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1 Jet groups

In this paper we compute the second homology of the discrete jet groups. Let R
be the additive group of real numbers and R+ the multiplicative group of pos-
itive reals. The nth jet group Jn = {rx+a2x

2 + · · ·+anx
n | r ∈ R+, ai ∈ R} is

the group, under composition followed by truncation, of invertible, orientation-
preserving real n-jets at 0. Consider the homomorphism D : Jn → R+ ob-
tained by projecting onto the first coefficient, i.e. Df = first derivative of f at
0. Every jet with slope not equal to 1 is conjugate to its linear part. It follows
there is a split exact sequence

1→ J ′n −→ Jn
D−→ R+ → 1, (1)

with splitting σ : R+ → Jn, σ(r) = rx. The map D∗ : Hk(Jn)→ Hk(R
+) is an

epimorphism, since it admits σ∗ as right inverse. We conjecture that in fact
D∗ is an isomorphism, for all k ≥ 0. It follows from (1) that D∗ : H1(Jn) →
H1(R

+) is an isomorphism. The main result of this paper is:

Theorem 1.1 The map D∗ : H2(Jn)→ H2(R
+) is an isomorphism.

The structure of H2(R
+) is easy to describe. For an abelian group A, H2(A) is

naturally isomorphic to (A⊗ZA)/∆, where ∆ = diagonal (Miller [7], Brown [1,
pp. 121–127]. Now R+ is isomorphic as an abelian group to R, which is an
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uncountable direct sum of Q’s; thus H2(R
+) is also an uncountable direct sum

of Q’s.

We are ultimately interested in the second homology group of the discrete
group Gω

0 of convergent invertible series at the origin of R, for this is a crucial
term in the classification of cobordism classes of real analytic Γ-structures on
surfaces [4]. A next step towards computing H2(G

ω
0 ) would be the determina-

tion of H2(J∞), where J∞ = lim
←−

Jn is the group of formal invertible series at

0. It may be possible that there are elements in H2(J∞) other than those in
H2(R

+). For more motivation and discussion, as well as another proof of the
theorem for n ≤ 3, see [6].

2 An E1 spectral sequence converging to H∗(G)

Let G stand for an arbitrary group. We define H∗(G), the integral homology of
G as a discrete group, to be H∗(BG; Z), where BG is the classifying space of
G (see [1], [8]). Let us recall the sequence of constructions leading to H∗(BG).
The space BG is the geometric realization of the simplicial nerve of G, NG :
NG(0) = {1}, NG(n) = G × · · · × G (n times). The face maps di are defined
by d0(g1, . . . , gn) = (g2, . . . , gn), di(g1, . . . , gn) = (g1, . . . , gigi+1, . . . , gn), for
0 < i < n, and dn(g1, . . . , gn) = (g1, . . . , gn−1). Next one forms the chains
on NG, C∗(NG), with differential d =

∑
(−1)idi ; the homology of G is the

homology of this chain complex. The complex C∗(NG) is often referred to as
the bar construction on G. The space BG, of which it computes the homology,
is a K(G, 1).

Consider now a short exact sequence of groups

0→ A
ι−→ G

π−→ Q→ 1, (2)

where A is abelian and A is normal in G. The quotient Q acts on A by
conjugation, h · a = g−1ag, where a ∈ A and g is any element of G so that
π(g) = h (see [1], pp. 86–87). The group Q then acts on the integral homology
of A. Let us also use the notation h · α for this action (h ∈ Q,α ∈ Hk(A)).
The context will always make the domain of the action clear.

Theorem 2.1 (a) There is a spectral sequence with E1
p,q =

⊕
Qp
Hq(A) con-

verging to Hp+q(G).

We next describe the differentials d1
p,q, p ≥ 1, q ≥ 0. Let us write α(h1, . . . , hp)

for the element of E1
p,q which has α ∈ Hq(A) in the summand corresponding
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to (h1, . . . , hp) ∈ Qp and all other components 0. Define face maps ∂i : E1
p,q →

E1
p−1,q, i = 0, . . . , p by ∂0(α(h1, . . . , hp)) = h1 · α(h−1

1 h2, . . . , h
−1
1 hp)

∂i(α(h1, . . . , hp)) = h1 · α(h1, . . . , ĥi, . . . , hp).

(For p = 1, this should be interpreted as ∂0(α(h)) = h ·α, ∂1(α(h)) = α.) Note,
only ∂0 involves the Q-action.

