# Characteristic varieties and homological finiteness properties

Alex Suciu

Northeastern University

Lib60ber–Topology of Algebraic Varieties Jaca, Aragón June 24, 2009



#### Joint work with Stefan Papadima

#### Bieri–Neumann–Strebel–Renz invariants and homology jumping loci, arxiv:0812.2660

#### Outline

#### 1) Setup

- Bieri–Neumann–Strebel–Renz invariants
- Characteristic varieties
- Tangent cones

#### 2 Results

- Exponential tangent cone upper bound
- Valuations
- Resonance upper bound

#### Applications

- 3-manifolds
- Toric complexes and right-angled Artin groups
- Kähler and quasi-Kähler manifolds

# Homological finiteness properties

Let *G* be a group,  $k \ge 1$  an integer.

#### Definition (C.T.C. Wall 1965)

*G* is of type  $F_k$  if there is a K(G, 1) with finite *k*-skeleton.

#### Definition (J.-P. Serre 1971, R. Bieri 1976)

*G* is of type  $FP_k$  if there is a projective  $\mathbb{Z}G$ -resolution  $P_{\bullet} \to \mathbb{Z}$ , with  $P_i$  finitely generated for all  $i \leq k$ .

- $F_1 \Leftrightarrow FP_1 \Leftrightarrow$  finitely generated.
- $F_2 \Leftrightarrow$  finitely presented
- $F_k \Rightarrow FP_k$ , but  $FP_k \Rightarrow F_k$ ,  $\forall k \ge 2$ .
- $\mathsf{FP}_k \And \mathsf{F}_2 \Rightarrow \mathsf{F}_k, \ \forall k \geq 2.$
- $\operatorname{FP}_k \Rightarrow H_i(G, \mathbb{Z})$  finitely generated,  $\forall i \leq k$ .

# **BNS** invariant

G f.g. group  $\rightsquigarrow C(G)$  Cayley graph.  $\chi: G \to \mathbb{R}$  homomorphism  $\rightsquigarrow C_{\chi}(G)$  induced subgraph on vertex set  $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$ 

Definition (Bieri, Neumann, Strebel 1987)

 $\Sigma^1(G) = \{\chi \in \mathsf{Hom}(G, \mathbb{R}) \setminus \{0\} \mid \mathcal{C}_{\chi}(G) \text{ is connected} \}$ 

- Σ<sup>1</sup>(G) is open, conical subset of Hom(G, ℝ) = H<sup>1</sup>(G, ℝ).
- Σ<sup>1</sup>(*G*) does not depend on choice of generating set for *G*.
- If  $G = \pi_1(M)$ , where *M* is a closed 3-manifold:
  - $\Sigma^1(G) = \bigcup_{F \text{ fibered face of Thurston norm unit ball }} \mathbb{R}_+ \cdot \check{F}.$
  - $\Sigma^{1}(G) = -\Sigma^{1}(G).$
  - *M* fibers over  $S^1 \iff \Sigma^1(G) \neq \emptyset$ .

# **BNSR** invariants

#### Definition (Bieri, Renz 1988)

 $\Sigma^q(G,\mathbb{Z}) = \{\chi \in \mathsf{Hom}(G,\mathbb{R}) \setminus \{\mathsf{0}\} \mid \mathsf{the monoid} \; G_\chi \; \mathsf{is of type} \; \mathsf{FP}_q \}$ 

There is also a "homotopical" version,  $\Sigma^q(G) \subseteq \Sigma^q(G, \mathbb{Z})$ .

Properties:

- The BNSR invariants Σ<sup>q</sup>(G, Z) form a descending chain of open subsets of Hom(G, R) \ {0}.
- $\Sigma^q(G,\mathbb{Z}) \neq \emptyset \implies G \text{ is of type } FP_q.$
- $\Sigma^1(G,\mathbb{Z}) = \Sigma^1(G)$ .
- *G* of type  $\mathsf{F}_k \implies \Sigma^q(G) = \Sigma^2(G) \cap \Sigma^q(G,\mathbb{Z}), \, \forall 2 \leq q \leq k.$

Importance of  $\Sigma$ -invariants: they control the finiteness properties of kernels of projections to abelian quotients.

