f : A f Ñ

Au fPE be a family of acdga morphisms. Consider a rational representation of linear
algebraic groups, ι : G Ñ GLpVq, over k “ R or C, with tangential representation θ : gÑ
glpVq. For an affine k-variety X , we denote by Xpxq the k-analytic germ of X at a point
x P X .

Theorem 1.1. Fix an integer q ě 1, and suppose the following conditions hold:

(1) All the above spaces and cdgas are q-finite.
(2) Both f and Φ f are pq´ 1q-connected maps, for all f P E.
(3) Ωp f q »q Φ f in ACDGA, uniformly with respect to f P E.

Under these assumptions, we may find local analytic isomorphisms a : F pA, gqp0q »ÝÑ

Hompπ,Gqp1q and a f : F pA f , gqp0q
»ÝÑ Hompπ f ,Gqp1q for all f P E with the property that

the following diagram commutes, for all f P E:

F pA, gqp0q
a // Hompπ,Gqp1q

F pA f , gqp0q

Φ fbid

OO

a f // Hompπ f ,Gqp1q.

f !
7

OO
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Moreover, this construction induces the following commuting diagram of (local, reduced)
embedded jump loci, for all f P E, i ď q, and r ě 0:

pF pA, gq,R i
rpA, θqqp0q

a // pHompπ,Gq,V i
r pX, ιqqp1q

pF pA f , gq,R i
rpA f , θqqp0q

Φ fbid

OO

a f // pHompπ f ,Gq,V i
r pX f , ιqqp1q ,

f !
7

OO

where both horizontal arrows are isomorphisms of analytic pairs.

The meaning of the q-equivalence relation between continuous pointed maps and acdga
maps, uniformly with respect to finite families, is explained in Definition 6.3. For a one-
element family t f u, this condition simply means that Ωp f q »q Φ f in ACDGA. For a certain
type of two-element family, the uniformity condition is verified in the next theorem.

Let f : X Ñ Y be a continuous, pointed map between path-connected spaces. Let π be
the fundamental group of X, let abf : π� πabf be the projection onto its maximal torsion-
free abelian quotient, and let f0 : X Ñ Kpπabf, 1q be a classifying map for this projection.
Set A.0 “ pŹ.H1pXq, d “ 0q.

Theorem 1.2. Suppose that X and Y are q-finite, for some q ě 1, and Ωp f q »q Φ in
ACDGA, where Φ : AY Ñ AX is a morphism between q-finite acdgas. There is then an
acdga map Φ0 : A0 Ñ AX inducing an isomorphism on H1, and such that Ωp f0q »q Φ0

in ACDGA, uniformly with respect to the families t f , f0u and tΦ,Φ0u. Moreover, if f and
Φ are 0-connected maps, then all hypotheses from Theorem 1.1 are satisfied for q “ 1.

1.3. A general framework for applications. Let π be the fundamental group of a 1-
finite manifold M. We aim at finding structural results for (non-abelian) embedded jump
loci of M near the origin, in low degrees. To start with, we want to extract from the
geometry of M a finite family of group epimorphisms, t f7 : π � π f u fPE pMq, induced on
fundamental groups by maps f : M Ñ M f onto manifolds of smaller dimension. Next, we
set EpMq “ E pMq Y t f0u, where f0 is a classifying map for the projection abf : π� πabf.

Let ι : G Ñ GLpVq be a rational representation of C-linear algebraic groups. For a
group homomorphism h : π Ñ π1, we let h! : Hompπ1,Gq Ñ Hompπ,Gq denote the in-
duced morphism between the corresponding representation varieties. As explained in
Remark 7.8, the abelian part of Hompπ,Gq near the trivial representation coincides with
the germ abf!

pHompπabf,Gqqp1q. By naturality of jump loci, the natural inclusion,

(1.3) Hompπ,Gq Ě
ď

fPEpMq

f !
7 Hompπ f ,Gq ,

induces inclusions

(1.4) V i
r pM, ιq Ě

ď

fPEpMq

f !V i
r pM f , ιq
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for all i ď 1 and r ě 1. Finally, we ask whether the inclusions (1.3) and (1.4) become
equalities near 1.

We focus on the rank 2 case, when the Lie algebra g of G is a non-abelian subalgebra of
sl2pCq. Our techniques allow us to treat simultaneously two interesting classes of exam-
ples: (1) quasi-compact Kähler manifolds (in particular, quasi-projective manifolds), and
(2) closed, smooth manifolds endowed with a free action of a compact, connected, real
Lie group K. In the first case, the family E pMq consists of equivalence classes of ‘admis-
sible’ maps (in the sense of Arapura [2]) from M to smooth complex curves of negative
Euler characteristic. In the second case, E pMq has only one element, namely the bundle
projection M Ñ M{K.

When the group G is SL2pCq or PSL2pCq and M is a quasi-projective manifold, equality
in (1.3) is related to deep results of Corlette–Simpson [6] and Loray–Pereira–Touzet [20],
which give a rather intricate classification for the G-representations of π1pMq, also valid
away from 1. When M is a quasi-compact Kähler manifold, ι “ idCˆ , and i “ r “ 1,
equality in (1.4) near 1 is equivalent to the subtle description of V 1

1 pM, ιq from [2], again
also valid away from 1. Thus, our results below may be viewed as a more precise version
of the aforementioned work, in a broader context, albeit only near the origin.

Theorem 1.3. Let G be a C-linear algebraic group with non-abelian Lie algebra g Ď
sl2pCq, and let ι : G Ñ GLpVq be a rational representation. For i “ r “ 1 and for i “ 0,
r ě 1, both (1.3) and (1.4) become equalities near the origin 1, provided π “ π1pMq and
either

(1) M is a compact, connected Kähler manifold;
(2) M is the complement of a (central) complex hyperplane arrangement;
(3) M is a closed, connected, differentiable manifold supporting a free action by a

compact, connected real Lie group K, and the orbit space M{K is formal in the
sense of Sullivan [32].

Here EpMq “ E pMq Y t f0u, where f0 realizes abf : π � πabf and the set E pMq consists
of all admissible maps in the first two cases, and the projection M Ñ M{K in the third.

The common strategy of proof is to choose appropriate uniform acdga models for the
family EpMq and apply Theorem 1.1 to replace topological by infinitesimal equalities. In
turn, the latter equalities are verified using results from [22] for parts (1)–(2) and from
[28] for part (3).

Compact Kähler manifolds and complements of complex hyperplane arrangements pro-
vide highly non-trivial examples of uniform formality (over k “ R or C) with respect to
finite families of maps. In Proposition 7.4, we reinterpret the main result from [7] in the
following form: Ωkp f q » H.p f , kq in ACDGA, uniformly with respect to an arbitrary finite
family of holomorphic maps between compact Kähler manifolds. Similarly, we recast in
Proposition 9.3 the main result of [12], as follows: Ωkp f q » H.p f , kq in ACDGA, uniformly
with respect to the family EpMA q, for any central complex hyperplane arrangement A in
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C3 with complement MA . In this way, we are able to apply Theorem 1.1 in order to prove
parts (1)–(2) of Theorem 1.3.

For part (3), let N “ M{K be the orbit space of the free K-action on M, and let f : M Ñ

N be the projection map of the resulting principal K-bundle. Assuming that N has a finite
model AN over a field k of characteristic 0, we construct in Proposition 8.2 a finite model
AM for M and an acdga map Φ f : AN Ñ AM such that Ωkp f q » Φ f in ACDGA. In the case
when N is formal, we may take AN “ pH.pN, kq, d “ 0q. Applying now Theorems 1.1
and 1.2 completes the proof of Theorem 1.3(3).

Further applications of the techniques that go into proving the above results can be
found in our recent preprint [29]. In particular, in the context of Theorem 1.3, parts (1)–
(2), but for an arbitrary complex linear algebraic group G, it is shown in [29, Theorem
1.1(2)] that the germs f !

7
Hompπ f ,Gqp1q and g!

7
Hompπg,Gqp1q from decomposition (1.3)

intersect only at the origin, provided the maps f , g P E pMq are distinct. This transversality
property is a substantial non-abelian extension of the corresponding rank 1 result, proved
in [10] in the case when ι is the standard isomorphism Cˆ »ÝÑ GL1pCq.

1.4. Formal maps and regular maps. The uniformity property for one-element families
of maps may be verified in two further classes of examples: formal maps between formal
spaces, and regular maps between quasi-projective manifolds.

By definition, a continuous map f : X Ñ Y is formal over k if it is modeled in CDGA by
the morphism H.p f , kq : H.pY, kq Ñ H.pX, kq, cf. [32, 34]. In Proposition 3.4, we prove
the following: If f is formal over k and H1p f , kq is injective, then Ωkp f q » H.p f , kq in
k-ACDGA. Applying Theorem 1.1 yields relevant information (summarized in Proposition
6.8) on the map induced by f between the corresponding embedded jump loci.

To state the quasi-projective analogue of the formality property, we need to recall from
[23, 5] some relevant facts. Every quasi-projective manifold M is of the form MzD, where
M is a smooth, projective variety and D is a normal-crossing divisor in M. A regular map
between two such manifolds, f : M Ñ M1, is induced by a regular map f̄ : M Ñ M1 with
the property that f̄´1pD1q Ď D. The manifold M admits as a finite cdga model over C
Morgan’s Gysin model MGpM,Dq. Furthermore, the regular map f is modeled in C-CDGA
by a certain map Φp f̄ q : MGpM1,D1q Ñ MGpM,Dq.

In Proposition 9.1, we use relative Sullivan models for cdga maps to improve on these
known facts, as follows. Let f : M Ñ M1 be a regular map between quasi-projective
manifolds, and let f̄ : pM,Dq Ñ pM1,D1q be an extension as above. If H1p f q is injective,
then ΩCp f q » Φp f̄ q in C-ACDGA. We indicate in Remark 9.2 some possible applications
of this result.

1.5. Conventions. All spaces are assumed to be path-connected. The default coefficient
ring is a field k of characteristic 0. (When speaking about analytic germs and analytic
algebras, k will be either R or C.) Graded k-vector spaces are non-negatively graded.
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2. Artin approximation

Our approach to naturality properties of cohomology jump loci is based on (simultane-
ous) Artin approximation, using the book Tougeron [33] as a basic reference. We start by
proving a general result of this type.

Given a local ring pR,mq, we denote by gr.pRq the associated graded ring with respect
to the m-adic filtration. The m-adic completion of R will be denoted by pR. If I Ă R is an
ideal, pI will stand for the extended ideal pR ¨ I of pR. Morphisms between local rings are
assumed to be local.

We will use M. Artin’s theorem on approximating formal power series solutions of
analytic equations by convergent power series (see [33, III.4]) in the following form.

Theorem 2.1. Let R and R be two analytic algebras, and let tIkukPF and tIkukPF be two

finite families of proper ideals in these algebras. Suppose α : pR Ñ
pR is a morphism

sending pIk to pIk for all k. There is then a morphism a : R Ñ R such that apIkq Ă Ik for all
k and gr1paq “ gr1pαq.

The next lemma will also be useful in the sequel.

Lemma 2.2. Let R and R be two analytic algebras, and let I Ă R and I Ă R be two

proper ideals. Suppose a : R Ñ R is a morphism that sends I to I, and α : pR Ñ pR is an

isomorphism such that αppIq “ pI and gr1paq “ gr1pαq. Then a is an isomorphism and
apIq “ I.

Proof. It follows from [33, III.5] that a morphism of analytic algebras with isomorphic
completions must be an isomorphism, provided the given morphism induces a surjection
on gr1. Consequently, both a : R Ñ R and the induced morphism, a1 : R{I Ñ R{I, are
isomorphisms, and the claim follows. �

We are now ready to describe the setup for our approximation result. Let tφi : R �
RiuiPE and tφ̄i : R � RiuiPE be two families of epimorphisms between analytic algebras,
indexed by the same finite set E. Furthermore, let tI j Ď Ru jPF , tI

j
Ď Ru jPF , tI j

i Ď Riu jPF ,

and tI
j
i Ď Riu jPF be families of ideals in the respective analytic algebras, indexed by the

same finite set F. Finally, let α : pR »ÝÑ
pR and tαi : pRi

»ÝÑ
pRiuiPE be isomorphisms between

the respective completions.

Proposition 2.3. In the above setup, assume the following conditions hold, for all i P E
and j P F (as the case may be):

(1) I j ‰ R ô I
j
‰ R, I j

i ‰ Ri ô I
j
i ‰ Ri, I j “ R ñ I j

i “ Ri, I
j
“ R ñ I

j
i “ Ri ;

(2) αppI jq “
pI

j
;

(3) αippI
j
i q “

pI
j

i ;
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(4) ˆ̄φi ˝ α “ αi ˝ φ̂i .
There exist then isomorphisms a : R »ÝÑ R and tai : Ri

»ÝÑ RiuiPE such that

(i) apI jq “ I
j

for all j P F;
(ii) aipI

j
i q “ I

j
i for all i P E and j P F;

(iii) φ̄i ˝ a “ ai ˝ φi for all i P E.

Proof. Without loss of generality, we may assume all ideals in sight are proper, replacing
if need be the set F by subsets F0 Ď F and Fi Ď F0 for i P E. For each i P E, put
Ki “ kerpφiq and Ki “ kerpφ̄iq, and pick proper ideals, tJ j

i Ă Ru jPFi and tJ
j
i Ă Ru jPFi ,

such that φipJ
j
i q “ I j

i and φ̄ipJ
j
i q “ I

j
i . We claim that it is enough to find a morphism

a : R Ñ R such that
(a) gr1paq “ gr1pαq;
(b) apKiq Ď Ki, for all i P E;
(c) apI jq Ď I

j
, for all j P F0;

(d) apJ j
i q Ď J

j
i ` Ki, for all pi, jq P E ˆ Fi.

Indeed, by (b), the morphism a : R Ñ R induces morphisms ai : Ri Ñ Ri for all i P E.
In view of (a), we may apply Lemma 2.2 and deduce that the map a is an isomorphism.
By construction, property (iii) is satisfied. By assumption, equality (4) holds, and so

αppKiq “
pKi. Again by Lemma 2.2, the maps ai must be isomorphisms, for all i P E. In

view of (c), we may also apply Lemma 2.2 to each of the ideals I j Ă R and I
j
Ă R for

j P F0, and deduce that apI jq “ I
j
, thereby verifying property (i).

