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1. Statement of Results

Theorem 1. Consider a split exact sequence of discrete groups

(∗) {1} → G→ Γ
π
À
σ
Γ/G→ {1}.

Suppose there exists a normal series

(∗∗) G = G0 . G1 . · · · . Gn . Gn+1 = {1}

such that:

(1) Gi/Gi+1 is a rational vector space for i = 0, . . . , n;
(2) Gi/Gi+1 is contained in the center of G/Gi+1 for i = 0, . . . , n;
(3) There exists an element in the center of Γ/G that induces a diagonalizable

endomorphism of each Gi/Gi+1 with all eigenvalues rational and greater
than 1.

Then, the map π induces an isomorphism

π∗ : H∗(BΓ,Z) −→ H∗(B(Γ/G),Z).

The proof will be given in section 3.
There is a natural context covered by Theorem 1. For Γ a Lie group, we will write

Γ δ for Γ made discrete and H∗(Γ δ) for H∗(BΓ ). The next theorem identifies the
homology of certain Lie groups made discrete with the homology of their reductive
parts.
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Theorem 2. Let Γ be a connected affine algebraic group over a field K of charac-
teristic 0. Let G be the unipotent radical of Γ and (∗∗) the descending central series
of G. Assume (3) holds. Then H∗(Γ δ,Z)→ H∗((Γ/G)δ,Z) is an isomorphism.

Proof. In this case, the split exact sequence (∗) is the decomposition of an affine
algebraic group into the the semi-direct product of a maximal reductive subgroup
and its maximal unipotent subgroup [5]. The algebraic groups Gi/Gi+1 are con-
nected, unipotent and abelian, and thus vector spaces over K, so (1) holds; (2) is
satisfied by definition. Whence the conclusion.

2. Examples

The simplest example to which Theorem 2 applies is the following. Let T(n,K)
be the group of upper triangular matrices in GL(n,K), and D(n,K) (resp. U(n,K))
the subgroup consisting of diagonal matrices (resp. upper triangular matrices with
all diagonal entries 1). Then T(n,K) is an algebraic group, with decomposition
U(n,K)oD(n,K). The descending central series for U = U(n,K) is

U . U1,2 . U2,3 . · · · . U2,n . U1,n = {1},

where Ui,j = {x ∈ U | xk,l = 0 for (k, l) ≤ (i, j) }, 1 ≤ i < j ≤ n, and the successor
of (i, j) is s(i, j) = (i− 1, j) if i > 1 and (j, j + 1) if i = 1. A diagonal matrix with
entries λ1, . . . , λn (λk 6= 0) acts on Ui,j/Us(i,j) = K by multiplication by λiλ

−1
j .

Choosing rational numbers λ1 > · · · > λn > 1 gives an element of D(n,K) for
which (3) holds. This proves:

Corollary 3. There is an isomorphism H∗(T(n,K)δ,Z)→ H∗(D(n,K)δ,Z).

The next example is Jk(n,K), the group, under composition, of k-jets of
invertible formal series in n variables over Kn which fix 0. Let Jk,i(n,K) =
ker(Jk(n,K)³ Ji(n,K)), 1 ≤ i ≤ k, be the subgroup of k-jets which vanish to or-
der i at 0, and GL(n,K) = J1(n,K) be the subgroup of linear jets. Then Jk(n,K)
is an algebraic group, with decomposition Jk,1(n,K)oGL(n,K). The descending
central series for Jk,1 is

Jk,1 . Jk,2 . · · · . Jk,k−1 . Jk,k = {1}.

Each quotient Jk,i/Jk,i+1 is isomorphic to Ji+1,i, which is a direct sum of copies
of K, indexed by the monomials of degree i+ 1 in n variables. A diagonal matrix
with all diagonal entries λ (λ 6= 0) acts on Jk,i/Jk,i+1 by multiplication by λ−i.
Choosing a rational number λ, 0 < λ < 1, yields:

Corollary 4. There is an isomorphism Hp(Jk(n,K)δ,Z)→ Hp(GL(n,K)δ,Z), for
all p ≥ 0.