#### Theorem (Bieri, Neumann, Strebel/Bieri, Renz)

Let G f.g. group,  $N \triangleleft G$  normal subgroup with G/N is abelian. Set  $S(G, N) = \{\chi \in Hom(G, \mathbb{R}) \setminus \{0\} \mid \chi(N) = 0\}$ . Then:

$$\ \, \bullet \ \, \mathsf{N} \text{ is of type } \mathsf{F}_k \Longleftrightarrow \mathcal{S}(G, \mathsf{N}) \subseteq \Sigma^k(G).$$

2 *N* is of type  $FP_k \iff S(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$ .

In particular:

$$\operatorname{ker}(\chi\colon \boldsymbol{G}\twoheadrightarrow\mathbb{Z}) \text{ is f.g.} \Longleftrightarrow \{\chi,-\chi\}\subseteq \Sigma^1(\boldsymbol{G})$$

# Characteristic varieties

- X connected CW-complex with finite k-skeleton ( $k \ge 1$ ).
- $G = \pi_1(X)$ .
- $\Bbbk$  field; Hom( $G, \Bbbk^{\times}$ ) character variety.

Definition (Green–Lazarsfeld 1987, Beauville 1988, Simpson 1992, Libgober 1992, ...)

The *characteristic varieties* of X (over  $\Bbbk$ ):

$$\mathcal{V}^i_d(X,\Bbbk) = \{
ho \in \mathsf{Hom}(G,\Bbbk^{ imes}) \mid \dim_{\Bbbk} H_i(X,\Bbbk_{
ho}) \geq d\},$$

for  $0 \le i \le k$  and d > 0.

- For each *i*, get stratification Hom $(G, \mathbb{k}^{\times}) \supseteq \mathcal{V}_{1}^{i} \supseteq \mathcal{V}_{2}^{i} \supseteq \cdots$
- If  $\Bbbk \subseteq \mathbb{K}$  extension:  $\mathcal{V}^i_d(X, \Bbbk) = \mathcal{V}^i_d(X, \mathbb{K}) \cap \mathsf{Hom}(G, \Bbbk^{\times})$
- For G of type  $F_k$ , set:  $\mathcal{V}^i_d(G, \Bbbk) := \mathcal{V}^i_d(K(G, 1), \Bbbk)$
- If X has finite 1-skeleton:  $\mathcal{V}_d^1(X, \mathbb{k}) = \mathcal{V}_d^1(\pi_1(X), \mathbb{k})$

Let  $X^{ab} \to X$  be the maximal abelian cover.

### Definition (Libgober 1992)

The Alexander varieties of X (over  $\Bbbk$ ):

$$\mathcal{W}_{d}^{i}(X, \mathbb{k}) = V(E_{d-1}(H_{i}(X^{ab}, \mathbb{k}))),$$

the subvariety of Spec  $\Lambda = \text{Hom}(G, \mathbb{k}^{\times})$  defined by the ideal of codim d-1 minors of a presentation matrix for  $H_i(X^{ab}, \mathbb{k})$ , viewed as module over  $\Lambda = \mathbb{k}H_1(X, \mathbb{Z})$ .

Using the change-of-rings spectral sequence approach of [Dimca–Maxim 2007], we get:

#### Proposition

$$igcup_{i=0}^q \mathcal{V}_1^i(X, \Bbbk) = igcup_{i=0}^q \mathcal{W}_1^i(X, \Bbbk), \quad \forall \ 0 \leq q \leq k$$

 $\implies \mathcal{V}_1^1(X,\mathbb{C})\setminus\{1\}=\mathcal{W}_1^1(X,\mathbb{C})\setminus\{1\}$  [E. Hironaka 1997]

# Tangent cones and exponential tangent cones

The homomorphism  $\mathbb{C} \to \mathbb{C}^{\times}$ ,  $z \mapsto e^{z}$  induces

```
\exp: Hom(G, \mathbb{C}) \to Hom(G, \mathbb{C}^{\times}), \quad \exp(0) = 1
```

Let W = V(I) be a Zariski closed subset in Hom $(G, \mathbb{C}^{\times})$ .