Finally, to verify property (ii), we apply Lemma 2.2 to the ideals I j
i “ pJ

j
i ` Kiq{Ki Ă

R{Ki “ Ri and I
j
i “ pJ

j
i ` Kiq{Ki Ă R{Ki “ Ri for pi, jq P E ˆ Fi. We know from (b) and

(d) that the morphisms ai : Ri Ñ Ri preserve these ideals. The fact that the isomorphisms
αi identify the completions of these ideals follows from their construction, together with
assumption (3). Moreover, since ai is induced by a and αi is induced by α, property
(a) implies that gr1paiq “ gr1pαiq. Thus, Lemma 2.2 applies once again to show that
aipI

j
i q “ I

j
i . This completes the verification of our claim.

Assumptions (2)–(4) insure that the map α : pR »ÝÑ
pR is a formal series solution of the

analytic system (b)–(d). Applying now Theorem 2.1 completes the proof. �

3. Algebraic models of spaces and maps

The rational homotopy theory of Quillen [30], as reinterpreted by Sullivan in [32],
provides a very useful mechanism for studying topological properties of spaces and con-
tinuous maps by considering commutative differential graded algebra (for short, cdga)
models for them. In this section, we review the basics of this theory, and draw some
consequences in the formal case.
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3.1. q-connectivity and q-equivalences. We start with some basic terminology, related
to connectivity properties of spaces and cdgas. Fix 0 ď q ď 8, usually to be omitted
from notation when q “ 8. Let ψ : C.Ñ C1.be a morphism of graded vector spaces. We
say ψ is q-connected if it is an isomorphism in degrees up to q and a monomorphism in
degree q` 1.

When such a map ψ is a q-connected morphism of cochain complexes, it is straight-
forward to check that the induced morphism in cohomology, H.pψq : H.pCq Ñ H.pC1q,
is again q-connected. Cochain maps inducing a q-connected map in cohomology will be
called q-equivalences. For q “ 8, these maps are also called quasi-isomorphisms in the
literature.

We say that a commutative graded algebra (for short, a cga) A. is connected if A0 is
the k-span of the unit 1 (and thus A0 “ k). If A is a connected cdga, then clearly its
cohomology algebra, H.pAq, is again connected.

This terminology is inspired by algebraic topology, where a continuous map f : X Ñ Y
between two topological spaces is said to be q-connected if it induces isomorphisms on
homotopy groups up to degree q and an epimorphism in degree q ` 1. By Hurewicz’s
theorem, the induced map in cohomology, H.p f q : H.pYq Ñ H.pXq, is also q-connected.
Note that the map X Ñ tptu is q-connected if and only if the space X is q-connected.

Finally, let C be a subcategory of the category of cochain complexes, for instance, CDGA
or the category of differential graded Lie algebras, DGL. Two objects in this category, C
and C1, have the same q-type (denoted C »q C1) if they can be connected in C by a zig-zag
of q-equivalences.

3.2. CDGA models for spaces. We now review the construction and some basic prop-
erties of cdga models of spaces, following [32, 23, 17, 19, 13, 9]. We will denote by
Ω
.
kpXq Sullivan’s de Rham algebra of a topological space X, constructed by using differ-

ential forms with k-polynomial coefficients on standard simplices, see [32]. The resulting
functor TopÑ k-CDGA has, among other things, the property that H.pΩ.kpXqq – H.pX, kq,
as graded k-algebras.

To define monodromy representations of flat connections (over k “ R or C), we will
also need the similar cdga Ω

.
pX, kq, constructed from usual smooth k-forms. It is known

that Ω
.
pX, kq has the same8-type as the sub-cdga Ω

.
kpXq, in a natural way.

Let A be a cdga. For 0 ď q ď 8, we say that A is a q-model for the space X if
ΩkpXq »q A. We also say that X is q-finite if it has the homotopy type of a connected
CW-complex with finite q-skeleton. Similarly, we say that A is q-finite if it is connected
and dim

À

iďq Ai ă 8. Once again, we shall omit q from the notation when q “ 8.
The category ACDGA of augmented, commutative differential graded algebras has ob-

jects pA, εq, where the augmentation map ε : A Ñ k is a morphism of cdgas, while the
morphisms in this category are the cdga maps commuting with augmentations. When X
is a pointed space, both Ω

.
pX, kq and Ω

.
kpXq become ACDGAs, again in a natural way.
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A connected cdga A has a unique augmentation map, sending A` to 0, and the unit to
1. Moreover, for every augmented cdga A1, we have that

(3.1) HomACDGApA, A1q “ HomCDGApA, A1q.

3.3. Hirsch extensions and relative minimal models. Let U.“À

iě1 U i be a positively
graded k-vector space. The free commutative graded algebra on U, denoted by

Ź

U.,
is the tensor product of the symmetric graded algebra on Ueven and the exterior graded
algebra on Uodd. We say that a cdga is free if the underlying cga has this property. Since
Ź

U. is connected, it has a unique augmentation, denoted by εU .
Let A “ pA., dAq be a cdga, and denote by Z.pAq the graded vector space of cocycles.

Given a finite-dimensional graded vector space U., and a degree 1 linear map, τ : U.Ñ
Z.̀ 1pAq, we denote by pA bτ

Ź

U, dq the corresponding Hirsch extension. By definition,
this is the cdga whose underlying cga is A.bŹ

U., and whose differential restricts to
dA on A and to τ on U. If A is an acdga with augmentation εA, then A bτ

Ź

U is also
an acdga, with augmentation εA b εU . The Hirsch extension depends only on the map
rτs : U.Ñ H.̀ 1pAq, in the following sense: if rτs “ rτ1s, then Abτ

Ź

U – Abτ1
Ź

U in
CDGA, via an isomorphism extending idA. When dim U “ 1, we speak of an ‘elementary’
Hirsch extension.

A relative Sullivan algebra with base B is a direct limit of elementary Hirsch extensions,
starting from the cdga B. When the base is k, concentrated in degree 0, we simply
speak of a Sullivan algebra. Such a cdga is necessarily of the form M “ p

Ź

U., dq.
If impdq Ď

Źě2U, we say M is a minimal Sullivan algebra. If, moreover, all Hirsch
extensions have degree at most q, the cdgaM is said to be q-minimal.

A q-minimal model map for a cdga A is a q-equivalence ρ : Mq Ñ A, with Mq a q-
minimal Sullivan algebra. Any cdga A whose cohomology algebra is connected admits a
q-minimal model map. If ρ1 : M 1

q Ñ A is another q-minimal model map for A, then M 1
q

and Mq are isomorphic in CDGA. Consequently, if A and A are two cdgas with connected
homology, then A »q A in CDGA if and only if there is a q-minimal cdgaMq, and a short
zig-zag of q-equivalences in CDGA of the form

(3.2) A Mq
ρoo ρ̄ // A .

Recall that a relative Sullivan algebra with base B is a cdga of the form A “ pB b
Ź

U, dq. When B is an augmented algebra, with augmentation ideal rB :“ kerpεBq, the
quotient cdga, A{prBb

Ź

Uq “ p
Ź

U, d̄q, is called the fiber of A. Following [17, 13], we
say that A is a minimal Sullivan algebra in the relative sense if the fiber is minimal. Al-
lowing also degree 0 Hirsch extensions, we may speak of weak relative Sullivan (minimal)
algebras.

Let Φ : B Ñ C be a cdga map, and assume B is augmented and H.pBq is connected.
A relative minimal model map for Φ is an 8-equivalence of cdgas, h : M Ñ C, where
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M “ pB b
Ź

U, dq is a relative minimal Sullivan algebra and h|B “ Φ. If Φ is a 0-
equivalence, then Φ admits a relative minimal model map; moreover, any two such maps,
h and h1, have isomorphic fibers, see [13, §14]. In fact, existence and uniqueness also
hold in the weak sense, assuming only that H0pΦq is an isomorphism, see [17, Ch. 6]. In
particular, if Φ : B Ñ C is a 0-equivalence and h : M Ñ C is any relative minimal model
map for Φ in the weak sense, then necessarily the fiber of M is connected. Hence, if Φ is
an acdga map, then M is canonically augmented and both h and the inclusion B ãÑ M
preserve augmentations.

3.4. Homotopies and equivalences. Let
Ź

pt, dtq be the free, contractible cdga gener-
ated by t in degree 0 and dt in degree 1. For each s P k, let evs :

Ź

pt, dtq Ñ k be the cdga
map sending t to s and dt to 0. This map induces another cdga map,

(3.3) Evs “ idb evs : Ab
Ź

pt, dtq Ñ Ab k “ A.

Definition 3.1. Two cdga maps ψ0, ψ1 : A Ñ A1 are said to be homotopic (in CDGA) if
there is a cdga map Ψ : A Ñ A1 b

Ź

pt, dtq such that Evs ˝Ψ “ ψs for s “ 0, 1. Likewise,
two acdga maps ψ0 and ψ1 as above are homotopic (in ACDGA) if the homotopy Ψ also
satisfies Ev1 ˝Ψ “ ε, where Ev1 denotes the cdga map ε1 b id : A1 b

Ź

pt, dtq Ñ
Ź

pt, dtq.

Plainly, equality of maps implies homotopy, in both categories. Note that augmented
homotopy is strictly stronger than homotopy. Another useful remark is that homotopic
maps in CDGA induce the same map in cohomology.

Denote by ACDGA0 the full subcategory of ACDGA whose objects have connected coho-
mology. Fix an integer q ě 0.

Definition 3.2. An elementary q-equivalence in ACDGA0 between two ACDGA0-morphisms
Φ0 : A10 Ñ A0 and Φ1 : A11 Ñ A1 consists of two acdga maps, ψ : A1 Ñ A0 and ψ1 : A11 Ñ
A10, both of which are q-equivalences, and such that ψ˝Φ1 is homotopic to Φ0˝ψ

1 in ACDGA.
We denote by »q the associated equivalence relation between morphisms in ACDGA0.

In other words, if Φ : A1 Ñ A and Φ̄ : B1 Ñ B are two such morphisms, we say that
Φ »q Φ̄ in ACDGA0 if there are two zig-zags, Z and Z1, of q-equivalences in ACDGA, and
acdga maps Φ1, . . . ,Φ`´1 such that the following diagram commutes, up to augmented
homotopy:

(3.4)

Z : A A1
ψ0oo ψ1 // ¨ ¨ ¨ A`´1

oo
ψ`´1 // B

Z1 : A1
Φ

OO

A11

Φ1

OO

ψ10oo
ψ11 // ¨ ¨ ¨ A1`´1

Φ`´1

OO

oo
ψ1
`´1 // B1 .

Φ̄

OO

Forgetting augmentations in Definition 3.2, we obtain the equivalence relation »q be-
tween maps in CDGA0. When q “ 8, we will simply write this as Φ » Φ̄.
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Lemma 3.3. Let A and A be two acdgas. Assume H.pAq is connected, and let ρ : Mq Ñ

A be a q-minimal cdga model map as above. Then A »q A in CDGA if and only if there is
a short zig-zag of q-equivalences in ACDGA as in (3.2).

Proof. By the discussion from §3.3, we have that A »q A in CDGA if and only if A and
A share the same q-minimal model Mq. The fact that Mq is connected takes care of the
augmentations. �

3.5. Formal spaces and maps. We conclude this section with some formality notions,
for both spaces and maps, as well as models thereof. To start with, we say that a cdga A is
q-formal if pA., dq »q pH

.
pAq, d “ 0q in CDGA. Clearly, q-formality implies p-formality,

for all p ď q. By definition, a space X is q-formal over k if ΩkpXq has this property. A
q-finite, q-formal space X has the q-finite q-model pH.pXq, d “ 0q. As before, we will
mostly omit q from notation when q “ 8. Compact Kähler manifolds are well-known to
be formal, by the main result from [7].

Following [32, 7, 34], we say that a morphism Φ : A1 Ñ A in CDGA0 is formal if there is
a diagram consisting of two elementary equivalences in CDGA0,

(3.5)

A M
ψoo ψ̄ // pH.pAq, d “ 0q

A1
Φ

OO

M 1
ψ1oo

pΦ

OO

ψ̄1 // pH.pA1q, d “ 0q ,

H
.
pΦq

OO

such that both M and M 1 are minimal Sullivan algebras. Furthermore, we say that a
continuous map f : X Ñ X1 is formal (over k) if the induced morphism between Sullivan
de Rham models, Ωkp f q : ΩkpX1q Ñ ΩkpXq, has this property.

Proposition 3.4. Let f : X Ñ X1 be a continuous map between pointed spaces. Assume
that f is formal over k, and H1p f q is injective. Then Ωp f q » H.p f q in k-ACDGA0.

Proof. In [34, II.3], Vigué-Poirrier uses the formality of the map f to construct a com-
muting diagram in CDGA of the form

(3.6)

ΩpXq
Ź

U 1 b
Ź

U
ψoo ψ̄ // pH.pXq, d “ 0q

ΩpX1q

Ωp f q

OO

Ź

U 1
ψ1oo

?�

j

OO

ψ̄1 // pH.pX1q, d “ 0q

H
.
p f q

OO

where all horizontal arrows are 8-equivalences and j is the canonical inclusion. More-
over, ψ1 and ψ̄1 are minimal model maps (in particular,

Ź

U 1 is connected), and
Ź

U 1 b
Ź

U is a relative minimal Sullivan algebra in the weak sense, with base
Ź

U 1.
The injectivity assumption on H1p f q implies that H.p f q ˝ ψ̄1 is a 0-equivalence. From

the discussion in §3.3, we deduce that U0 “ 0. This shows that
Ź

U 1 b
Ź

U is also
connected. Hence, (3.6) is a commuting diagram in ACDGA0, and our claim follows. �
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4. Deformation theory of representation varieties

Following Goldman–Millson [15] and Manetti [21], we recall, in a convenient form,
two basic properties of the deformation functor associated to a differential graded Lie
algebra (dgl for short). We then apply these techniques to the representation varieties of
discrete groups.