The homology theory of discrete jet groups in one variable was first treated in
[3], where the isomorphism was established for p ≤ 2, and conjectured to hold for all
p. In [2], Dartnell considered jets in n variables, and gave the first complete proof
of Corollary 4. Independently, in a preliminary version of this paper, we discovered
how to apply the vanishing criterion from [4] to verify the conjecture for n = 1.
Subsequently, we formulated the results herein.
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Corollary 4 also holds for jet subgroups whose linearization contains diagonal
matrices of the required sort. For example, let J+

k (n,R) denote the group of k-
jets at 0 of orientation-preserving local diffeomorphisms of Rn fixing 0. Then, the
linearization map induces an isomorphism Hp(J+

k (n,R)δ,Z)→ Hp(GL+(n,R)δ,Z).
For n = 1, the homology can be easily computed. Indeed, GL+(1,R) ∼= R and
Hp(Rδ,Z) is the p’th exterior power of R (see the proof of Lemma 9 below).

3. Proof of Theorem 1

Let V be an abelian group which carries the structure of a rational vector space,
that is, the Z scalar multiplication extends to one of Q. Let α be an endomorphism
of the group V . Then it is readily seen that α is Q-linear. Given a rational number
r, let V (α, r) be the collection of all elements v ∈ V such that (α − r)kv = 0, for
some integer k > 0. If V (α, r) 6= {0}, then r is called an eigenvalue for the action
of α on V ; the non-zero elements of V (α, r) are called the generalized eigenvectors
corresponding to r. Let E(V, α) denote the set of eigenvalues for the action of α on
V . The action of α on V is said to be almost diagonalizable if V is the direct sum
of the generalized eigenspaces of α: V = ⊕

r∈Q
V (α, r).

Given an endomorphism α of the rational vector space V , construct an action of
the polynomial ring Q[t] on V by letting t act via α. The ring Q[t] is a principal ideal
domain; a prime ideal has the form (f(t)) for an irreducible polynomial f(t) over
Q. It follows from the definitions that the action of α on V is almost diagonalizable
if and only if V is a torsion module over Q[t] with the property that the p-primary
components of V vanish except for prime ideals p ⊂ Q[t] of the form (t− r), r ∈ Q.
The submodule V (α, r) is the primary summand of V for the prime (t − r). The
next two lemmas follow from standard properties of modules over principal ideal
domains.

Lemma 5. If the action of the endomorphism α of the rational vector space V is
almost diagonalizable, then for r ∈ Q the map (α− r) : V → V is an isomorphism,
unless r ∈ E(V, α).

Lemma 6. Let α be an endomorphism of the short exact sequence

0→ U → V →W → 0

of rational vector spaces: α amounts to an endomorphism αV of V which restricts
to an endomorphism αU of U and induces a quotient endomorphism αW of W .
Then:

(i) The action of αV on V is almost diagonalizable if and only if the actions of
αU on U and αW on W are almost diagonalizable;

(ii) If the action of αV on V is almost diagonalizable, then E(V, αV ) =
E(U,αU ) ∪ E(W,αW ).

Remark 7. Let 0→ U → A→ V → 0 be a short exact sequence of abelian groups,
with U and V rational vector spaces. Since the Z-module U is divisible, and thus
injective, the sequence splits, i.e. A ∼= U ⊕ V . Hence A carries the structure of a
rational vector space.
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The next lemma is a little more special. Before stating it, let us point out that,
if U and V are rational vector spaces, then U ⊗ V ∼= U ⊗Q V ; in particular, U ⊗ V
carries the structure of a rational vector space.

Lemma 8. Let α be an endomorphism of U and β an endomorphism of V, where
U and V are rational vector spaces. Suppose that the actions of α on U and β
on V are almost diagonalizable. Then the action of α ⊗ β on U ⊗ V is almost
diagonalizable and

E(U ⊗ V, α⊗ β) = { rs | r ∈ E(U,α) and s ∈ E(V, β) }.

Proof. Since tensor product commutes with direct sums, we can assume that U =
U(α, r) and V = V (β, s) for r, s ∈ Q. It is then enough to show that for any u ∈ U
and v ∈ V there exists a positive integer k such that (α ⊗ β − rs)k(u ⊗ v) = 0.
By assumption there exist positive integers i and j such that (α − r)iu = 0 and
(β − s)jv = 0. The existence of the desired integer k follows from the binomial
theorem and the formula α⊗ β − rs = (α− r)⊗ β + r ⊗ (β − s).