#### Definition

• The *tangent cone* at 1 to W:

```
TC_1(W) = V(in(I))
```

• The exponential tangent cone at 1 to W:

 $au_1(W) = \{z \in \operatorname{Hom}(G, \mathbb{C}) \mid \exp(tz) \in W, \ \forall t \in \mathbb{C}\}$ 

Both types of tangent cones

- are homogeneous subvarieties of Hom(G, C)
- are non-empty iff  $1 \in W$
- depend only on the analytic germ of W at 1
- commute with finite unions and arbitrary intersections

Moreover,

• 
$$\tau_1(W) \subseteq TC_1(W)$$

- ▶ = if all irred components of *W* are subtori
- $\neq$  in general
- $\tau_1(W)$  is a finite union of rationally defined subspaces

# Exponential tangent cone upper bound

Relate the BNSR invariants to the characteristic varieties:

Theorem

Let G be a group of type  $F_n$ . Then, for each  $q \leq n$ ,

$$\Sigma^{q}(G,\mathbb{Z}) \subseteq \Big(\bigcup_{i \leq q} \tau_{1}^{\mathbb{R}} \big( \mathcal{V}_{1}^{i}(G,\mathbb{C}) \big) \Big)^{c}$$
(\*)

That is: each  $\Sigma$ -invariant is contained in the complement of a union of rationally defined subspaces.

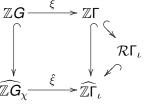
Bound is sharp: If G is a fin. gen. nilpotent group, then

$$\Sigma^q(G,\mathbb{Z}) = \operatorname{Hom}(G,\mathbb{R}) \setminus \{0\}, \quad V_1^i(G,\mathbb{C}) = \{1\}, \quad \forall q, i$$

and so get equality in (\*).

# Idea of proof: use Novikov homology Let $\chi \in Hom(G, \mathbb{R}) \setminus \{0\}$ . Write





with Γ lattice. Get diagram:

where

- ZΓ ring of Laurent polynomials
- $\widehat{\mathbb{Z}G}_{\chi}$  Novikov-Sikorav completion of  $\mathbb{Z}G$ :

$$\left\{\lambda \in \mathbb{Z}^{oldsymbol{G}} \mid \{oldsymbol{g} \in \mathsf{supp} \ \lambda \mid \chi(oldsymbol{g}) < oldsymbol{c}\} ext{ is finite, } orall oldsymbol{c} \in \mathbb{R}
ight\}$$

•  $\mathcal{R}\Gamma_{\iota}$  rational Novikov ring: localization of  $\mathbb{Z}\Gamma$  at

$$\left\{ p = \sum n_{\gamma} \gamma \mid \text{smallest element of } \iota(\text{supp}(p)) \text{ is 0, and } n_0 = 1 \right\}$$

# Fact (Farber 2004): $\mathcal{R}\Gamma_{\iota}$ is a PID. Thus, we may define the *Novikov-Betti numbers* as

$$b_i(G,\chi) := \operatorname{rank}_{\mathcal{R}\Gamma_\iota} H_i(G,\mathcal{R}\Gamma_\iota)$$

Finally,

$$\chi \in \Sigma^q(G, \mathbb{Z}) \iff \operatorname{Tor}_i^{\mathbb{Z}G}(\widehat{\mathbb{Z}G}_{-\chi}, \mathbb{Z}) = 0, \ \forall i \leq q$$
  
(Sikorav 1987, Bieri 2007)  
 $\implies b_i(G, \chi) = 0, \ \forall i \leq q$ 

(change of rings spectral sequence)

$$\Longleftrightarrow \chi \notin \tau_1^{\mathbb{R}} \big( \mathcal{V}_1^i(\boldsymbol{G}, \mathbb{C}) \big), \; \forall i \leq q$$

# BNSR invariants of spaces

Definition (Farber, Geoghegan, Schütz 2008)

Let *X* be a connected CW-complex with finite 1-skeleton,  $G = \pi_1(X)$ .

