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CUP PRODUCTS, LOWER CENTRAL SERIES, AND

HOLONOMY LIE ALGEBRAS

ALEXANDER I. SUCIU1 AND HE WANG

Abstract. We generalize basic results relating the associated graded Lie algebra and the holonomy

Lie algebra of a group, from finitely presented, commutator-relators groups to arbitrary finitely pre-

sented groups. Using the notion of “echelon presentation,” we give an explicit formula for the cup-

product in the cohomology of a finite 2-complex. This yields an algorithm for computing the cor-

responding holonomy Lie algebra, based on a Magnus expansion method. As an application, we

discuss issues of graded-formality, filtered-formality, 1-formality, and mildness. We illustrate our

approach with examples drawn from a variety of group-theoretic and topological contexts, such as

link groups, one-relator groups, and fundamental groups of orientable Seifert fibered manifolds.
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1. Introduction

Throughout this paper G will be a finitely generated group. Our main focus will be on the cup-

product in the rational cohomology of the 2-complex associated to a presentation of G, and on

several rational Lie algebras attached to such a group.
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2 ALEXANDER I. SUCIU AND HE WANG

1.1. Magnus expansions and cup products. The notion of expansion of a group, which goes back

to W. Magnus [21], has been generalized and used in many ways. For instance, a presentation for the

Malcev Lie algebra of a finitely presented group was given by S. Papadima [30] and G. Massuyeau

[25], while X.-S. Lin [20] studied expansions of fundamental groups of smooth manifolds. Recently,

D. Bar-Natan [2] has generalized the notion of expansion and has introduced the Taylor expansion

of an arbitrary ring. In turn, we explored in [41] various relationships between expansions and

formality properties of groups.

We go back here to the classical Magnus expansion, and adapt it for our purposes. Let G be a

group with a finite presentation G = F/R = 〈x1, . . . , xn | r1, . . . , rm〉. There exists then a 2-complex

K = KG associated to such a presentation. In the case when G is a commutator-relators group, i.e.,

when all relators ri belong to the commutator subgroup [F, F], R. Fenn and D. Sjerve computed in

[10] the cup-product map

(1) µK : H1(K;Z) ∧ H1(K;Z) // H2(K;Z) , u ∧ v 7→ u ∪ v,

using the Magnus expansion M : ZF → Z〈〈x〉〉 from the group ring of the free group F = 〈x1, . . . , xn〉

to the power series ring in n non-commuting variables, which is the ring morphism defined by

M(xi) = 1 + xi.

Our first objective in this work is to generalize this result of Fenn and Sjerve, from commutator-

relators groups to arbitrary finitely presented groups. We will avoid possible torsion in the first

homology of G by working over the field of rationals. To that end, we start by defining a Magnus-

like expansion κ = κG relative to such a group G as the composition

(2) QF
M // T̂ (H1(F;Q))

T̂ (ϕ∗)
// T̂ (H1(G;Q)),

where ϕ : F ։ G is the canonical projection and T̂ (V) is the completed tensor algebra of a vector

space V . We then show in Proposition 3.3 that there exists a group Ge admitting a ‘row-echelon’

presentation, Ge = 〈x1, . . . , xn | w1, . . . ,wm〉, and a map f : KGe
→ KG inducing an isomorphism in

cohomology.

Using the κ-expansion of Ge, we determine in Theorem 4.3 the cup-product map for KGe
, from

which we obtain in Theorem 4.4 a formula for computing the cup-product map µK, with Q-coef-

ficients. Let b = b1(G) be the first Betti number of G, and let {u1, . . . , ub} and {βn−b+1, . . . , βm} be

bases for H1(K;Q) and H2(K;Q), transferred from suitable bases in the rational cohomology of KGe

via the isomorphism f ∗ : H∗(KGe
;Q)→ H∗(KG;Q). Our result then reads as follows.

Theorem 1.1. Let K be a presentation 2-complex for a finitely presented group G. In the bases

described above, the cup-product map µK : H1(K;Q) ∧ H1(K;Q)→ H2(K;Q) is given by

ui ∪ u j =

m∑

k=n−b+1

κ(wk)i, j βk, for 1 ≤ i, j ≤ b.