We now consider the action on the homology level.

Lemma 9. Let V be a rational vector space and α an endomorphism of V such
that the action of α is almost diagonalizable. Let αp (p ≥ 1) be the endomorphism
of Hp(BV,Z) induced by α. Then αp is almost diagonalizable, and each element
E(Hp(BV,Z), αp) can be written as a product of p elements of E(V, α).

Proof. The group Hp(BV,Z) is naturally isomorphic to the rational vector space
∧pV , the p’th exterior power of V , see [1]. In a natural way this is a summand of
the p’th tensor power of V . The result thus follows from Lemma 8.

Lemma 10. Let G be a group admitting a normal series G = G0 . G1 . · · · .
Gn . Gn+1 = {1} so that Gi/Gi+1 is a rational vector space and is contained
in the center of G/Gi+1. Suppose α is an automorphism of the series with the
property that the induced homology automorphisms α∗ : H∗(B(Gi/Gi+1),Z) →
H∗(B(Gi/Gi+1),Z) are almost diagonalizable. Then α∗ : H∗(BG,Z)→ H∗(BG,Z)
is almost diagonalizable, and each element of E(H∗(BG,Z), α∗) can be written as
a product of elements of E(H∗(B(Gi/Gi+1),Z), α∗).

Proof. By induction on n.
For n = 1 we are given an automorphism α of the extension

{1} → G1 → G0 → G0/G1 → {1}.

The automorphism α acts on the Lyndon-Hochschild-Serre spectral sequence

{E2
p,q = Hp(B(G0/G1),Z)⊗Hq(BG1,Z)} =⇒ Hp+q(BG0,Z)

(where the tensor product formula for E2 comes from the fact that G1 is in the
center of G0.) By Lemma 8 the action of α on E2

p,q is almost diagonalizable and
each element of E(E2

p,q, α∗) can be written as a product rs where r and s are
rational numbers in E(Hp(B(G0/G1),Z), α∗) and E(Hq(BG1,Z), α∗), respectively.
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The proof of step n = 1 is completed by repeated applications of Lemma 6 (and
Remark 7) to deduce first that the action of α on E∞ has the desired properties,
and then that these properties are inherited by the action of α on H∗(BG0,Z).

The group G/Gn admits a normal series G/Gn . G1/Gn . · · · . Gn−1/Gn . {1}
satisfying the hypothesis. By induction the automorphism α∗ : H∗(B(G/Gn),Z)→
H∗(B(G/Gn),Z) has the desired properties. The lemma follows by applying step
n = 1 of the induction to the extension {1} → Gn → G→ G/Gn → {1}.

The following lemma, which is the vanishing theorem of [4], will enable us to
finish the proof of Theorem 1.

Lemma 11 ([4]). Let G be a discrete group and M a module over Z[G]. If there ex-
ists an element ε in the center of Z[G] of augmentation zero such that multiplication
by ε gives an isomorphism M →M , then H∗(BG,M) = 0.

Now consider the Lyndon-Hochschild-Serre spectral sequence associated to the
extension (∗)

{E2
p,q = Hp(B(Γ/G), Hq(BG,Z))} =⇒ Hp+q(BΓ,Z).

Note that the E2
p,0 = Hp(B(Γ/G),Z). Let q > 0. We are given an element ρ in the

center of Γ/G so that conjugation by σ(ρ) induces a diagonalizable action on each
Gi/Gi+1 with all eigenvalues greater than 1. (In fact, all we need is that the action
on each quotient is almost diagonalizable and all possible products of eigenvalues are
not equal to 1). It follows from Lemma 10 that the induced homology automorphism
ρ∗ : Hq(BG,Z) → Hq(BG,Z) is almost diagonalizable and all its eigenvalues are
greater than 1. By Lemma 5, then, multiplication by the element ε = ρ − 1 of
Z[Γ/G] gives an automorphism ε∗ of Hq(BG,Z). It follows from Lemma 11 that
in the above spectral sequence E2

p,q = 0 for q > 0. The desired result follows
immediately.
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