 $\Sigma^{q}(X,\mathbb{Z}) := \{\chi \in \mathsf{Hom}(G,\mathbb{R}) \setminus \{0\} \mid H_{i}(X,\widehat{\mathbb{Z}G}_{-\chi}) = 0, \ \forall \, i \leq q\}$ 

• G of type  $FP_k \implies \Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k.$ 

• If X is a *finite* CW-complex, definition coincides with FGS's.

#### Theorem

If X has finite k-skeleton, then, for every  $q \leq k$ ,

$$\Sigma^q(X,\mathbb{Z}) \subseteq \Big( au_1^{\mathbb{R}}ig(\bigcup_{i < q} \mathcal{V}_1^i(X,\mathbb{C})ig)\Big)^{\mathbb{C}}.$$

# $\Sigma$ -invariants, valuations, and characteristic varieties

- Connection between valuations and BNSR invariants (of metabelian groups) first explored by Bieri–Groves (1984).
- Delzant (2009) noticed a further connection to char. vars.
- We generalize Delzant's result (valid only for X = K(G, 1), q = k = 1, and v a discrete valuation):

#### Theorem

Let X be a connected CW-complex with finite k-skeleton ( $k \ge 1$ ), and set  $G = \pi_1(X)$ . Assume:

•  $\rho: G \to \mathbb{k}^{\times}$  is a homomorphism such that  $\rho \in \bigcup_{i \leq q} \mathcal{V}_1^i(X, \mathbb{k})$ , for some  $q \leq k$ .

**2**  $v : \mathbb{k}^{\times} \to \mathbb{R}$  is a valuation on  $\mathbb{k}$  such that  $v \circ \rho \neq 0$ .

Then

$$v \circ \rho \not\in \Sigma^q(X, \mathbb{Z})$$

We also prove a (partial) converse:

#### Theorem

Assume:

- $\chi: G \xrightarrow{\xi} \Gamma \xrightarrow{\iota} \mathbb{R}$  is an additive character such that  $-\chi \in \Sigma^q(X, \mathbb{Z})$ , for some q < k.
- $\rho: \Gamma \to \mathbb{k}^{\times}$  is a character which is not an algebraic integer. Then

$$ho\circ\xi
ot\in\bigcup_{i\leq q}\mathcal{V}_1^i(X,\Bbbk)$$

Here,  $\rho$  is an *algebraic integer* if  $\exists \Delta = \sum n_{\gamma} \gamma \in \mathbb{Z}\Gamma$  with

$$\Delta(\rho) = 0 \quad \text{and} \quad n_{\gamma_0} = 1,$$

where  $\gamma_0$  is the greatest element of  $\iota(\text{supp}(\Delta))$ .

### **Resonance varieties**

Let  $A = H^*(X, \mathbb{k})$ . If char  $\mathbb{k} = 2$ , assume  $H_1(X, \mathbb{Z})$  has no 2-torsion. Then:  $a \in A^1 \Rightarrow a^2 = 0$ . Get cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{} \cdots$$

Definition (Falk 1997, Matei-S. 2000)

The *resonance varieties* of *X* (over  $\Bbbk$ ):

$$\mathcal{R}^i_d(X, \Bbbk) = \{ a \in A^1 \mid \dim_{\Bbbk} H^i(A, \cdot a) \ge d \}$$

Homogeneous subvarieties of  $A^1 = H^1(X, \mathbb{k})$ :  $\mathcal{R}_1^i \supseteq \mathcal{R}_2^i \supseteq \cdots$ 

Theorem (Libgober 2002)

$$TC_1(\mathcal{V}^i_d(X,\mathbb{C}))\subseteq \mathcal{R}^i_d(X,\mathbb{C})$$

Equality does not hold in general (Matei-S. 2002)

## Formality

#### Definition (Quillen 1969)

A group *G* is 1-*formal* if its Malcev Lie algebra,  $\mathfrak{m}_G = \operatorname{Prim}(\widehat{\mathbb{Q}G})$ , is quadratic.