Let us note that the map µK depends on the chosen presentation for G, and may differ from the

cup-product map µG in a classifying space for G. However, the two maps share the same kernel,

which makes the algorithm for determining the map µK useful in other contexts, for instance, in

computing the first resonance variety of G (see e.g. [27, 35]), or finding a presentation for the

holonomy Lie algebra h(G), a procedure that we discuss next.
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1.2. Holonomy Lie algebras. The holonomy Lie algebra of a finitely generated group G, denoted

by h(G), is the quotient of the free Lie algebra on H1(G;Q) by the Lie ideal generated by the image

of the dual of the cup-product map µG. It is easy to see that h(G) is a graded Lie algebra over Q

which admits a quadratic presentation depending only on ker µG. Moreover, this construction is

functorial. The holonomy Lie algebra was introduced by T. Kohno in [13], building on work of

Chen [6], and has been further studied in a number of papers, including [24, 31, 41].

Our next objective is to find a presentation for the holonomy Lie algebra h(G). We start by

showing in Proposition 5.4 that there is a homomorphism from a finitely presented group G f to G

inducing an isomorphism on holonomy Lie algebras. Hence, without loss of generality, we may

assume that G admits a finite presentation.

Let Ge = 〈x1, . . . , xn | w1, . . . ,wm〉 be a group with row-echelon presentation, and let ρ : Ge → G

be the homomorphism induced on fundamental groups by the aforementioned map, f : KGe
→ KG.

It follows from Corollary 5.3 that the induced map, h(ρ) : h(Ge) → h(G), is an isomorphism of

graded Lie algebras. Using the computation of the cup-product map µKG
from Theorem 1.1, we

describe in Theorem 5.5 an algorithm for finding a presentation for the holonomy Lie algebra h(G).

Furthermore, we obtain in Theorem 5.11 a presentation for the derived quotients of this Lie algebra,

h(G)/h(G)(i). Our results may be summarized as follows.

Theorem 1.2. Let G be a finitely presented group. The holonomy Lie algebra h(G) is the quotient

of the free Q-Lie algebra with generators y = {y1, . . . , yb} in degree 1 by the ideal I generated by

κ2(wn−b+1), . . . , κ2(wm), where κ2 is the degree 2 part of the Magnus expansion of Ge. Furthermore,

for each i ≥ 2, the solvable quotient h(G)/h(G)(i) is isomorphic to lie(y)/(I + lie(i)(y)).

In the special case when G admits a presentation with only commutator relators, presentations

for these Lie algebras were given by Papadima and Suciu in [31]. For arbitrary finitely generated

groups G, the metabelian quotient h(G)/h(G)′′, also known as the holonomy Chen Lie algebra of

G, is closely related to the first resonance variety of G, a geometric object which has been studied

intensely from many points of view, see for instance [27, 34, 35, 43, 44] and references therein.

1.3. Lower central series, graded formality, and mildness. The Lie methods in group theory

were introduced by W. Magnus in [22], and further developed by E. Witt [48], M. Hall [12],

M. Lazard [18], and many more authors, see for instance [23]. The associated graded Lie ring

of a group G is the graded Lie ring gr(G;Z), whose graded pieces are the successive quotients of

the lower central series of G, and whose Lie bracket is induced from the group commutator. The

quintessential example is the associated graded Lie ring of the free group on n generators, Fn, which

is isomorphic to the free Lie ring lie(Zn). Much of the power of this method comes from the various

connections between lower central series, nilpotent quotients, and group homology, as evidenced in

the work of J. Stallings [40], W. Dwyer [8], and many others.

We concentrate here on the associated graded Lie algebra over the rationals, gr(G) = gr(G;Z)⊗Q,

of a finitely generated group G. As we recall in §6.2, there is a natural epimorphism ΦG : h(G) ։

gr(G). Thus, the holonomy Lie algebra h(G) may be viewed as a quadratic approximation to the

associated graded Lie algebra of G. We say that the group G is graded-formal if the map ΦG is

an isomorphism of graded Lie algebras. A much stronger requirement is that G be 1-formal, a

condition we recall in §2.1. For much more on these notions, we refer to [31, 32, 41].