Theorem 2.1 (b) The differential d1
p,q : E1

p,q → E1
p−1,q is given by

d1
p,q =

p∑
i=0

(−1)i∂i.

Notice that the complex E1
∗,0 is the bar construction on Q.

Theorem 2.1 is Theorem 2 of [5] in the special case when the group G acts on
the cosets G/A = Q by left multiplication. The more general spectral sequence
associated to a group acting on a set has its origins in the work of Ehresmann.
Although classical, it is less well-known than the Hochschild-Serre spectral
sequence. We choose to use the former because the explicit formulas for the
E1 differentials, which we require, are easy to compute. In section 4 we recall
the constructions of [5], and use them to derive the above spectral sequence.
First though we use it to furnish a proof of Theorem 1.1.

3 Calculation of H2(Jn)

Given n > k ≥ 1, let pk : Jn → Jk be the projection map. Its kernel is
Jn,k = {x+ ak+1x

k + · · ·+ anx
n}. Notice that J1 is R+, p1 is the map D from

(1), and so Jn,1 = J ′n. Thus in fact Jn,k is a subgroup of J ′n. The group Jn,n−1

is isomorphic to R. We thus have the exact sequence

0→ R −→ Jn
pn−1−→ Jn−1 → 1. (3)

In this extension, the group Jn−1 acts on R via

g · a = (Dg)n−1a, (4)

that is, a is multiplied by the first derivative of g ∈ Jn−1 raised to the (n−1)-st
power.
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We now start the proof of Theorem 1.1. We will show by induction on n that
D∗ : H2(Jn) → H2(R

+) is an isomorphism. For n = 1 this is clear, as D
identifies J1 with R+. Assume D∗ : H2(Jn−1) → H2(R

+) is an isomorphism,
and consider the spectral sequence of section 2 for the extension (3). To prove
the theorem it suffices to show that the terms E2

0,2 and E2
1,1 vanish. For then

(pn−1)∗ : H2(Jn) −→ H2(Jn−1) is an isomorphism and by induction D∗ :
H2(Jn) −→ H2(R

+) is one also.

Lemma 3.1 E2
0,2 = 0.

Proof. The relevant term is H2(R)
d←−

⊕
Jn−1

H2(R), where, by Theorem 2.1

and (4), d(α(g)) = (Dg)n−1α−α, for α ∈ H2(R), g ∈ Jn−1. Under the isomor-
phism H2(R) ∼= (R⊗Z R) /∆, the map d is given by

a⊗ b(g) 7→ (Dg)n−1a⊗ (Dg)n−1b− a⊗ b. (5)

Notice that H2(R) is a real vector space and d is an R-linear map.

Let a ⊗ b be an arbitrary element of E2
0,2. Pick g to be the (n − 1)-st root of

2 in R+ ⊂ Jn. Then, by (5), (modulo the image of d,) the following equalities
hold: a ⊗ b = 2a ⊗ 2b = 4[a ⊗ b], or 3[a ⊗ b] = 0. Thus a ⊗ b = 0, and so
E2

0,2 = 0, as claimed.

Lemma 3.2 E2
1,1 = 0.

Proof. We consider the chain complex E∗ = (Ep, dp), where

Ep = E1
p,1 =

⊕
Jpn−1

R

dp = d1
p,1

The terms relevant to our calculation are given explicitly as

R
d1←−

⊕
Jn−1

R
d2←−

⊕
J2
n−1

R,

with

d1(a(g)) = (Dg)n−1a− a,
d2(a(f, g)) = [(Df)n−1a](f−1g)− a(g) + a(f).
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We wish to show the real vector space E2
1,1 = ker d1/ im d2 is 0. We achieve

this in a sequence of lemmas.

There is a subcomplex Ê∗ of E∗ spanned by the linear jets, given by

Êp =
⊕

(R+)p
R.

Lemma 3.3 Ê∗ is an acyclic chain complex.

Proof. Let a = 2
1

n−1 . We define a chain contraction T = Tp : Êp → Êp+1

from the identity to 0 as follows:

T0(1) = a,

Tp(g1, . . . , gp) = (a, ag1, . . . , agp)− (g1, ag1, . . . , agp) + (g1, g2, ag2, . . . , agp)−
(g1, g2, g3, ag3, . . . , agp) + · · ·+ (−1)p(g1, g2, . . . , gp−1, agp),

and extend by linearity. Then ∂Tp+Tp−1∂ = identity. We verify this for p = 1
only, which is the term relevant to our calculation. The formulas in this case
are

T0(1) = (a),

T1(g) = (a, ag)− (g, ag),

∂T1(g) = 2(g)− (ag) + (a)− gn−1(a) + (ag)− (g) = (g)− gn−1(a) + (a),

T0∂(g) = T0(g
n−1(1)− (1)) = gn−1(a)− (a).