#### Definition (Sullivan 1977)

A space X is *formal* if its minimal model is quasi-isomorphic to  $(H^*(X, \mathbb{Q}), 0)$ .

X formal  $\implies \pi_1(X)$  is 1-formal.

# Tangent cone theorem

Theorem (Dimca, Papadima, S. 2009)

If G is 1-formal, then exp:  $(\mathcal{R}^1_d(G,\mathbb{C}),0) \xrightarrow{\simeq} (\mathcal{V}^1_d(G,\mathbb{C}),1)$ . Hence

$$\tau_1(\mathcal{V}^1_d(G,\mathbb{C})) = \mathit{TC}_1(\mathcal{V}^1_d(G,\mathbb{C})) = \mathcal{R}^1_d(G,\mathbb{C})$$

In particular,  $\mathcal{R}^1_d(G, \mathbb{C})$  is a union of rationally defined subspaces in  $H^1(G, \mathbb{C}) = \text{Hom}(G, \mathbb{C})$ .

#### Example

Let  $G = \langle x_1, x_2, x_3, x_4 \mid [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$ . Then  $\mathcal{R}^1_1(G, \mathbb{C}) = \{ x \in \mathbb{C}^4 \mid x_1^2 - 2x_2^2 = 0 \}$ 

splits into subspaces over  $\mathbb{R}$  but not over  $\mathbb{Q}$ . Thus, *G* is *not* 1-formal.

#### Example

X = F(Σ<sub>g</sub>, n): the configuration space of n labeled points of a Riemann surface of genus g (a smooth, quasi-projective variety).
π<sub>1</sub>(X) = P<sub>g,n</sub>: the pure braid group on n strings on Σ<sub>g</sub>.
Using computation of H\*(F(Σ<sub>g</sub>, n), C) by Totaro (1996), get

$$\mathcal{R}_{1}^{1}(P_{1,n},\mathbb{C}) = \left\{ (x,y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{l} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0, \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 \leq i < j < n \end{array} \right\}$$

For  $n \ge 3$ , this is an irreducible, non-linear variety (a rational normal scroll). Hence,  $P_{1,n}$  is not 1-formal.

#### Proposition

Suppose G is a 1-formal group. Then the BNS invariant of G is contained in the complement of a finite union of linear subspaces defined over  $\mathbb{Q}$ :

 $\Sigma^1(G) \subseteq \mathcal{R}^1_1(G,\mathbb{R})^{c}.$ 

This inclusion may be strict:

Example

Let  $G = \langle a, b \mid aba^{-1} = b^2 \rangle$  be the Baumslag-Solitar group. Then:

- $b_1(G) = 1$ , thus G is 1-formal.
- $\Sigma^1(G) = (-\infty, 0).$
- $\mathcal{R}_1^1(G,\mathbb{R}) = \{0\}.$

#### Corollary

If G is 1-formal, and  $\mathcal{R}_1^1(G,\mathbb{R}) = H^1(G,\mathbb{R})$ , then  $\Sigma^1(G) = \emptyset$ .

## 3-manifolds

Let *M* be a closed, orientable 3-manifold.

Proposition (Dimca-S. 2009)

If  $b_1(M)$  is even, then  $\mathcal{R}^1_1(M,\mathbb{C}) = H^1(M,\mathbb{C})$ .