4.1. Deformation functors. We denote by Art the category of Artinian local k-algebras.
Given such an algebra pA,mAq and a differential graded Lie algebra L, we consider the
(nilpotent) dgl L b mA, and the set of solutions (called flat connections) to the Maurer–
Cartan equation,

(4.1) F pLbmAq “ tω P L1
bmA | dω` 1

2rω,ωs “ 0u,

with basepoint 0 P F pLbmAq. Clearly, this construction is bifunctorial. Let

(4.2) G pLbmAq “ exppL0
bmAq

be the (Campbell–Hausdorff) gauge group of the nilpotent Lie algebra L0 b mA, with
underlying set L0 bmA. This group acts bifunctorially on F pLbmAq by

(4.3) exppαq ¨ ω “ ω`
8
ÿ

n“0

adpαqn

pn` 1q!
prα, ωs ´ dαq.

The deformation functor, DefL : ArtÑ Set, is defined by

(4.4) DefLpAq “ F pLbmAq{G pLbmAq.

It is readily seen that every dgl-morphism ψ : L Ñ L1 induces a natural transformation,
Defψ : DefL Ñ DefL1 .

We now may state the Deligne–Schlesinger–Stasheff theorem, as recorded and proved
in [15, Thm. 2.4].

Theorem 4.1. If L »1 L1 in DGL, then the deformation functors DefL and DefL1 are natu-
rally isomorphic.

4.2. Homotopy invariance. The homotopy relation in DGL takes the following form.
Given a dgl L, let us form the dgl Lb

Ź

pt, dtq, endowed with the canonical tensor product
structure. For each s P k, we defined in §3.4 an evaluation cdga map, evs :

Ź

pt, dtq Ñ k,
which sends t ÞÑ s and dt ÞÑ 0. Proceeding as before, we extend this map to a dgl map,
Evs “ idb evs : Lb

Ź

pt, dtq Ñ Lb k “ L.
Two dgl maps ψ0, ψ1 : L Ñ L1 are said to be homotopic if there is a dgl map Ψ : L Ñ

L1 b
Ź

pt, dtq such that Evs ˝Ψ “ ψs for s “ 0, 1. The notion of homotopy between
dgl maps is related to deformation functors via the following basic result of Manetti [21,
Thm. 5.5].
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Theorem 4.2. Let L be a dgl, and let A be a local Artin algebra. Two flat connections
β0, β1 P F pL b mAq are equal in DefLpAq if and only if there is a flat connection ω P

F pLb
Ź

pt, dtq bmAq such that pEvsb idqω “ βs for s “ 0, 1.

This theorem has an immediate corollary, which will be useful in the sequel.

Corollary 4.3. If ψ0, ψ1 : L Ñ L1 are homotopic in DGL, then Defψ0 “ Defψ1 .

4.3. Deformation theory of cdgas. We consider now the bifunctor CDGAˆ LieÑ DGL
which associates to a cdga A and a Lie algebra g the dgl

(4.5) L “ Ab g,

endowed with the canonical tensor product structure ra b g, a1 b g1s “ aa1 b rg, g1s and
differential Bpab gq “ dab g.

We will also need an augmented version of this construction. Given an augmented
cdga pA, εq and a Lie algebra g, we denote by rA “ kerpεq the augmentation differential
ideal, and we consider the sub-dgl rL “ rAb g of the dgl L “ Ab g. This construction is
again bifunctorial.

Remark 4.4. Given a q-equivalence ψ P HomACDGApA, A1q, it is easy to check that the
induced maps, ψ̃ : rA Ñ rA1 and ψ̃ b id : rL Ñ rL1, are again q-equivalences, provided that
both H.pAq and H.pA1q are connected. Consequently, if A »q A1 in ACDGA0 then rL »q rL1

in DGL.

Let g be a Lie algebra. The proof of the next lemma is straightforward.

Lemma 4.5. A CDGA homotopy, Ψ : A Ñ A1 b
Ź

pt, dtq, between two maps, ψ0 and ψ1,
induces a DGL homotopy, Ψ b id : A b g Ñ A1 b g b

Ź

pt, dtq, between the maps ψ0 b id
and ψ1 b id. Moreover, if Ψ is an augmented homotopy, then Ψ induces a DGL homotopy,
rΨb id : rAb gÑ rA1 b gb

Ź

pt, dtq, between the maps ψ̃0 b id and ψ̃1 b id.

4.4. Deformation theory of augmented cdgas. Our next goal is to relate q-types of
cdgas to the deformation theory of acdgas. Fix q ě 1, and let Z be a zig-zag of q-
equivalences in ACDGA,

(4.6) A0 A1
ψ0oo ψ1 // ¨ ¨ ¨ A`´1

oo
ψ`´1 // A` ,

where H0pA0q “ k ¨ 1. By Remark 4.4 and Theorem 4.1, the zig-zag Z induces a natural
bijection

(4.7) βZ : F prA` b gbmAq{G prA` b gbmAq
» // F prA0 b gbmAq{G prA0 b gbmAq

for all local Artin algebras A. It is important to note that, if Z and Z1 are two different
zig-zags of q-equivalences connecting A0 to A`, then the bijections βZ and βZ1 may also be
different.
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Proposition 4.6. Let ρ : Mq Ñ A0 be a q-minimal model map. There is then a short
zig-zag of q-equivalences in ACDGA,

S : A0 Mq
ρoo ρ̄ // A` ,

such that βZ “ βS .

Proof. We will construct, by induction on 0 ď i ď `, a collection of q-minimal model
maps ρi : Mq Ñ Ai, which form, together with the maps ψi from (4.6), homotopy-com-
mutative triangles in ACDGA, starting with ρ0 “ ρ. Once this done, we set ρ̄ “ ρ`. The
equality βZ “ βS then follows from Lemma 4.5 and Corollary 4.3.

For the induction step, we first assume that ψi : Ai Ñ Ai`1. Then we take ρi`1 “ ψi ˝ ρi.
Finally, suppose that ψi : Ai`1 Ñ Ai. The lifting property up to homotopy for cdga maps
also holds for acdga maps, and implies that we may find a cdga map ρi`1 : Mq Ñ Ai`1

such that ψi ˝ ρi`1 is homotopic to ρi in ACDGA. The fact that ρi`1 must be a q-equivalence
is easily checked, thereby completing the proof. �

4.5. Representation varieties. Let π be a discrete group, and let G be a k-linear algebraic
group. The set Hompπ,Gq of group homomorphisms from π to G has a natural structure
of an affine scheme. This set depends bi-functorially on π and G, and has a natural base
point, the trivial representation, 1. Furthermore, G acts by conjugation on Hompπ,Gq.

Now suppose π is a finitely generated group. (Note that the fundamental group π “
π1pX, xq of a pointed CW-space is finitely generated if and only if X is 1-finite.) In this
case, the set Hompπ,Gq has a natural structure of affine variety, called the G-representation
variety of π. Moreover, every homomorphism ϕ : π Ñ π1 induces an algebraic morphism
between the corresponding representation varieties, ϕ! : Hompπ1,Gq Ñ Hompπ,Gq. We
will come back to this point in Lemma 5.3.

Clearly, the G-representation variety of the free group Fn is equal to the n-fold direct
product Gn. Much is known about the varieties of commuting matrices, for instance,
that HompZ2,GLnpCqq is irreducible. Nevertheless, many open questions remain about
the precise structure of the varieties HompZn,Gq, see for instance [3, 1] and references
therein. Perhaps the most-studied family of representation varieties is that of fundamental
groups of closed orientable surfaces Σg. For instance, it is known that Hompπ1pΣgq,Gq
is connected if G “ SLnpCq, and an absolutely irreducible and Q-rational variety if G “

GLnpCq, see [14, 31].

4.6. Flat connections. The infinitesimal counterpart to the representation varieties is pro-
vided by the space of flat connections. Given a cdga A and a Lie algebra g, we will denote
by F pA, gq the set of flat connections on the dgl Ab g. This set behaves bi-functorially,
and has a natural basepoint, the trivial flat connection 0. For a local Artin k-algebra A, the
gauge group

(4.8) G pAb gbmAq “ exppA0
b gbmAq
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acts naturally on F pAbgbmAq. If A is an augmented cdga, we have that F prAbgbmAq “

F pAb gbmAq and G prAb gbmAq Ď G pAb gbmAq, with the augmented gauge group
acting by restriction. In the particular case when A is connected, the augmented gauge
group is trivial, and we obtain a natural identification,

(4.9) F pA, gbmAq “ Def
rAbgpAq.

If both A1 and g are finite-dimensional, then the set F pA, gq has a natural structure of
affine variety, which we shall call the g-variety of flat connections on the cdga A.

Now let pX, xq be a pointed space with fundamental group π, and let G be a linear
algebraic group over k “ R or C, with Lie algebra g. The monodromy construction from
[9, §6.3] gives a map

(4.10) mon: F pΩpX, kq, gq // Hompπ,Gq

which extends the classical monodromy map for smooth manifolds, and has nice naturality
properties. Furthermore, for each local Artin k-algebra A, we have a natural monodromy
map

(4.11) mon: F pΩpX, kq, gbmAq // Hompπ, exppgbmAqq .

The equivariance property of the monodromy map for smooth manifolds described in
[15, (5-8)] can be extended to arbitrary topological spaces, as follows.

Lemma 4.7. For any gauge equivalence a P G pΩpX, kq b gbmAq, we have a commuting
diagram,

F pΩpX, kq, gbmAq
mon //

a
��

Hompπ, exppgbmAqq

ca

��
F pΩpX, kq, gbmAq

mon // Hompπ, exppgbmAqq,

where ca stands for the conjugation action by ´pε b idqpaq and ε b id : Ω0pX, kq b g b
mA Ñ g b mA is given by the augmentation ε of ΩpX, kq corresponding to the basepoint
x. Consequently, the monodromy map factors through the action of the augmented gauge
group.

We will repeatedly work under the assumptions of Theorem B from [9]. Namely, we
fix an integer q ě 1, and we let X be a pointed, q-finite space with fundamental group π.
Next, we assume there is a q-finite cdga A such that ΩpX, kq »q A in CDGA. Finally, we
let G be a linear algebraic group over k “ R or C, with Lie algebra g.

Now let ρ1 : N Ñ ΩpX, kq be a ‘π1-adapted’ 1-minimal model map, as in [9, §6.4]. By
minimal model theory of cdgas, we may extend ρ1 to a q-minimal model map, ρq : Mq Ñ

ΩpX, kq. By Lemma 3.3, we may find a zig-zag of q-equivalences in ACDGA of the form

(4.12) S : ΩpX, kq Mq
ρqoo

ρ̄q // A
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which fits into the basic setup from [9, §7.2]. We will call such zig-zag special.
The next result is a topological analog of Theorem 6.8 from [15], proved only for

smooth manifolds.

Theorem 4.8. Let X be a 1-finite space. Then the natural map

mon: F pΩpX, kq b gbmAq{G prΩpX, kq b gbmAq // Hompπ, exppgbmAqq

from Lemma 4.7 is a bijection, for all local Artin k-algebras A.

Proof. Let ρ1 : N Ñ ΩpX, kq be a π1-adapted 1-minimal model map. By [9, Prop. 6.16],
the composite

F pN b gbmAq
ρ1bid // F pΩpX, kq b gbmAq

mon // Hompπ, exppgbmAqq

is a bijection. Since N is connected, formula (4.9) allows us to replace F pN b gbmAq

by Def
ĂN bg
pAq. Using now Lemma 4.7, we see that the above bijection is equal to the

composite

Def
ĂN bg
pAq

ρ̃1bid // Def
rΩpX,kqbgpAq

mon // Hompπ, exppgbmAqq .

Finally, it follows from Theorem 4.1 and Remark 4.4 that the map ρ̃1bid is also a bijection,
and this completes the proof. �

Assume again that the hypotheses of Theorem B from [9] are satisfied. Let Z be a zig-
zag of q-equivalences in ACDGA as in (4.6), connecting A0 “ ΩpX, kq to A` “ A. Using
Theorem 4.8 and formula (4.9), we may then define a natural bijection

(4.13) αZ :“ mon ˝βZ : F pA, gbmAq
» // Hompπ, exppgbmAqq .

Corollary 4.9. For any zig-zag Z as above, there is a special zig-zag S such that αZ “ αS .

Proof. Let ρq : Mq Ñ ΩpX, kq be a q-minimal model map extending a π1-adapted 1-
minimal model map ρ1 : N Ñ ΩpX, kq. By Proposition 4.6, there is a special zig-zag S
as in diagram (4.12) such that βZ “ βS . The claim follows. �

5. Cohomology jump loci and naturality properties

We now define two types of cohomology jump loci (one for spaces and the other for
cdgas), and study some of the naturality properties these algebraic varieties enjoy.
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5.1. Embedded cohomology jump loci. Let pX, xq be a pointed, path-connected space.
Set π “ π1pX, xq. For a k-linear algebraic group G, the set Hompπ,Gq is a parameter
space for finite-dimensional local systems on X of type G. When the space X is 1-finite
(or, equivalently, when the group π is finitely generated), this parameter space is an affine
k-variety. When k “ R or C, we let Hompπ,Gqp1q be the analytic germ at 1 of this variety,
and we denote by R “ Rpπ,Gq the analytic local algebra of this germ.

Given a cdga A.and a Lie algebra g, let F pA, gq be the set of g-valued flat connections
on A. When both A1 and g are finite-dimensional, this set is an affine variety. We shall
denote by R “ RpA, gq the analytic local algebra of the germ F pA, gqp0q. Assume now that
both X and A are 1-finite, and that ΩkpXq »1 A as cdgas. Letting g be the Lie algebra of
G, it then follows from [9, Prop. 7.6] that the local algebras R and R are isomorphic.

Given a representation τ : π Ñ GLpVq, we let Vτ denote the local system on X as-
sociated to τ, that is, the left π-module V defined by g ¨ v “ τpgqv. Furthermore, we
let H.pX,Vτq be the twisted cohomology of X with coefficients in this local system, see
e.g. [35].

Definition 5.1. The characteristic varieties of the space X in degree i ě 0 and depth r ě 0
with respect to a representation ι : G Ñ GLpVq are the sets

V i
r pX, ιq “ tρ P Hompπ,Gq | dimk Hi

pX,Vι˝ρq ě ru.