Note that for n = 2, Ê∗ = E∗. Thus Lemma 3.2 is proved in this case. For the
rest of this section we will assume n > 2.

Remark The chain contraction T can be extended to all the horizontal chain
complexes in the E1 term. We don’t do this here, but this would imply that
Hk(J2) ∼= Hk(R

+) for all k ≥ 0, which is known (see Greenberg [2] and the
discussion in [6]).

Lemma 3.4 E2
1,1 is generated as a vector space by elements of ker d1 of the

form (f) with f ∈ J ′n−1.

Proof. Let z =
∑
aj(gj) be in ker d1. Then z =

∑
aj[(gj)−(Dgj)]+

∑
aj(Dgj).

Each [(gj) − (Dgj)] is in ker d1 and hence
∑
aj(Dgj) is also. By Lemma 3.3,
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∑
aj(Dgj) belongs to im d2. This shows E2

1,1 is generated by elements of ker d1

of the form (g)− (Dg).

Consider now the generator (Dg, g) of E1
2,1. We have

d2(Dg, g) = (Dg)n−1((Dg)−1g)− (g) + (Dg).

The jet (Dg)−1g has slope 1, so the calculation shows that, modulo im d2,
(g)− (Dg) = a(f), with Df = 1. This finishes the proof.

To complete the proof of Lemma 3.2 we need to show that any (f) as in
Lemma 3.4 is in im d2. We will write (f) ∼ (g) if (f) − (g) ∈ im d2. Notice
that if g, h ∈ J ′n−1, then d2((g, gh)) = (h)− (gh) + (g). Thus (gh) ∼ (g) + (h).

Lemma 3.5 Let f ∈ J ′n−1, and a ∈ R+ ⊂ Jn−1. Then (f 2) ∼ 2an−1(a−1fa).

Proof. Direct computation gives

d2((a, fa) + (f−1, a)− (f, 1)− (1, 1)) = an−1(a−1fa)− (f),

d2((f
−1, f)− (f−1, 1)− (1, 1)) = (f 2)− 2(f).

Corollary 3.6 If f ∈ Jn−1,n−2 then (f) ∼ 0.

Proof. Write f = x + an−1x
n−1. Then f 2 = x + 2an−1x

n−1. Applying the

previous lemma with a = 2
1

n−2 yields

x+ 2an−1x
n−1 = 2

n−1
n−2

+1(x+ 2an−1x
n−1)

This implies (f)2 ∼ 0 and hence (f) ∼ 0.

Lemma 3.7 If f ∈ J ′n−1 then (f) ∼ 0.

Proof. We will show by induction on k that if f ∈ Jn−1,n−k, and 2 ≤ k ≤ n−1,
then (f) ∼ 0. The lemma will then follow because Jn−1,1 = J ′n−1. Corollary 3.6
is the step k = 2 of the induction. Assume (f) ∼ 0 for all f ∈ Jn−1,n−k. Let g
be an arbitrary element of Jn−1,n−(k+1). Then g can be written as hf , where
h = x + an−kx

n−k and f ∈ Jn−1,n−k. We wish to show that (g) ∼ 0. By the
remark preceding Lemma 3.5 and the induction hypothesis, it suffices to show
that (h) ∼ 0.
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Applying Lemma 3.5 with a = 2
1

n−k yields

(h2) = 2
n−1
n−k+1(x+ 2an−kx

n−k)

On the other hand, h2 = (x+ 2an−kx
n−k)f0 , for some f0 ∈ Jn−1,n−k. Thus

(h2) ∼ (x+ 2an−kx
n−k).

Hence (x+ 2an−kx
n−k) ∼ 0 and so (h) ∼ 0.

This finishes the proof of Lemma 3.2 and thus the proof of Theorem 1.1. Notice
that, instead of working over the reals, one could work over any subfield of R
that contains all the roots of some positive number r 6= 1. Then r would play
the role of 2 in the above Lemmas.

4 Derivation of the spectral sequence

We now construct the E1-spectral sequence of Theorem 2.1. We start by re-
calling some facts about discrete groupoids (see Higgins [3]).