#### Corollary

If  $b_1(M)$  is even, and  $G = \pi_1(M)$  is 1-formal, then  $\Sigma^1(G) = \emptyset$ , and so M does not fiber over  $S^1$ .

Hence:  $f: M \to S^1$  fibration,  $b_1(M)$  even  $\implies M$  is not formal.

#### Remark

A different bound for the BNS invariant in terms of the Alexander polynomial was obtained by McMullen (2002):

$$\|\phi\|_{\mathcal{A}} \leq \|\phi\|_{\mathcal{T}}, \quad \forall \phi \in H^1(\mathcal{M}, \mathbb{Z})$$

# Toric complexes and right-angled Artin groups

#### Definition

Let *L* be simplicial complex on *n* vertices. The associated *toric complex*,  $T_L$ , is the subcomplex of *n*-torus obtained by deleting the cells corresponding to the missing simplices of *L*.

- Special case of "generalized moment angle complex".
- $\pi_1(T_L)$  is the *right-angled Artin group* associated to graph  $\Gamma = L^{(1)}$ :

$$G_{\Gamma} = \langle v \in V(\Gamma) \mid vw = wv \text{ if } \{v, w\} \in E(\Gamma) \rangle.$$

*K*(*G*<sub>Γ</sub>, 1) = *T*<sub>Δ<sub>Γ</sub></sub>, where Δ<sub>Γ</sub> is the *flag complex* of Γ. (Davis–Charney 1995, Meier–VanWyk 1995)
 *T<sub>L</sub>* is formal. (Notbohm–Ray 2005) Using a result of Aramova, Avramov, Herzog (2000), we showed:

Theorem (Papadima-S. 2009)

$$\mathcal{R}^{i}_{d}(\mathcal{T}_{L}, \Bbbk) = igcup_{\substack{\mathsf{W} \subset \mathsf{V} \\ \sum_{\sigma \in L_{\mathsf{V} \setminus \mathsf{W}}} \mathsf{dim}_{\Bbbk} \widetilde{H}^{-1}_{i-1-|\sigma|}(\mathsf{lk}_{L_{\mathsf{W}}}(\sigma), \Bbbk) \geq d}} \Bbbk^{\mathsf{W}}$$

where  $L_W$  is the subcomplex induced by L on W, and  $lk_K(\sigma)$  is the link of a simplex  $\sigma$  in a subcomplex  $K \subseteq L$ .

Using (1) resonance upper bound, and (2) computation of  $\Sigma^k(G_{\Gamma}, \mathbb{R})$  by Meier, Meinert, VanWyk (1998), we get:

Corollary For all  $k \ge 0$ ,  $\Sigma^{k}(T_{L},\mathbb{Z}) \subseteq \left(\bigcup_{i \le k} \mathcal{R}_{1}^{i}(T_{L},\mathbb{R})\right)^{c}$ .  $\Sigma^{k}(G_{\Gamma},\mathbb{R}) = \left(\bigcup_{i \le k} \mathcal{R}_{1}^{i}(T_{\Delta_{\Gamma}},\mathbb{R})\right)^{c}$ .

# Kähler and quasi-Kähler manifolds

- A compact, connected, complex manifold *M* is *Kähler* if there is a Hermitian metric *h* such that ω = ℑm(h) is a closed 2-form.
- A manifold X is called *quasi-Kähler* if X = M \ D, where M is Kähler and D is a divisor with normal crossings.

Formality properties:

• M Kähler  $\Rightarrow$  M is formal

(Deligne, Griffiths, Morgan, Sullivan 1975)

- $X = \mathbb{CP}^n \setminus \{\text{hyperplane arrangement}\} \Rightarrow X \text{ is formal}$ (Brieskorn 1973)
- X quasi-projective,  $W_1(H^1(X,\mathbb{C})) = 0 \Rightarrow \pi_1(X)$  is 1-formal

(Morgan 1978)

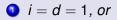
• 
$$X = \mathbb{CP}^n \setminus \{ \text{hypersurface} \} \Rightarrow \pi_1(X) \text{ is 1-formal}$$

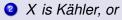
(Kohno 1983)

# Cohomology jumping loci

Let X be a quasi-Kähler manifold,  $G = \pi_1(X)$ .