For each i ě 0, the sequence tV i
r pX, ιqurě0 is a descending filtration of Hompπ,Gq “

V i
0 pX, ιq. In the rank 1 case, i.e., when ι is the canonical identification kˆ Ñ GL1pkq, we

will drop the map ι from the notation, and simply write V i
r pXq. When X “ Kpπ, 1q is a

classifying space for the group π, we will denote the corresponding characteristic varieties
by V i

r pπ, ιq.
We will refer to the pairs

(5.1)
`

Hompπ,Gq,V i
r pX, ιq

˘

as the (global) embedded jump loci of X with respect to ι. Clearly, such pairs depend only
on the homotopy type of X and on the representation ι. If ι is a rational representation and
X is a q-finite space for some q ě 1, then the sets V i

r pX, ιq are closed subvarieties of the
representation variety Hompπ,Gq, for all i ď q and r ě 0; see [9, 4].

5.2. Infinitesimal cohomology jump loci. To define the infinitesimal counterpart of these
loci, we start with a cdga A., a Lie algebra g, and a representation θ : gÑ glpVq. For each
flat connection ω P F pA, gq, we turn the tensor product Ab V into a cochain complex,

(5.2) pAb V, dωq : A0 b V
dω // A1 b V

dω // A2 b V
dω // ¨ ¨ ¨ ,

using as differential the covariant derivative dω “ d b idV ` adω. Here, if ω “
ř

i ai b gi,
with ai P A1 and gi P g, then adωpab vq “

ř

i aiab θpgiqpvq, for all a P A and v P V . It is
readily checked that the flatness condition on ω insures that d2

ω “ 0, see [9].
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Definition 5.2. The resonance varieties of the cdga A. in degree i ě 0 and depth r ě 0
with respect to a representation θ : gÑ glpVq are the sets

(5.3) R i
rpA, θq “ tω P F pA, gq | dimk Hi

pAb V, dωq ě ru.

For each i ě 0, the sequence tR i
rpA, θqurě0 is a descending filtration of F pA, gq “

R i
0pA, θq. In the rank one case, i.e., the case when θ is the canonical identification k Ñ
gl1pkq, we will simply write R i

rpAq for the corresponding sets.
We will refer to the pairs

(5.4)
`

F pA, gq,R i
rpA, θq

˘

as the (global) infinitesimal embedded jump loci of A with respect to θ. If A is q-finite
for some q ě 1, and both g and V are finite-dimensional, the sets R i

rpA, θq are closed
subvarieties of F pA, gq, for all i ď q and r ě 0; see [9, 4].

Assume now that both the space X and the cdga A. are q-finite, for some q ě 1,
and that ΩkpXq »q A as cdgas. Let ι : G Ñ GLpVq be a rational representation, and
let θ : g Ñ glpVq be its tangential representation. As shown in [9, Thm. B], there is
then an analytic isomorphism F pA, gqp0q »ÝÑ Hompπ,Gqp1q restricting to isomorphisms
R i

rpA, θqp0q
»ÝÑ V i

r pX, ιqp1q between the reduced analytic germs of the corresponding jump
loci, for all i ď q and r ě 0.

We aim in this section at also taking into account in this setting of continuous maps
between pointed spaces and of augmented maps between their q-models. We start with
a preliminary observation, which follows directly from the definitions. Namely, for all
i ď q and r ě 0,

(5.5) 1 P V i
r pX, ιq ô 0 P R i

rpA, θq ô bi ¨ dimpVq ě r,

where bi “ bipXq “ bipAq denotes the i-th (untwisted) Betti number.

5.3. Naturality properties of representation varieties. As mentioned previously, both
ambient spaces for jump loci, Hompπ,Gq and F pA, gq, are bifunctorial. On the other
hand, for continuous and cdga maps, naturality of (global) jump loci requires certain
connectivity hypotheses. To begin, we only assume the minimally required connectivity
and finiteness conditions.

Lemma 5.3. Let f : pX, xq Ñ pX1, x1q be a 0-connected, pointed map, and let f7 be the
induced homomorphism on fundamental groups. Assume that X is 1-finite. Then, for every
linear algebraic group G, the morphism induced by f7 on representation varieties,

(5.6) f !
7

: Hompπ1pX1q,Gq // Hompπ1pXq,Gq ,

is an isomorphism onto a closed subvariety.

Proof. Our 0-connectivity assumption on f means that the homomorphism f7 is surjective.
Our 1-finiteness assumption on X, then, implies that both fundamental groups are finitely
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generated. Let us present π1pXq as the quotient Fm{R of a free group on m generators, and
then use the presentation for π1pX1q induced by f7.

By construction, the representation variety Hompπ1pXq,Gq is the closed subvariety of
Gm defined by the equations given by the relators in R. The variety Hompπ1pX1q,Gq sits
also in Gm, with the same defining equations as Hompπ1pXq,Gq, plus the equations coming
from the lifts to Fm of the elements of kerp f7q. The claim readily follows. �

5.4. Holonomy Lie algebras. Before proceeding, let us recall from [22, §4] the con-
struction of the holonomy Lie algebra hpAq of a 1-finite cdga pA, dq. Set Ai “ pAiq˚, and
let LpA1q be the free Lie algebra on the dual vector space A1. We then define

(5.7) hpAq :“ LpA1q{ idealpimpd˚ `Y˚qq,

where d˚ : A2 Ñ A1 “ L
1pA1q and Y˚ : A2 Ñ A1 ^ A1 “ L

2pA1q are the maps dual to the
differential and the multiplication map in A, respectively. This construction is functorial:
if ψ : A1 Ñ A is a morphism of 1-finite cdgas, then the linear map ψ1 “ pψ1q˚ : A1 Ñ

A11 extends to a Lie algebra morphism Lpψ1q : LpA1q Ñ LpA11q, which in turn induces
a Lie algebra morphism hpψq : hpAq Ñ hpA1q. Finally, as shown in [22, Prop. 4.5], the
canonical isomorphism A1 b g »ÝÑ HompA1, gq restricts to an identification F pA, gq –
HomLiephpAq, gq.

Lemma 5.4. Let ψ : A1 Ñ A be a 0-connected cdga map. Assume that A is 1-finite. Then,
for every finite dimensional Lie algebra g, the morphism

(5.8) ψb id : F pA1, gq // F pA, gq

is an isomorphism onto a closed subvariety.

Proof. Our 0-connectivity assumption on ψ means that both A and A1 are connected
cdgas, and that ψ is injective in degree 1. Our 1-finiteness assumption on A, then, im-
plies that A1 is also 1-finite. Furthermore, the injectivity of ψ1 also implies that the map
hpψq : hpAq Ñ hpA1q is surjective.

Using the above discussion, we may replace the affine map ψbid : F pA1, gq Ñ F pA, gq
between spaces of flat connections by the induced map

(5.9) hpψq! : HomLiephpA1q, gq // HomLiephpAq, gq

between representation varieties of Lie algebras. The desired conclusion follows by the
same argument as in Lemma 5.3, with groups replaced by Lie algebras. �

As we saw in the above proof, the 0-connectivity of the cdga map ψ implies the sur-
jectivity of the Lie algebra map hpψq. The next example shows that the latter property is
strictly weaker than the former. Nevertheless, we chose to state the lemma the way we
did, since higher connectivity properties for cdga maps will be needed later on.
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Example 5.5. Let A be the cohomology ring of S 1 _ S 1, with trivial product and differ-
ential. Plainly, the holonomy Lie algebra h “ hpAq is the free Lie algebra on 2 generators.
Let h{Γ3phq be the third nilpotent quotient of h, and let A1 be the cochain cdga of this
nilpotent Lie algebra. Denote by ψ : A11 Ñ A1 the dual of the composite A1 Ñ hÑ h{Γ3h.
It is not hard to check that ψ extends to a morphism ψ : A1 Ñ A between finite cdgas,
with the property that hpψq is surjective. On the other hand, the map ψ is not 0-connected,
as can be seen by inspecting dimensions in degree 1.

5.5. Naturality properties of jump loci. We now turn to the naturality properties of
embedded cohomology jump loci.

Lemma 5.6. Let f : pX, xq Ñ pX1, x1q be a q-connected, pointed map, and let f7 be the
induced homomorphism on fundamental groups. Let ι : G Ñ GLpVq be a representation.
Then the natural map

(5.10) H.p f q : H.pX1,Vι˝ρ1q // H.pX,Vι˝ρq ,

where ρ “ f !
7
pρ1q for ρ1 P Hompπ1pX1q,Gq, is q-connected.

Proof. Without loss of generality, we may assume that G “ GLpVq and ι is the identity
map. Using standard CW-approximation results from homotopy theory, as recounted for
instance in [35, Ch. V], we may replace f , up to homotopy, by the inclusion of a CW-
subcomplex X into a CW-complex X1. Since f is assumed to be q-connected, X1 may be
obtained by attaching cells of dimension at least q` 2 to X.

Using the long exact sequence in cohomology for the pair pX1, Xq, we see that our claim
is equivalent to the vanishing of the twisted cohomology groups HipX1, X; Vq for i ď q`1,
for an arbitrary local system V on X1. Denote by tX1nu the relative skeletal filtration of X1.
It is well-known that H.pX1, X; Vq can be computed as the cohomology of the cellular
twisted cochain complex, whose degree n term is HnpX1n, X

1
n´1; Vq, see e.g. [35, Ch. VI].

On the other hand, X1n “ X1n´1 “ X for n ď q` 1, and this completes the proof. �

Lemma 5.7. Let ψ : A1 Ñ A be a q-connected map in CDGA, and let θ : g Ñ glpVq be a
Lie algebra representation. Then the natural map

(5.11) H.pψq : H.pA1 b V, dω1q // H.pAb V, dωq ,

where ω “ pψb idqpω1q for ω1 P F pA1, gq is q-connected.

Proof. Without loss of generality, we may assume that g “ glpVq and θ is the identity
map. Since ψ is q-connected, the cochain map ψb id : pA1bV, dω1q Ñ pAbV, dωq is again
q-connected. The claim follows from Lemma 2.6 in [22] and its proof. �

Corollary 5.8. Let f : X Ñ X1 be a pq ´ 1q-connected map between q-finite pointed
spaces, for some q ě 1, and let ι : G Ñ GLpVq be a rational representation. Then the
induced morphism

(5.12) f !
7

: Hompπ1pX1q,Gq // Hompπ1pXq,Gq
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is a closed embedding which induces isomorphisms V i
r pX

1, ιq Ñ V i
r pX, ιqXHompπ1pX1q,Gq

for all i ă q and r ě 0, and embeddings V q
r pX1, ιq Ñ V q

r pX, ιq for all r ě 0.

Proof. The fact that f !
7

is a closed embedding follows from Lemma 5.3. The other asser-
tions are immediate consequences of Lemma 5.6. �

If f : π� π1 is an epimorphism between finitely generated groups, the case q “ 1 from
Corollary 5.8 implies that the morphism f ! : Hompπ1, kˆq Ñ Hompπ, kˆq sends V 1

1 pπ
1q

into V 1
1 pπq. Without the 0-connectivity (i.e., surjectivity) assumption on f , the conclusion

may fail, as illustrated in the following simple example.

Example 5.9. Let f : ZÑ F2 “ xx, yy be the inclusion sending 1 to x. Then f ! : pkˆq2 Ñ
kˆ is the projection onto the first factor. On the other hand, V 1

1 pF2q “ pkˆq2, whereas
V 1

1 pZq “ t1u.

Corollary 5.10. Let ψ : A1 Ñ A be a pq ´ 1q-connected map between q-finite cdgas
for some q ě 1, and let θ : g Ñ glpVq be a Lie algebra representation, with g and V
finite-dimensional. Then the natural morphism

(5.13) ψb id : F pA1, gq // F pA, gq

is a closed embedding which induces isomorphisms R i
rpA

1, θq Ñ R i
rpA, θq XF pA1, gq for

all i ă q and r ě 0, and embeddings Rq
r pA1, θq Ñ Rq

r pA, θq for all r ě 0.

Proof. The fact that ψ b id is a closed embedding follows from Lemma 5.4. The other
assertions are immediate consequences of Lemma 5.7. �

Corollary 5.11. Let X be a pointed space with fundamental group π, let f : X Ñ K :“
Kpπ, 1q be a classifying map, and let ι : G Ñ GLpVq be a representation. Then the
induced isomorphism f !

7
: Hompπ1pKq,Gq Ñ Hompπ1pXq,Gq restricts to isomorphisms

V i
r pπ, ιq – V i

r pX, ιq for i ď 1 and r ě 0.

Proof. The map f is 1-connected, and so the claim follows from Lemma 5.6. �

5.6. Finite families of epimorphisms. We conclude this section with a setup that will
often recur in the sequel. Let π be a finitely generated group, and let t f : π� π f u fPE be a
finite family of epimorphisms. Let ι : G Ñ GLpVq be a rational representation of C-linear
algebraic groups. By Corollary 5.8, the natural inclusion

(5.14) Hompπ,Gq Ě
ď

fPE

f ! Hompπ f ,Gq

induces for each i ď 1 and r ě 1 an inclusion

(5.15) V i
r pπ, ιq Ě

ď

fPE

f !V i
r pπ f , ιq.
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One of our main goals for the remainder of this paper is to delineate several large classes
of groups endowed with the required finite families of epimorphisms, for which the above
two inclusions hold as equalities near 1.

6. A natural comparison between embedded jump loci

This section is devoted to proving our main naturality result.

6.1. Functors of Artin rings. Returning now to the setup from §§4.5-4.6, let X be a
pointed, 1-finite space, and assume there is a 1-finite cdga such that ΩkpXq »1 A in
CDGA. Let π “ π1pXq, and let G be a linear algebraic group, with Lie algebra g. We
wish to compare the analytic germs Hompπ,Gqp1q and F pA, gqp0q. Let R and R be the
respective coordinate local algebras. By Artin approximation, we may start by looking at

the completions of these rings, pR and pR. Alternatively, we may analyze the corresponding
functors of Artin rings,

(6.1) h
pRpAq “ HomppR,Aq and h

pR
pAq “ HomppR,Aq,

for A a local Artin algebra, where Hom stands for morphisms of local algebras. We recall
that h

pRpAq “ Hompπ, exppgbmAqq, see [15], and h
pR
pAq “ F pA, gbmAq, see [9].

Let Z be a zig-zag of 1-equivalences in ACDGA connecting ΩkpXq to A, as in (4.6). It
follows from Theorem 4.8 that the natural bijection αZ defined in (4.13) yields an isomor-
phism

(6.2) αZ : pR // pR .