A groupoid is a small category Γ in which every morphism is an isomorphism.
We will identify the objects of with the identity morphisms. Given a discrete
groupoid, Γ define an equivalence relation ≈ on Objects(Γ): x ≈ y if there is
a morphism from x to y. Clearly π0(BΓ) is in one-to-one correspondence with
Objects(Γ)/ ≈. Choose one object α in each equivalence class. The set Θ is a
set of base points for Γ. The isotropy group of the base point α is the group
πα of all morphisms in Γ whose source and target is α. It is well known (and
easy to prove) that

BΓ =
∐
α∈Θ

K(πα, 1). (6)

Next let F : Γ → Γ′ be a functor of groupoids, and let Θ and Θ′ be sets of
base points for Γ and Γ′, respectively. For each object x of Γ pick once and for
all a morphism ρ(x) from the base point of the component containing x to x.
The set {ρ(x)} is a set of base paths for Γ′. Then F induces a homomorphism
F] : πα → πα′ where α′ is the base point of the component containing F (α).
Namely F](m) = ρ(F (m))−1 ◦ F (m) ◦ ρ(F (m)), for m ∈ πα.

Now consider the extension 0 → A → G → Q → 1 of section 2. For each
p ≥ 0 define a discrete groupoid {G/A}p as follows: Objects{G/A}p = Qp+1,
Morphisms{G/A}p = G×Qp+1.
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A typical object is a (p + 1)-tuple of cosets (h0A, . . . , hpA). As a set of base
points we may take all (p + 1)-tuples of the form (A, h1A, . . . , hpA). Then
π0{G/A}p is in one-to-one correspondence with (G/A)p = Qp. Furthermore,
the isotropy group of each base point is simply A.

The groupoids {G/A}p fit together to form a simplicial groupoid {G/A}∗, with
face maps δi given by

δi(gA, h0A, . . . , hpA) = (gA, h0A, . . . , ĥiA, . . . , hpA).

Now form a bisimplicial set {G/A}∗,∗ by extending by nerves in the vertical
direction. Computing vertical homology yields in the (p, q)-th place the q-th
homology of the discrete groupoid {G/A}p. Then standard considerations lead
to a double complex, and a spectral sequence converging to BG (see [5]).

Theorem 4.1 There is a spectral sequence with E1
p,q = Hq{G/A}p converging

to Hp+q(G). The differential d1
p,q : E1

p,q → E1
p−1,q is given by d1

p,q =
p∑
i=0

(−1)iδi

To derive the spectral sequence of Theorem 2.1 from that of Theorem 4.1
we will identify their respective E1 terms and differentials. The E1

p,q term of
Theorem 4.1 is equal to Hq(B{G/A}p), by definition, which in turn is equal
to
⊕

αHq(πα), by (6), which is
⊕

Qp Hq(A), by our earlier observations, which
is E1

p,q, by construction.

It remains to show that under these identifications the δi face maps of Theo-
rem 4.1 carry over in homology to the ∂i face maps of Theorem 2.1. For i ≥ 1,
δi is a functor which preserves the chosen sets of base points. Therefore δi
induces the identity on isotropy groups. Obviously ∂i is the homomorphism
induced on vertical homology by δi.

On the other hand, when i = 0, δ0 maps the base point α = (A, h1A, . . . , hpA)
to the component containing the object δ0(α) = (h1A, . . . , hpA) The base
point of this component is (A, h−1

1 h2A, . . . , h
−1
1 hpA) and a base path is

ρ(δ0(α) = (h1, A, h
−1
1 h2A, . . . , h

−1
1 hpA).

Therefore δ0 induces, on B{G/A}p, (h1, . . . , hp) → (h−1
1 h2, . . . , h

−1
1 hp), and

the homomorphism (δ0)] induced on the isotropy group A is m → h−1
1 mh1.

Clearly then ∂0 is the homomorphism induced on vertical homology by δ0.

This finishes the identification of the differentials in the two spectral sequences,
and thus the proof of Theorem 2.1.
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Note added in proof. The conjecture in section 1 has been verified by P. Dart-
nell [On the homology of groups of jets, J. Pure Appl. Alg. 92 (1994), 109–121],
and further generalized by W. Dwyer, S. Jekel, and A. Suciu [Homology iso-
morphisms between algebraic groups made discrete, Bull. London Math. Soc.
25 (1993), 145–149].
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