Theorem (Arapura 1997) All components of  $\mathcal{V}_d^i(X, \mathbb{C})$  passing through 1 are subtori of Hom( $G, \mathbb{C}^{\times}$ ), provided





**3**  $W_1(H^1(X,\mathbb{C})) = 0.$ 

#### Theorem (Dimca, Papadima, S. 2009)

Let  $\{\mathcal{V}^{\alpha}\}_{\alpha}$  be the irred components of  $\mathcal{V}_{1}^{1}(G)$  containing 1. Set  $\mathcal{T}^{\alpha} = TC_{1}(\mathcal{V}^{\alpha})$ . Then:

• Each  $\mathcal{T}^{\alpha}$  is a *p*-isotropic subspace of  $H^1(G, \mathbb{C})$ , of dim  $\geq 2p + 2$ , for some  $p = p(\alpha) \in \{0, 1\}$ .

2 If 
$$\alpha \neq \beta$$
, then  $\mathcal{T}^{\alpha} \cap \mathcal{T}^{\beta} = \{0\}$ .

Assume further that G is 1-formal. Let  $\{\mathcal{R}^{\alpha}\}_{\alpha}$  be the irred components of  $\mathcal{R}^{1}_{1}(G)$ . Then:

#### Kähler manifolds

# $\Sigma$ -invariants

#### Theorem

- $\Sigma^1(G) \subseteq TC_1^{\mathbb{R}}(\mathcal{V}_1^1(G,\mathbb{C}))^{\complement}$ .
- 2 Suppose X is Kähler, or  $W_1(H^1(X,\mathbb{C})) = 0$ . Then  $\mathcal{R}^1_1(G,\mathbb{R})$  is a finite union of rationally defined linear subspaces, and  $\Sigma^1(G) \subseteq \mathcal{R}^1_1(G,\mathbb{R})^{\mathfrak{c}}.$

#### Example

Assumption from (2) is necessary: Let X be the complex Heisenberg manifold: bundle  $\mathbb{C}^{\times} \to X \to (\mathbb{C}^{\times})^2$  with e = 1. Then:

- X is a smooth quasi-projective variety;
- 2  $G = \pi_1(X)$  is nilpotent (and not 1-formal);
- **3**  $\Sigma^1(G) = \mathbb{R}^2 \setminus \{0\}$  and  $\mathcal{R}^1(G, \mathbb{R}) = \mathbb{R}^2$ .

Thus,  $\Sigma^1(G) \not\subseteq \mathcal{R}^1_1(G, \mathbb{R})^{c}$ .

For Kähler manifolds, we can say precisely when the resonance upper bound for  $\Sigma^1$  is attained.

Theorem

Let *M* be a compact Kähler manifold with  $b_1(M) > 0$ , and  $G = \pi_1(M)$ . The following are equivalent:

 $\ \, {\bf \Sigma}^1(G)=\mathcal{R}^1_1(G,\mathbb{R})^{c}.$ 

If f: M → C is an elliptic pencil (i.e., a holomorphic map onto an elliptic curve, with connected generic fiber), then f has no fibers with multiplicity > 1.

Proof uses results of Arapura (1997), DPS (2009), and Delzant (to appear).

# Hyperplane arrangements

Let  $\mathcal{A}$  be an arrangement of hyperplanes in  $\mathbb{C}^n$ , with complement  $X = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}} H$ .

Theorem  
For all 
$$q \ge 0$$
,  
 $\Sigma^q(X,\mathbb{Z}) \subseteq \Big(\bigcup_{i \le q} \mathcal{R}^i_1(X,\mathbb{R})\Big)^{\complement}$ 

#### Question

For which arrangements A is the resonance upper bound attained?