Assume now that X and A are q-finite, for some q ě 1, and that ΩkpXq »q A in CDGA.
As usual, let ι : G Ñ GLpVq be a rational representation, with tangential representation
θ : g Ñ glpVq. For each i ď q and r ě 0, we denote by Ii

r Ď R the radical of the defining
ideal of the germ V i

r pX, ιqp1q inside Hompπ,Gqp1q. Similarly, we will let I
i
r Ď R stand for

the radical of the defining ideal of the germ R i
rpA, θqp0q inside F pA, gqp0q.

Lemma 6.1. For any zig-zag Z as above, the isomorphism αZ : pR Ñ pR from (6.2) identifies
pIi
r with pIi

r, for all i ď q and r ě 0.

Proof. In view of Corollary 4.9, we may replace the zig-zag Z by a special zig-zag S . The
claim for S follows from [9, Lem. 9.9]. �

Now let f : X Ñ X1 be a pointed map, let Φ : A1 Ñ A be a cdga map, and assume
both spaces and cdgas are q-finite, for some q ě 1. Let φ : R Ñ R1 be the morphism of
local rings induced by the map f !

7
: Hompπ1,Gq Ñ Hompπ,Gq, and let φ̄ : R Ñ R

1
be the

morphism of local rings induced by the map Φb id : F pA1, gq Ñ F pA, gq.
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Suppose there is a q-equivalence in ACDGA0 between the maps Ωkp f q : ΩkpX1q Ñ ΩkpXq
and Φ : A1 Ñ A. We then obtain zig-zags Z1 from ΩkpX1q to A1 and Z from ΩkpXq to A; let

α1 : pR1 Ñ pR1 and α : pR Ñ pR be the corresponding isomorphisms, given by (6.2).

Lemma 6.2. With the above setup, we have that α1 ˝ φ̂ “ ˆ̄φ ˝ α.

Proof. In terms of functors of Artin rings, we have that hα “ mon ˝βZ and hα1 “ mon ˝βZ1 .
First we show that the following diagram commutes, for every local Artin algebra A.

(6.3)

F pA, gbmAq
F prAb gbmAq

G prAb gbmAq

βZ // F p
rΩpXq b gbmAq

G prΩpXq b gbmAq

F pA1, gbmAq

Φbid

OO

F prA1 b gbmAq

G prA1 b gbmAq

βZ1 //

Def
rΦbidpAq

OO

F prΩpX1q b gbmAq

G prΩpX1q b gbmAq

Def
rΩp f qbidpAq

OO

Plainly, it is enough to verify the commutativity of this diagram for an elementary q-
equivalence in ACDGA0. In this case, βZ “ Def

rψbidpAq and βZ1 “ Def
rψ1bidpAq, by construc-

tion. The claim now follows from Lemma 4.5 and Corollary 4.3.
Next, we show that the diagram

(6.4)

F prΩpXq b gbmAq

G prΩpXq b gbmAq

mon // Hompπ1pXq, exppgbmAqq

F prΩpX1q b gbmAq

G prΩpX1q b gbmAq

Def
rΩp f qbidpAq

OO

mon // Hompπ1pX1q, exppgbmAqq

f !
7

OO

commutes, where the horizontal arrows are as in Theorem 4.8. In fact, commutativity
holds even before taking quotients by the gauge actions, due to the naturality properties
of the monodromy construction, as detailed in [9, §6.3].

It is now straightforward to check that the natural transformation between functors of
Artin rings induced by ˆ̄φ takes the value Φ b id on A, whereas for φ̂ we obtain the value
f !
7
. The commutativity of the above two diagrams now verifies the claim. �

6.2. A natural comparison between embedded jump loci. We now consider a family
of maps between pointed spaces, t f : X Ñ X f u fPE, indexed by a finite set E, and we let
t f7 : πÑ π f u be the family of induced homomorphisms on fundamental groups. We also
consider a family of ACDGA maps, tΦ f : A f Ñ Au fPE, indexed by the same set, and we
will assume that A and A f are connected cdgas. Fix an integer q ě 1.
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Suppose that Ωp f q »q Φ f in ACDGA0. We then have a commuting diagram as in (3.4),

(6.5)

Z f : ΩpXq A1
ψ0oo ψ1 // ¨ ¨ ¨ A`´1

oo
ψ`´1 // A

Z1f : ΩpX f q

Ωp f q

OO

A11

Φ1

OO

ψ10oo
ψ11 // ¨ ¨ ¨ A1`´1

Φ`´1

OO

oo
ψ1
`´1 // A f .

Φ f

OO

Let βZ f and βZ1f
be the associated natural bijections, defined as in display (4.7).

Definition 6.3. We will say that Ωp f q »q Φ f in ACDGA0, uniformly with respect to f P E
if the bijection βZ f is independent of f .

We are now in a position to state and prove our main naturality result. As usual, G is
a k-linear algebraic group (where k “ R or C), and g is its Lie algebra. Furthermore, we
consider a rational representation ι : G Ñ GLpVq over k, and we let θ : g Ñ glpVq be the
tangential representation.

Theorem 6.4. Suppose the following conditions hold:
(1) All the above spaces and cdgas are q-finite.
(2) Both f and Φ f are pq´ 1q-connected maps, for all f P E.
(3) Ωp f q »q Φ f in ACDGA0, uniformly with respect to f P E.

Then we may find local analytic isomorphisms a : F pA, gqp0q »ÝÑ Hompπ,Gqp1q and
a f : F pA f , gqp0q

»ÝÑ Hompπ f ,Gqp1q for all f P E such that the following diagram com-
mutes, for all f P E,

F pA, gqp0q
a // Hompπ,Gqp1q

F pA f , gqp0q

Φ fbid

OO

a f // Hompπ f ,Gqp1q .

f !
7

OO

Moreover, for all f P E, i ď q, and r ě 0, this construction induces a commuting
diagram of (local, reduced) embedded jump loci,

pF pA, gq,R i
rpA, θqqp0q

a // pHompπ,Gq,V i
r pX, ιqqp1q

pF pA f , gq,R i
rpA f , θqqp0q

Φ fbid

OO

a f // pHompπ f ,Gq,V i
r pX f , ιqqp1q ,

f !
7

OO

where both horizontal arrows are isomorphisms of analytic pairs.

Proof. Due to our connectivity assumptions, Corollaries 5.8 and 5.10 apply, thereby show-
ing that both f !

7
and Φ f b id respect the corresponding (global) jump loci. We will deduce

all other claims from Proposition 2.3.
To begin with, we denote by φ f : R Ñ R f and φ̄ f : R Ñ R f the morphisms of analytic

algebras corresponding to the local analytic maps f !
7

: Hompπ f ,Gqp1q Ñ Hompπ,Gqp1q
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and Φ f b id : F pA f , gqp0q Ñ F pA, gqp0q, respectively. To verify that both φ f and φ̄ f are
epimorphisms, we may use a standard, equivalent property, namely, the injectivity of the
associated natural transformation between Hom-functors, see for instance [33, III.4]. In
turn, this property readily follows from the injectivity on A-points of the corresponding
morphisms between affine coordinate rings, for an arbitrary commutative algebra A.

For representation varieties, the map on A-points is given by f !
7

: Hompπ f ,GpAqq Ñ
Hompπ,GpAqq. Clearly, this map is injective, since by assumption, f is 0-connected, i.e.,
f7 is surjective. Likewise, for varieties of flat connections, the map on A-points is given by
Φ fbid : F pA fbgbAq Ñ F pAbgbAq. Again, this map is injective, since by assumption
Φ f is 0-connected, i.e., injective. This shows that the first preliminary hypotheses from
Proposition 2.3 are satisfied.

For i ď q and r ě 0, let Ii
r Ď R and I

i
r Ď R be defining radical ideals for the reduced

analytic germs V i
r pX, ιqp1q and R i

rpA, θqp0q, as in Lemma 6.1. Similarly, for f P E, let

Ii
rp f q Ď R f and I

i
rp f q Ď R f be defining radical ideals for V i

r pX f , ιqp1q, and R i
rpA f , θqp0q.

We deduce from display (5.5) that Ii
r ‰ R if and only if I

i
r ‰ R, which happens precisely

when r ď bi ¨ dimpVq, where recall bi “ bipXq “ bipAq. Similarly, Ii
rp f q is a proper ideal

if and only I
i
rp f q is a proper ideal.

Note that Ii
r “ R is equivalent to V i

r pX, ιqp1q “ ∅, and similarly for Ii
rp f q. By Corollary

5.8, if V i
r pX, ιqp1q is empty, then V i

r pX f , ιqp1q is also empty. Consequently, if Ii
r is non-

proper, then Ii
rp f q is also non-proper. Likewise, Corollary 5.10 implies the following: if

I
i
r is non-proper, then I

i
rp f q is also non-proper.

The pairs pi, rq with 0 ď i ď q and 0 ď r ď bi ¨ dimpVq form a finite set, which we will
denote by F. Plainly, we need to verify the second claim of the theorem only for the pairs
pi, rq P F and the maps f P E for which the ideal Ii

rp f q is proper.
By assumption (3), Ωp f q »q Φ f in ACDGA0, uniformly with respect to f P E. In

particular, we have a zig-zag Z f of q-equivalences from ΩpXq to A and a zig-zag Z1f from
ΩpX f q to A f for each f P E, as in diagram (6.5). Let

(6.6) α f :“ mon ˝βZ1f
: pR f

»ÝÑ
pR f

be the isomorphism from (6.2). By our uniformity assumption, the isomorphisms mon ˝βZ f

coincide with a fixed isomorphism, α : pR »ÝÑ
pR.

It follows from Lemma 6.1 that the isomorphism α f identifies the ideal pIi
rp f qwithpIi

rp f q,
for all i ď q and r ě 0, and for all f P E. Likewise, the isomorphism α identifies the ideal
pIi

r with pIi
r, for all i ď q and r ě 0. Finally, assumption (4) from Proposition 2.3 follows

from Lemma 6.2.
The desired conclusions follow from Proposition 2.3, applied to the above ideals. �
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6.3. Naturality with respect to a single map. For a one-element family E “ t f u, the
uniform equivalence property from Definition 6.3 reduces to Ωp f q »q Φ f in ACDGA0. We
thus have the following immediate corollary to Theorem 6.4.

Corollary 6.5. Let f : X Ñ X1 be a continuous, pq´ 1q-connected map between q-finite,
pointed spaces, for some q ě 1. Suppose Φ : A1 Ñ A is a pq ´ 1q-connected cdga map
between q-finite cdgas such that Ωp f q »q Φ in ACDGA0. We then may find local analytic
isomorphisms a and a1 which fit into the diagram

F pA, gqp0q
a // Hompπ1pXq,Gqp1q

F pA1, gqp0q

Φbid

OO

a1 // Hompπ1pX1q,Gqp1q .

f !
7

OO

Furthermore, for all i ď q, and r ě 0, this construction induces a commuting diagram of
(local, reduced) embedded jump loci,

pF pA, gq,R i
rpA, θqqp0q

a // pHompπ1pXq,Gq,V i
r pX, ιqqp1q

pF pA1, gq,R i
rpA

1, θqqp0q

Φbid

OO

a1 // pHompπ1pX1q,Gq,V i
r pX

1, ιqqp1q ,

f !
7

OO

where both horizontal arrows are isomorphisms of analytic pairs.

Here is a situation where this type of property holds.

Lemma 6.6. Let f : X Ñ X1 be a continuous map between pointed spaces, and assume
H.p f q is q-connected, for some q ě 1. Let A be a connected cdga, and suppose A is a
q-model for X. Then Ωp f q »q idA in ACDGA0.

Proof. Consider the following commuting diagram in ACDGA0,

(6.7)

ΩpXq

Mq

ρhh

ρ1vv

ρ̄1 // A ,

ΩpX1q

Ωp f q

OO

where ρ1 and ρ̄1 are q-minimal model maps provided by the assumption that ΩpX1q »q

ΩpXq »q A. Clearly, the map ρ “ Ωp f q ˝ ρ1 is a q-equivalence, since both Ωp f q and ρ1

are. Hence, Ωp f q »q idA in ACDGA0, and the claim follows. �

Corollary 6.7. Fix q ě 1. Let f : X Ñ X1 be a pq ´ 1q-connected map between q-finite,
pointed spaces, such that H.p f q is q-connected. Let A be a q-finite cdga, and suppose A
is a q-model for X. Then the conclusions of Corollary 6.5 hold for A1 “ A and Φ “ idA.

We conclude with one more class of spaces and maps where Corollary 6.5 applies.
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Proposition 6.8. Let f : X Ñ X1 be a pq ´ 1q-connected map between q-finite, pointed
spaces, for some q ě 1. Assume that f is formal over k. Then the conclusions of Corollary
6.5 hold for Φ “ H.p f q : H.pX1, kq Ñ H.pX, kq.
Proof. Our connectivity hypothesis implies that H1p f q is injective. The claim follows at
once from Proposition 3.4. �

7. Kähler manifolds

In this section we show that pointed holomorphic maps between compact Kähler mani-
folds can be uniformly modeled by the homomorphisms induced in (real) cohomology. As
an application, we derive a structural result on the germs at the origin of rank 2 embedded
jump loci of Kähler groups.

7.1. Essentially rank one flat connections. We start with some preliminary lemmas.

Lemma 7.1. A non-abelian Lie subalgebra g Ď sl2pCq is either equal to sl2pCq or is
isomorphic to the standard Borel subalgebra, sol2pCq.

Proof. Easy exercise. �

We now recall a few facts from [22]. Let A be a cdga, let g be a Lie algebra, and let
F pA, gq Ă A1 b g be the set of g-valued flat connections on A. Let us define F 1pA, gq to
be the subset of A1b g consisting of all tensors of the form ηb g with dη “ 0. We also fix
a finite-dimensional representation θ : g Ñ glpVq, and define ΠpA, θq to be the subset of
F 1pA, gq consisting of all tensors as above which also satisfy detpθpgqq “ 0. When A is
1-finite and g is finite-dimensional, both F 1pA, gq and ΠpA, θq are closed, homogeneous
subvarieties of F pA, gq. Moreover, if HipAq ‰ 0, then ΠpA, θq Ď R i

1pA, θq.

Lemma 7.2. Under the above finiteness assumptions, every cdga map Φ : A1 Ñ A in-
duces algebraic maps, Φ b id : F 1pA1, gq Ñ F 1pA, gq and Φ b id : ΠpA1, θq Ñ ΠpA, θq.
Moreover, if H1pΦq is an isomorphism, then both these algebraic maps are isomorphisms.

Proof. Follows directly from the definitions. �

Lemma 7.3. Let Φ : A1 Ñ A be a cdga map, where A1 “ p
Ź.U, d “ 0q with 0 ă

dim U ă 8 and A is 1-finite, and assume H1pΦq is an isomorphism. Also let g Ď sl2pCq
be a Lie subalgebra, and let θ : g Ñ glpVq be a finite-dimensional representation. Then
the following hold:

(1) Φb id induces an isomorphism between F pA1, gq and F 1pA, gq.
(2) Φb id induces an isomorphism between R1

1pA
1, θq and ΠpA, θq.

Proof. By construction, A1 is the Chevalley–Eilenberg cochain cdga of the abelian Lie
algebra U. Hence, by [22, Lem. 4.14], we have that F pA1, gq “ F 1pA1, gq. The first
claim follows at once from Lemma 7.2.
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It is easily checked that R1
1pA

1q “ t0u. Since F pA1, gq “ F 1pA1, gq, we may apply
[22, Cor. 3.8] to conclude that R1

1pA
1, θq “ ΠpA1, θq. The second claim now follows from

Lemma 7.2. �

7.2. The uniformity property. Let t f : M Ñ M f u fPE be a finite family of pointed, holo-
morphic maps between compact Kähler manifolds. Each map f P E induces a homo-
morphism H.p f q : H.pM f q Ñ H.pMq between the respective cohomology algebras with
coefficients in k “ R or C. In fact, these homomorphisms may be viewed as ACDGA0

maps, by setting the differentials to be zero, and taking the augmentations given by the
basepoints.

Proposition 7.4. In the above setup, Ωp f q » H.p f q in ACDGA0, uniformly with respect to
f P E.

Proof. To prove the claim, it is enough to show there is a functorial zig-zag of quasi-
isomorphisms in ACDGA connecting ΩpMq to H.pMq, for any pointed, compact Kähler
manifold M. In order to construct such a zig-zag, we proceed in two steps, following [7,
§6] and [13, §11]. It is enough to work over k “ R.

Let pΩdRpMq, dq be the de Rham cdga of the underlying differentiable manifold, with d
the exterior differential. Set dc “ J´1dJ, where J is the complex structure on the tangent
bundle to M. This gives another cdga, pΩdRpMq, dcq. By the first proof of the Main The-
orem from [7], there is a zig-zag of quasi-isomorphisms in CDGA connecting pΩdRpMq, dq
to pH.pΩdRpMq, dcq, d “ 0q, natural with respect to holomorphic maps. Taking homomor-
phisms induced in cohomology, we obtain a natural zig-zag of cdga quasi-isomorphisms
connecting pH.dRpMq, d “ 0q to pH.pΩdRpMq, dcq, d “ 0q. In fact, both zig-zags are in
ACDGA, since all their terms are equal to R when M is a point. Combining these two
zig-zags, we obtain a functorial zig-zag of quasi-isomorphisms in ACDGA from ΩdRpMq to
pH.dRpMq, d “ 0q.

On the other hand, the proof of the de Rham theorem from [13] provides a zig-zag
of quasi-isomorphisms in CDGA connecting ΩdRpMq to ΩRpMq, which is natural with re-
spect to differentiable maps. An argument as above shows that this zig-zag is in ACDGA.
Putting things together, and using the classical de Rham theorem, we arrive at the desired
conclusion. �

7.3. Admissible maps and rank 1 jump loci. A connected, complex manifold M is
said to be a quasi-compact Kähler manifold if there is compact Kähler manifold M and
a normal crossing divisor D Ă M such that M “ MzD. Of course, all compact Kähler
manifolds belong to this class. Furthermore, if M is an irreducible smooth, complex quasi-
projective variety, or, for short, a quasi-projective manifold, then M is also of this type, by
resolution of singularities.

Given a quasi-compact Kähler manifold M, there is a certain finite family of pointed
holomorphic maps, t f : M Ñ M f u fPE pMq, with each M f a quasi-projective manifold,
which is intimately related to the structure near 1 of the characteristic variety V 1

1 pMq.
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More precisely, a holomorphic map onto a smooth complex curve, f : M Ñ M f , is
said to be admissible if it extends to a holomorphic surjection with connected fibers,
f : M Ñ M f , where M (respectively M f ) is a Kähler compactification of M (respectively
M f ) obtained by adding a normal crossing divisor. It is known that, up to reparametriza-
tion at the target, there is a finite family E pMq of such maps with the property that
χpM f q ă 0. For each f P E pMq, let us write π “ π1pMq and π f “ π1pM f q. It is readily
seen that the induced homomorphism on fundamental groups, f7 : π Ñ π f , is surjective.
Work of Arapura [2] shows that the correspondence

(7.1) f { f !
7 Hompπ f ,C

ˆ
q

establishes a bijection between the set E pMq and the set of positive-dimensional, irre-
ducible components of the characteristic variety V 1

1 pMq passing through 1.
For a pointed CW-space M with fundamental group π, we denote by f0 : M Ñ Kpπabf , 1q

the classifying map determined up to homotopy by the property that p f0q7 “ abf : π �
πabf, where abf is the canonical projection of the group π onto its maximal torsion-free
abelian quotient. When M is a quasi-compact Kähler manifold, we set

(7.2) EpMq “ E pMq Y t f0u.

In the rank one case, i.e., when ι “ idCˆ , both inclusions, (5.14) and (5.15) for i “ r “
1, become equalities near the origin 1, for the family t f7 | f P EpMqu.

Theorem 7.5. Let M be a quasi-compact Kähler manifold, and let π “ π1pMq. Then,

Hompπ,Cˆqp1q “
ď

fPEpMq

f !
7 Hompπ f ,C

ˆ
qp1q,(7.3)

V 1
1 pπqp1q “

ď

fPEpMq

f !
7V

1
1 pπ f qp1q.(7.4)

Proof. The first claim is easily verified. Indeed, the abelianization map, π� πab, induces
an isomorphism of character groups, while the map induced by the natural projection
πab � πabf identifies Hompπabf,C

ˆq with the identity component of Hompπab,C
ˆq. It

follows that p f0q7 “ πabf induces an isomorphism between germs at 1 of Cˆ-representation
varieties, and so (7.3) holds.

The second claim is much more subtle. Since χpM f q ă 0, it is easily seen that
V 1

1 pπ f q “ V 1
1 pM f q “ Hompπ f ,C

ˆq, for f P E pMq. If b1pMq “ 0, we know from
(5.5) that V 1

1 pπqp1q “ ∅, and we are done. If b1pMq ą 0, then either V 1
1 pπqp1q “ t1u, or

all irreducible components of V 1
1 pπq passing through 1 are positive-dimensional. In the

first case we are done, since 1 P p f0q
!
7
V 1

1 pπabfq. In the second case, equality (7.4) follows
from the aforementioned deep results of Arapura. This completes the proof. �

7.4. Rank 2 embedded jump loci of Kähler manifolds. Let M be a compact Kähler
manifold with fundamental group π. A map f : M Ñ M f is admissible in the sense
from §7.3 if M f is a compact Riemann surface and f is a holomorphic surjection with
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connected fibers. The Albanese map, f0 : M Ñ AlbpMq, is a holomorphic map between
compact Kähler manifolds which classifies the canonical projection, π� πabf.

Our next goal is to extend the rank 1 results (7.3)–(7.4) to the rank 2 case. We start with
a lemma.

Lemma 7.6. Let M be a compact Kähler manifold with b1pMq ą 0. Let g be a non-abelian
Lie subalgebra of sl2pCq, and let θ : g Ñ glpVq be a finite-dimensional representation.
Then the following equalities hold:

F pH.pMq, gq “ F 1
pH.pMq, gq Y ď

fPE pMq

f !
pF pH.pM f q, gqq,(7.5)

R1
1pH
.
pMq, θq “ ΠpH.pMq, θq Y ď

fPE pMq

f !
pF pH.pM f q, gqq,(7.6)

where all cdgas are endowed with zero differential.

Proof. This is proved in [22, Cor. 7.2] for a 1-formal, quasi-projective manifold M. By
results from [10], the proof also works for 1-formal, quasi-compact Kähler manifolds, in
particular, for a compact Kähler manifold M. �

Theorem 7.7. Let M be a compact Kähler manifold with fundamental group π, and set
EpMq “ E pMq Y t f0u as in (7.2). Let G be C-linear algebraic group with non-abelian
Lie algebra g Ď sl2pCq, and let ι : G Ñ GLpVq be a rational representation. Then,

Hompπ,Gqp1q “
ď

fPEpMq

f !
7 Hompπ f ,Gqp1q,(7.7)

and, for i “ r “ 1 or i “ 0 and r ě 1,

V i
r pπ, ιqp1q “

ď

fPEpMq

f !
7V

i
r pπ f , ιqp1q.(7.8)

Proof. We wish to apply Theorem 6.4 with q “ 1 to the family of pointed maps t f : M Ñ

M f u fPEpMq and cdga maps Φ f “ tH
.
p f q : H.pM f q Ñ H.pMqu fPEpMq, where all the dif-

ferentials are set equal to 0. For that, we need to verify that the three hypotheses of the
theorem hold.

First, all spaces and cdgas in question are 1-finite (in fact,8-finite). Second, each map
f7 is surjective, hence each f P EpMq is 0-connected. Thus, H.p f q is also 0-connected.
Finally, by Proposition 7.4, Ωp f q » H.p f q in ACDGA0, uniformly with respect to f P
EpMq.

In the case when i “ 0, equality (7.7) clearly implies equality (7.8), by Corollary 5.8.
Thus, we may assume i “ r “ 1 in (7.8).

Suppose now that b1pMq “ 0. By (5.5), we have that V 1
1 pπ, ιqp1q “ ∅. Therefore,

equality (7.8) follows trivially. Moreover, the natural map ΩpKp1, 1qq Ñ ΩpKpπ, 1qq is a
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1-equivalence; hence, π has the same 1-minimal model as the trivial group. It then follows
from [9, Thm. A] that Hompπ,Gqp1q “ t1u. Therefore, equality (7.7) holds trivially.

Thus, we may also assume that b1pMq ą 0. We deduce from formula (7.5) and Lemma
7.3, part (1) that

(7.9) F pH.pMq, gq “ f !
0F pH

.
pM0q, gq Y

ď

fPE pMq

f !
pF pH.pM f q, gqq,

where M0 denotes the Albanese variety AlbpMq » Kpπabf, 1q, and H.pM0q “
Ź.H1pMq.

By taking germs at the origin and using the naturality properties from Theorem 6.4, for-
mula (7.9) implies that equality (7.7) holds.

Similarly, formula (7.6) and Lemma 7.3 part (2) together imply that

(7.10) R1
1pH
.
pMq, θq “ f !

0R
1
1pH
.
pM0q, θq Y

ď

fPE pMq

f !
pF pH.pM f q, gqq.

For each f P E pMq, note that M f is a 2-dimensional CW-complex with χpM f q ă 0. An
easy Euler characteristic argument then shows that V 1

1 pπ f , ιq “ V 1
1 pM f , ιq “ Hompπ f ,Gq.

Again by Theorem 6.4, formula (7.10) now implies that equality (7.8) holds. This com-
pletes the proof. �

Remark 7.8. In [20, Cor. B], Loray, Pereira, and Touzet prove the following result, which
refines earlier results of Corlette and Simpson [6]. Let X be a quasi-projective mani-
fold, and let ρ P Hompπ1pXq,SL2pCqq be a representation which is not virtually abelian.
Then there is an orbifold morphism, f : X Ñ Y , such that the associated representation,
ρ̃ P Hompπ1pXq,PSL2pCqq, belongs to f !

7
Hompπorb

1 pYq,PSL2pCqq, where Y is either a
1-dimensional complex orbifold, or a polydisk Shimura modular orbifold.

For a finitely generated group π and a linear algebraic group G, the abelian part of
the representation variety Hompπ,Gq coincides near 1 with abf! Hompπabf,Gqp1q. Indeed,
[9, Thm. A] implies that the canonical projection πab � πabf induces an isomorphism of
germs at the origin of the respective representation varieties.

This remark shows that formula (7.7) from Theorem 7.7 may be viewed as a compact
Kähler analogue near 1 of [20, Cor. B]. In this context, it provides a simpler classifica-
tion: the representation ρ is either abelian, or it pulls back via an admissible map from a
compact Riemann surface of genus g ą 1.

7.5. The main difficulty in the non-abelian case. The naturality property from [9, Thm.
B(2)] is a consequence of the following fact, which holds in the abelian case. Let X be a
1-finite space and A.a 1-finite cdga. The fact that ΩkpXq »1 A in CDGA means that there
is a zig-zag of 1-equivalences in CDGA,

(7.11) ΩkpXq Nψoo ψ̄ // A ,

where N “ p
Ź.U, dq is a 1-minimal cdga, see Lemma 3.3. If g is an abelian Lie algebra,

it follows from the definitions that F pB, gq “ H1pBq b g, for any connected cdga B.
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Applying this observation to the map ψ̄, we conclude that, in the abelian case, there is a
bijection

(7.12) ψ̄b id : F pN , gq
» // F pA, gq .

For a non-abelian Lie algebra g, though, this map is not necessarily surjective. To
illustrate this phenomenon, we first need a lemma.

Lemma 7.9. If g “ sl2pCq and ψ̄b id is surjective, then F pA, gq “ F 1pA, gq.

Proof. The cdga N “ p
Ź.U, dq comes endowed with the canonical filtration, N “

Ť

ně1 Nn, of a 1-minimal cdga, where each cdga Nn is of the form p
Ź.Un, dq. Since

dim H1pN q ă 8, Nn is the cochain algebra of a certain finite-dimensional, nilpotent Lie
algebra. Since g “ sl2pCq, it follows from [22, Lem. 4.14] that F pNn, gq “ F 1pNn, gq,
for each n ě 1. Hence, F pN , gq “ F 1pN , gq. Since ψ̄ b id is surjective, we conclude
that F pA, gq “ F 1pA, gq. �

Example 7.10. Let Σg be a compact Riemann surface of genus g ą 1. Since Σg is a formal
space, the cdga A “ pH.pΣgq, d “ 0q is a finite model for it. Let N be a 1-minimal model
for A, and let ψ̄ : N Ñ A be the corresponding map. It follows from [22, Lem. 7.3] that
F pA, gq ‰ F 1pA, gq. By Lemma 7.9, then, the map ψ̄b id is not surjective.

Thus, in the case when G “ SL2pCq, we have no natural analytic map F pA, gq Ñ
Hompπ1pXq,Gq. This is the reason why we have to construct a local analytic isomorphism
between the germs at the origin of the two varieties, in a manner which is compatible
with both continuous maps and cdga maps, using the simultaneous Artin approximation
technique from Proposition 2.3.

8. Principal bundles

In this section, we apply our theory to principal bundles. When the base manifold is
formal, we obtain a structural result for the germs at the origin of rank 2 embedded jump
loci of the total space.

8.1. Two-element families with the uniform property. In the applications of Theorem
6.4, we also need to take into account the projection of a group π onto its maximal torsion-
free abelian quotient, abf : π� πabf .

Theorem 8.1. Let f : M Ñ N be a continuous, pointed map. Denote by f0 : M Ñ

Kpπ1pMqabf , 1q the classifying map for the above projection. Suppose that M and N are
q-finite, for some q ě 1, and that Ωp f q »q Φ in ACDGA0, where Φ : AN Ñ AM is a cdga
map between q-finite objects. Set A.0 “ p

Ź.H1pMq, d “ 0q. There is then a cdga map
Φ0 : A0 Ñ AM inducing an isomorphism on H1, and such that Ωp f0q »q Φ0 in ACDGA0,
uniformly with respect to the families t f , f0u and tΦ,Φ0u. Moreover, if f and Φ are 0-
connected maps, then all the hypotheses from Theorem 6.4 are satisfied for q “ 1.
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Proof. The assumption that Ωp f q »q Φ provides a zig-zag Z of q-equivalences in ACDGA
connecting ΩkpMq to AM. Let ρ : N Ñ ΩkpMq be a π1-adapted 1-minimal model map, as
in [9, §6.4]. This map can be extended to a q-minimal model map ρ : M Ñ ΩkpMq. By

Proposition 4.6, there is a special zig-zag S of the form ΩkpMq M
ρoo ρ̄ // AM such that

βZ “ βS .
Now, as explained in [9, §6.4], there is a canonical cdga inclusion, j : A0 ãÑ N ,

inducing an isomorphism on H1. It follows that the map Φ0 “ ρ̄ ˝ j : A0 Ñ AM has the
same property. Putting things together, we obtain the following commuting diagram in
ACDGA:

(8.1)

M
ρ

zz

ρ̄

##
ΩpMq N

?�
i

OO

ρoo ρ̄ // AM

Ωpπabfq

Ωp f0q

OO

A0
ρabfoo

?�

j

OO

A0 .

Φ0

OO

Both upper-diagonal arrows are q-equivalences, and both lower-horizontal arrows are
8-equivalences. It follows that Ωp f0q »q Φ0 in ACDGA0, as claimed. The uniform property
follows from the equality βZ “ βS . It is obvious that the map f0 is 0-connected. Finally,
since H1pΦ0q is injective, the map Φ0 is also 0-connected. �

8.2. Models for principal bundle projections. Let K be a compact, connected real Lie
group acting freely on a closed, smooth manifold M. Let N “ M{K be the orbit space,
and let f : M Ñ N be the projection map of the resulting principal K-bundle. Of course,
both M and N have the homotopy type of a finite CW-complex. We will fix compatible
basepoints for M and N. Note that f is 0-connected, by the exact homotopy sequence of
the fibration K Ñ M f

ÝÑ N and the connectivity of K.
By a classical result of H. Hopf, the cohomology algebra of K (with coefficients in a

field k of characteristic 0) is of the form H.pKq “Ź

P., where P. is a finite-dimensional,
oddly graded k-vector space. Let rτs : P.Ñ H.̀ 1pNq be the transgression in the Serre
spectral sequence of our fibration.

Suppose AN is a cdga model for N, so that there is a zig-zag of quasi-isomorphisms
connecting ΩkpNq to AN . Such a zig-zag yields an isomorphism of H.pNq with H.pANq.
Let τ : P. Ñ Z.̀ 1pANq be a lift of rτs. As noted in §3.3, the Hirsch extension AM :“
AN bτ

Ź

P is well-defined, up to a cdga isomorphism extending idAN .

Proposition 8.2. Let f : M Ñ N be the projection map of a principal K-bundle as above,
and suppose N admits a finite model AN . Let Φ : AN ãÑ AM be the canonical cdga
inclusion. Then AM is a finite model for M, and both f and Φ are 0-connected maps.
Moreover, Ωp f q » Φ in ACDGA0, and thus the conclusions of Corollary 6.5 hold for q “ 1.
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Proof. Clearly, since AN is a finite cdga, then AM is also a finite cdga. Equally clearly,
the map Φ is 0-connected. By the classical Hirsch Lemma (see [13, pp. 216–218]) there
is a commutative diagram in ACDGA,

(8.2)

ΩpMq ΩpNq bτ

Ź

Phoo

ΩpNq
Ωp f q

gg

?�

OO

where h is an8-equivalence. Since by assumption ΩpNq » AN , there is a minimal cdga
N , connected by quasi-isomorphisms ψ : N Ñ ΩpNq and ψ̄ : N Ñ AN . We then obtain
a commuting diagram in CDGA,

(8.3)

ΩpNq bτ

Ź

P ΩpNq bτN

Ź

P»oo N bτN

Ź

P
ψbidoo ψ̄bid // AN bτA

Ź

P » // AM

ΩpNq
?�

OO

5 U

hh

N
?�

OO

ψoo ψ̄ // AN
?�

OO

, �
Φ

::

where the transgression rτN s is identified with rτNs using H.pψq, while rτN s is identified
with rτAs using H.pψ̄q. Note that all cdgas in (8.3) are augmented, and all maps respect
augmentations. By [13, Lem. 14.2], the maps ψb id and ψ̄b id are quasi-isomorphisms,
since both ψ and ψ̄ are. Splicing together diagrams (8.2) and (8.3) we reach the desired
conclusions. �

8.3. Embedded jump loci of principal bundles. Before stating and proving the main
result of this section, we need two more lemmas. According to the guiding philosophy
of [22], the essentially rank 1 part of the higher-rank resonance varieties of a cdga is
determined by rank 1 resonance. We begin with a version of this general principle, valid
for families of cdga morphisms.

Fix an integer q ě 1. Let tφ f : A f Ñ Au fPE be a finite family of pq ´ 1q-connected
maps between connected C-cdgas. Also, let g be a Lie algebra, and let θ : gÑ glpVq be a
finite-dimensional representation. For each i ď q such that HipAq ‰ 0, Corollary 3.8 and
Lemma 2.6 from [22] give an inclusion

(8.4) R i
1pA, θq Ě ΠpA, θq Y

ď

fPE

pφ f b idqR i
1pA f , θq.

Lemma 8.3. Assume (8.4) holds as an equality in the rank 1 case. Then

R i
1pA, θq XF 1

pA, gq Ď ΠpA, θq Y
ď

fPE

pφ f b idqR i
1pA f , θq.

Proof. Let ω “ η b g be a non-zero element in
`

R i
1pA, θq XF 1pA, gq

˘

zΠpA, θq. From
[22, Cor. 3.8], we know that ηbg belongs to R i

1pA, θqXF 1pA, gq if and only if there is an
eigenvalue λ of θpgq such that λη P R i

1pAq. By our assumption on the rank 1 resonance,
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λη “ φ f pη
1q, for some η1 P R i

1pA f q. Since λ ‰ 0 we infer that ω “ pφ f b idqpη f b gq, for
some η f P A1

f such that dη f “ 0 and λη f P R i
1pA f q. Again by [22, Cor. 3.8], we conclude

that η f b g belongs to R i
1pA f , θq XF 1pA f , gq, and we are done. �

Lemma 8.4. Let A be a 1-finite C-cdga with d “ 0, and let θ : g Ñ glpVq be a finite-
dimensional representation of a non-abelian Lie subalgebra of sl2pCq. Then F pA, gq “
F 1pA, gq YR1

1pA, θq.

Proof. Let ω P F pA, gqzF 1pA, gq. It follows from the proof of [22, Prop. 5.3] that ω P
U b g, where U Ď A1 is a linear subspace of dimension at least 2 which is isotropic with
respect to the multiplication map A1 ^ A1 Ñ A2. Clearly, AU :“ C ¨ 1‘ U is a finite sub-
cdga of A, and χpH.pAUqq ă 0. By [22, Prop. 2.4], we have that F pAU , gq “ R1

1pAU , θq.
Therefore, ω P R1

1pAU , θq Ď R1
1pA, θq, and this completes the proof. �

Theorem 8.5. Let f : M Ñ N be the projection map of a principal K-bundle, where both
M and N are smooth, closed manifolds, and K is a compact, connected real Lie group.
Let G be a complex linear algebraic group, with non-abelian Lie algebra g Ď sl2pCq.
Let ι : G Ñ GLpVq be a rational representation. Let f7 : π1pMq � π1pNq be the induced
homomorphism on fundamental groups, and let abf : π1pMq� π1pMqabf be the canonical
projection. Suppose N is formal. Then,

Hompπ1pMq,Gqp1q “ abf! Hompπ1pMqabf ,Gqp1q Y f !
7 Hompπ1pNq,Gqp1q,(8.5)

and, for i “ r “ 1 or i “ 0 and r ě 1,

V i
r pπ1pMq, ιqp1q “ abf! V i

r pπ1pMqabf, ιqp1q Y f !
7V

i
r pπ1pNq, ιqp1q.(8.6)

Proof. By Corollary 5.8, equality of germs at 1 in (5.14) implies equality at 1 in (5.15) for
i “ 0 and r ě 1. Thus, in order to verify equality (8.6), it is enough to assume i “ r “ 1.
As we saw in the proof of Theorem 7.7, both our claims hold trivially when b1pMq “ 0.
Consequently, we may also assume that b1pMq ą 0.

Since the orbit space N is formal, we may take as a model for it the cdga AN “

pH.pNq, d “ 0q. As usual, let rτs : P. Ñ H.̀ 1pNq be the transgression in the Serre
spectral sequence of the fibration K Ñ M Ñ N. By Proposition 8.2, the Hirsch extension
AM :“ ANbτ

Ź

P is a finite cdgamodel for M, and the canonical inclusion Φ : H.pNq ãÑ

A.M is a model for the map Ωp f q : ΩpNq Ñ ΩpMq.
Now set A.0 “ p

Ź.H1pMq, d “ 0q, and let f0 : M Ñ Kpπ1pMqabf, 1q be the canonical
map defined by the homomorphism abf. By Theorem 8.1 (with q “ 1), there is a cdga
map Φ0 : A0 Ñ AM such that Ωp f0q »1 Φ0 and Ωp f q »1 Φ in ACDGA0, uniformly with
respect to the families t f , f0u and tΦ,Φ0u. Since, as was mentioned in Proposition 8.2,
both f and Φ are 0-connected, Theorem 6.4 applies, giving an analytic isomorphism of
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embedded germs,

(8.7)
`

Hompπ1pMq,Gq, abf! Hompπ1pMqabf ,Gq Y f !
7 Hompπ1pNq,Gq

˘

p1q
–

pF pAM, gq, pΦ0 b idqF pA0, gq Y pΦb idqF pAN , gqqp0q .

On the other hand, Proposition 5.3 from [28] guarantees the global equality

(8.8) F pAM, gq “ F 1
pAM, gq Y pΦb idqF pAN , gq.

We may also apply Lemma 7.3 to the map Φ0 to deduce the global equalities

F 1
pAM, gq “ pΦ0 b idqF pA0, gq,(8.9)

ΠpAM, θq “ pΦ0 b idqR1
1pA0, θq.

Using equations (8.7)–(8.9) as well as Theorem 6.4, we see that, in order to complete
the proof, it is enough to show the following: if the inclusion

F pAM, gq Ď F 1
pAM, gq Y pΦb idqF pAN , gq(8.10)

holds, then the inclusion

R1
1pAM, θq Ď ΠpAM, θq Y pΦb idqR1

1pAN , θq(8.11)

also holds. Pick ω P R1
1pAM, θq. There are two cases to consider.

First suppose thatω P F 1pAM, gq. Using [28, Prop. 5.5] and induction on the dimension
of P1, we see that R1

1pAMq Ď t0u Y ΦpR1
1pANqq. Hence, we may apply Lemma 8.3

(for i “ q “ 1) to the one-element family tΦ : AN ãÑ AMu and conclude that ω P

ΠpAM, θq Y pΦb idqR1
1pAN , θq, as required.

Finally, suppose that ω R F 1pAM, gq. Then ω “ Φ b idpω1q, for some ω1 P F pAN , gqz
F 1pAN , gq, by assumption (8.10). By Lemma 8.4, we have that ω1 P R1

1pAN , θq. This
verifies that (8.11) holds in this case, too, thereby completing the proof. �

Theorem 8.5 improves on Theorem 1.5(2) from [28], where an extra assumption (in-
jectivity of the transgression in degree 1) was required. Our stronger result here is of
the same flavor as the equality (7.7) from Theorem 7.7, in the context provided by Re-
mark 7.8. Namely, if G is a C-linear algebraic group with Lie algebra g as above, and if
ρ : π1pMq Ñ G is a representation near the origin 1, then ρ is either abelian or pulls back
via f from a G-representation of π1pNq.

9. Quasi-projective manifolds

We conclude with another interesting class of examples where the uniform property
holds for one-element families of maps, namely, regular maps between smooth, quasi-
projective varieties. We also derive a non-compact analogue of Theorem 7.7 for a spe-
cial class of quasi-projective manifolds, namely, complements of complex hyperplane
arrangements.
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9.1. Mixed Hodge diagrams. Let M be an irreducible, smooth, complex quasi-projec-
tive variety, or, for short, a quasi-projective manifold. Note that M is a finite space. By
resolution of singularities, we have that M “ MzD, where M is a smooth projective
variety, and D Ă M is a normal crossing divisor. A map between such pairs, f̄ : pM,Dq Ñ
pM

1
,D1q, is called a regular morphism if the map f̄ : M Ñ M

1
is a regular map with the

property that f̄´1pD1q Ď D. Clearly, the restriction f : MzD Ñ M
1
zD1 is also a regular

map. Conversely, any regular map between quasi-projective manifolds is induced by a
regular morphism between convenient compactifications with normal crossing divisors.

We want to prove a quasi-projective analogue of Proposition 3.4. For that, we will
need the theory of relative minimal models for mixed Hodge diagrams (MHDs, for short),
developed by Cirici and Guillén in [5]. We start by recalling some pertinent definitions
and results from [5].

The objects of the category FDGA are of the form pA.,W.q, where pA., dq is a cdga
defined over Q and W. is an increasing, multiplicative, regular, exhaustive filtration on
pA., dq, called a weight filtration. Such an object gives rise to a spectral sequence in the
category of bigraded cdgas, tErpAqurě1, which converges to H.pAq. A morphism in FDGA
is a cdga map which respects filtrations. Such a morphism ψ induces a map of spectral
sequences, tErpψqurě1.

The objects of the category MHD are strings of morphisms in FDGA defined over C,

(9.1) H : A0
ψ0 // A1 ¨ ¨ ¨oo // A`´1 A`

ψ`´1oo ,

where pA0,Wq is defined overQ and all the induced maps E2pψiq are isomorphisms. There
are also additional data and axioms, related to the mixed Hodge structure (MHS) on A`,
see [5, Def. 3.1]. A morphism of mixed Hodge diagrams, Φ : H1 Ñ H, is a tuple of fdga
maps, pΦ0,Φ1, . . . ,Φ`q, commuting with the maps ψ1 and ψ, and such that Φ0 is defined
over Q. There is also an extra condition on Φ` pertaining to the MHS, see [5, Def. 3.5].

9.2. The Gysin model of Morgan and Navarro. Returning to our setup, let M be a
quasi-projective manifold, and let M “ M Y D be a normal-crossing compactification.
Given these data, Navarro constructs in [25] a mixed Hodge diagram HpM,Dq, functorial
with respect to regular morphisms of pairs (see also Hain [16]). Furthermore, there is
an equivalence A0pM,Dq » ΩCpMq in CDGA, natural with respect to the pair pM,Dq.
Moreover, E1pA0pM,Dqq is isomorphic (as a bigraded cdga) to MGpM,Dq, the Gysin
model of M “ MzD constructed by Morgan in [23, 24] (see also Dupont [11]). Note that
this is a finite C-model, defined over Q, and that MGpM,∅q “ pH.pMq, d “ 0q.

Suppose f̄ : pM,Dq Ñ pM1,D1q is a regular morphism, such that the restriction f : M Ñ

M1 preserves basepoints. Naturality in the sense of Navarro yields an equivalence

(9.2) ΩCp f q » Φ0p f̄ q
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in C-ACDGA0. Following Cirici and Guillén [5], we define

(9.3) Φp f q “ E1pΦ0p f qq : MGpM
1
,D1q Ñ MGpM,Dq,

over C.

Proposition 9.1. Let f : M Ñ M1 be a pointed, regular map between quasi-projective
manifolds, inducing an injection on H1. Extend f to a regular morphism, f̄ : pM,Dq Ñ
pM1,D1q, by adding divisors with normal crossings in a suitable manner. Then ΩCp f q »
Φp f q in C-ACDGA0.

Proof. Looking at Q-components of MHDs and ignoring additional MHS data, we extract
from [5, Theorems 3.17 & 3.19] the following commuting square in FDGA:

(9.4)

A0pM,Dq
Ź

U 1 b
Ź

U
ρoo

A0pM1,D1q

Φ0p f̄ q

OO

Ź

U 1
ρ1oo

?�

j

OO

By [5, Lemma 3.4], the induced maps E2pρq and E2pρ
1q are known to be isomorphisms.

Hence, the maps ρ and ρ1 are quasi-isomorphisms. Furthermore, the CDGA diagram un-
derlying (9.4) has the following properties: ρ1 is a minimal model map, and ρ is a relative
minimal model map for Φ0p f̄ q ˝ ρ1, in the sense of §3.3.

Our injectivity assumption on H1p f q, together with the equivalence from (9.2), imply
that the map Φ0p f̄ q ˝ ρ1 is a 0-equivalence. Using the discussion from §3.3, we infer that
both

Ź

U 1 and
Ź

U 1 b
Ź

U are connected cdgas. In particular, all maps from diagram
(9.4) respect augmentations.

It’s time now to take into account the available MHS data. We know from the work of
Cirici and Guillén that the map j is actually a morphism of mixed Hodge cdgas, in the
sense of [5, Definition 3.14]. According to Deligne’s functorial splitting over C of mixed
Hodge structures, we have the following identifications in CDGA,

(9.5) E1p
Ź

U 1
q “

Ź

U 1, E1p
Ź

U 1
b

Ź

Uq “
Ź

U 1
b

Ź

U, E1p jq “ j.

This can be verified using the argument of Morgan from [23, Thm. 9.6]. See also [5,
Lemma 3.20], where no extra finite-type assumptions are needed (over C).

Applying the E1 functor to diagram (9.4), we obtain the following commuting diagram
in CDGA,

(9.6)

E1p
Ź

U 1 b
Ź

Uq
E1pρq // E1pA0q MGpM,Dq

E1p
Ź

U 1q

E1p jq

OO

E1pρ
1q
// E1pA10q

E1pΦ0q

OO

MGpM1,D1q

Φp f̄ q

OO
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Here both horizontal arrows are quasi-isomorphisms, since E2pρq and E2pρ
1q are iso-

morphisms. Since all cdgas in sight are connected, (9.6) is a commuting diagram in
ACDGA. The desired conclusion follows by putting together the information from displays
(9.2) and (9.4)–(9.6). �

Remark 9.2. As mentioned previously, it is known that the Navarro model E1pA0pM,Dqq
is isomorphic in CDGA to Morgan’s Gysin model MGpM,Dq. It is also known that the
latter is functorial with respect to regular morphisms of pairs; see [11] for a convenient,
explicit description of the cdga map MGp f̄ q : MGpM

1
,D1q Ñ MGpM,Dq induced by

f̄ : pM,Dq Ñ pM1,D1q. But we do not know whether under this identification on objects
the map MGp f̄ q coincides with the map Φp f̄ q defined in (9.3). If that were the case, one
could use [9, Ex. 5.3] to infer that the map Φp f̄ q “ MGp f̄ q is injective, whenever f : M Ñ

M1 is a regular surjection onto a curve, with connected generic fiber. This observation,
together with Proposition 9.1, would then imply that the conclusions of Corollary 6.5
hold for regular admissible maps defined on quasi-projective manifolds, in the case when
q “ 1.

9.3. Hyperplane arrangements. Let A be an arrangement of hyperplanes, that is, a fi-
nite, non-empty collection of complex affine hyperplanes in C`, for some ` ą 0. The
union of these hyperplanes is an affine hypersurface, VA , defined by an equation of the
form QA “ 0, where QA “

ś

HPA αH and αH “ 0 is a linear equation defining the hy-
perplane H. The complement of the arrangement, MA “ C`zVA , is a connected, smooth,
quasi-projective variety, which has the homotopy type of a finite CW-complex of dimen-
sion at most `.

A nice feature of this class of quasi-projective manifolds is that formality over k “ R
or C holds in the following strong sense. For each H P A , the logarithmic 1-form

(9.7) ξH “
1

2πi
d logαH P ΩdRpMA q

is a closed form. Let eH P H1pMA , kq be the cohomology class corresponding to rξHs P

H1
dRpMA q under the de Rham isomorphism. It is known that teH | H P A u forms a basis

for H1pMA , kq. Thus, the k-linear map ξA : H1pMA , kq Ñ Ω1
dRpMA q sending each eH to

ξH yields an isomorphism rξA s : H1pMA , kq
»ÝÑ H1

dRpMA q.
The celebrated Brieskorn–Orlik–Solomon theorem (see [26]) states that the cohomol-

ogy ring H.pMA ,Zq is the quotient of the exterior algebra
Ź.H1pMA ,Zq by an ideal gen-

erated in degrees at least 2 and depending only on the intersection lattice of A . Moreover,
the extension of ξA to a cdga map, ξA : p

Ź.H1pMA , kq, d “ 0q Ñ Ω
.
dRpMA q, factors

through a quasi-isomorphism

(9.8) ξA : pH.pMA , kq, d “ 0q // Ω
.
dRpMA q .

We now suppose that the arrangement A is central, i.e., all hyperplanes H P A pass
through the origin 0 P C`. For the purpose of studying the fundamental group π “
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π1pMA q, we may assume that A is a central arrangement in C3. This can be achieved
by taking a generic 3-slice (if ` ą 3), or taking the product with C3´` (if ` ă 3); neither
operation changes the fundamental group of the complement.

Recall that MA is a quasi-projective manifold. By the discussion from §7.3, there is
a finite set E pMA q of admissible maps f : MA Ñ M f (up to reparametrization at the
target), such that M f is a smooth curve with χpM f q ă 0. It turns out that the mixed Hodge
structure on MA is pure of weight 2. Consequently, each curve M f must be of the form
CP1

ztk pointsu, for some k ě 3.
Falk and Yuzvinsky gave in [12] a particularly nice, combinatorial description of the

set E pMA q, well-suited for our purposes here (see also [8, §5] and [27, §6]). The key
combinatorial notion is that of a multinet. Given an integer k ě 3, a k-multinet N on a
central arrangement A in C3 consists of a partition, A “ A1 \ ¨ ¨ ¨ \ Ak, and a multi-
plicity function, m : A Ñ N, satisfying several axioms, one of which being that the sum
ř

HPAi
mH is independent of i P rks.

The multinet axioms imply that the polynomials Qi “
ś

HPAi
αmH

H belong to a pencil of
curves, that is, for each i ą 2 there are constants ai and bi such that Qi “ aiQ1 ` biQ2.
Consider the central line arrangement L “ tL1, . . . ,Lku in C2, with Li “ tgi “ 0u,
where g1 “ z1, g2 “ z2, and gi “ aiz1` biz2 for i ą 2. Let fN : MA Ñ ML be the regular
map with components pQ1,Q2q. Projectivizing, we obtain an admissible map,

(9.9) fN : MA Ñ CP1
ztk pointsu.

More generally, there is a complete set of representatives for E pMA q consisting of
admissible maps fN : MA Ñ CP1

ztk pointsu obtained by restricting to MA the map
fN : MB Ñ CP1

ztk pointsu, where N is a k-multinet on a sub-arrangement B Ď A ;
see [27, Corollary 6.6].

Now set n “ |A |, and identify πabf “ Z
n. Let C be the Boolean arrangement in Cn,

consisting of all coordinate hyperplanes. Clearly, MC “ pCˆqn. Consider the regular
map f0 : MA Ñ MC with components pαHqHPA . As noted for instance in [8, Lem. 5.1],
the induced homomorphism, p f0q7 : π1pMA q Ñ π1pMC q, coincides with the canonical
projection, abf : π� πabf. We let EpMA q “ E pMA q Y t f0u, as in (7.2).

By construction, all maps f P EpMA q are of the form f : M Ñ M f , where M “ MA

and M f “ MA f , for some (affine) arrangement A f .

Proposition 9.3. Let A be a central hyperplane arrangement in C3, and fix a basepoint
in MA . For k “ R or C, we have that Ωkp f q » H.p f , kq in k-ACDGA0, uniformly with
respect to f P EpMA q.
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Proof. In view of the Brieskorn–Orlik–Solomon isomorphism (9.8), it is enough to check
the commutativity of the following diagram in CDGA:

(9.10) pH.pMA q, d “ 0q
ξA // Ω

.
dRpMA q

pH.pMA f q, d “ 0q
ξA f //

H
.
p f q

OO

Ω
.
dRpMA f q

Ω
.
dRp f q

OO

Since the cohomology ring of an arrangement complement is generated in degree 1,
we may assume that .“ 1 in the above diagram. Using the explicit construction of the
map ξ in degree 1, we can further reduce to showing that ΩdRp f qpd logαH1q belongs to the
Z-span of td logαH | H P A u, for every H1 P A f .

First assume f “ f0. Then the claim follows from the formula ΩdRp f0qpd log zHq “

d logαH, for every H P A , which in turn follows directly from the definition of f0.
Next assume f “ fN , for some multinet N on a sub-arrangement B Ď A . Clearly,

we may assume that B “ A . The claim is now an easy consequence of the formula
ΩdRp fN qpd log giq “

ř

HPAi
mH d logαH, which is verified in [27, Lem. 6.3]. �

Theorem 9.4. Let A be a central hyperplane arrangement with complement M “ MA .
Write π “ π1pMq, and, for each map f : M Ñ M f in EpMq, set π f “ π1pM f q. Let G be a
C-linear algebraic group with non-abelian Lie algebra g Ď sl2pCq, and let ι : G Ñ GLpVq
be a rational representation. Then,

Hompπ,Gqp1q “
ď

fPEpMq

f !
7 Hompπ f ,Gqp1q,(9.11)

and, for i “ r “ 1 or i “ 0 and r ě 1,

V i
r pπ, ιqp1q “

ď

fPEpMq

f !
7V

i
r pπ f , ιqp1q.(9.12)

Proof. As noted before, we may assume ` “ 3. The argument we give is closely modeled
on the proof of Theorem 7.7. To begin with, note that the conclusions of Lemma 7.6 hold
for the formal, quasi-projective manifold M “ MA , with the same proof. Next, consider
the map f0 : MA Ñ MC , and the induced cdga map H.p f0q : H.pMC q Ñ H.pMA q,
where both differentials are 0. Since MC “ pCˆqn, where n “ |A |, we may iden-
tify H.pMC q with

Ź.H1pMC q. Furthermore, H1p f0q is an isomorphism, by construction.
Hence, Lemma 7.3 may be applied to the map Φ “ H.p f0q.

By Proposition 9.3, we have that Ωp f q » H.p f q in ACDGA0, uniformly with respect to
f P EpMA q. We may now apply Theorem 6.4 for q “ 1 to the family of pointed contin-
uous maps t f : MA Ñ MA f u fPEpMA q and the family of cdga maps tH.p f q : H.pMA f q Ñ

H.pMA qu fPEpMA q, where again all differentials are 0. The rest of the argument goes ex-
actly as in the proof of Theorem 7.7. �
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