In Propositions 6.2 and 6.3, we compare the holonomy Lie algebra of G with the holonomy Lie

algebras of the nilpotent quotients G/ΓiG and the derived quotients G/G(i). In Corollary 6.6, we
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use Theorem 1.2 and a result from [41] to give explicit presentations for the graded Lie algebras

gr
(
G/G(i)) in the case when G is a finitely presented, 1-formal group.

Some of the motivation for our study comes from the work of J. Labute [14, 15] and D. Anick [1],

who gave presentations for the associated graded Lie algebra gr(G) in the case when G is ‘mildly’

presented. We revisit this topic in §7, where we relate the notion of mild presentation to that of

graded formality, and derive some consequences, especially in the context of link groups.

1.4. Further applications. We illustrate our approach with several classes of finitely presented

groups, including 1-relator groups in §8, and fundamental groups of orientable Seifert fibered 3-

manifolds with orientable base in §9. We give here presentations for the holonomy Lie algebra h(G)

and the Chen Lie algebra gr(G/G′′) of such groups G. We also compute the Hilbert series of these

graded Lie algebras, and discuss the formality properties of these groups.

This work was motivated by a desire to generalize some of the results of Fenn–Sjerve [10] and

Papadima–Suciu [31], from commutator-relators groups to arbitrary finitely generated groups. In

[41], we studied the formality properties of finitely generated groups, focusing on the filtered-

formality and 1-formality properties. In related work, we apply the techniques developed in this

paper and in [41] to the study of several families of “pure-braid like” groups. For instance, we

investigate in [43] the pure virtual braid groups, and we investigate in [44] the McCool groups, also

known as the pure welded braid groups. A summary of these results, as well as further motivation

and background can be found in [42].

2. Expansions for finitely presented groups

In this section, we introduce and study a Magnus-type expansion relative to a finitely presented

group. We start by reviewing some basic notions.

2.1. Completed group algebras and expansions. Let G be a finitely generated group. As is well-

known (see for instance [36, 37]), the group-algebra QG has a natural Hopf algebra structure, with

comultiplication ∆ : QG → QG⊗QQG given by ∆(g) = g⊗g for g ∈ G, and counit the augmentation

map ε : QG → Q given by ε(g) = 1. The powers of the augmentation ideal, I = ker ε, form a

descending, multiplicative filtration ofQG. The associated graded algebra, gr(QG) =
⊕

k≥0
Ik/Ik+1,

comes endowed with the degree filtration, Fk =
⊕

j≥k
I j/I j+1. The corresponding completion,

ĝr(QG), is again an algebra, endowed with the inverse limit filtration.

The I-adic completion of the group-algebra, Q̂G = lim
←−−k
QG/Ik, also comes equipped with an in-

verse limit filtration. Applying the I-adic completion functor to the map ∆ yields a comultiplication

map ∆̂, which makes Q̂G into a complete Hopf algebra, see [38, App. A].

An element x in a Hopf algebra is called primitive if ∆x = x⊗1 + 1⊗x. The set m(G) of all

primitive elements in Q̂G, with bracket [x, y] = xy − yx, is a complete, filtered Lie algebra, called

the Malcev Lie algebra of G. The set of all primitive elements in gr(QG) forms a graded Lie algebra,

which is isomorphic to the associated graded Lie algebra

(3) gr(G) :=
⊕

k≥1

(ΓkG/Γk+1G) ⊗ Q,

where {ΓkG}k≥1 is the lower central series of G, defined inductively by Γ1G = G and Γk+1G =

[ΓkG,G] for k ≥ 1. As shown by Quillen in [37], there is an isomorphism of graded Lie algebras,

gr(m(G)) � gr(G).
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The group G is said to be filtered-formal if its Malcev Lie algebra is isomorphic (as a filtered Lie

algebra) to the degree completion of its associated graded Lie algebra. The group G is said to be

1-formal if its Malcev Lie algebra admits a quadratic presentation (see [32, 41] for more details).

For instance, all finitely generated free groups and free abelian groups are 1-formal.

An expansion for a group G is a filtration-preserving algebra morphism E : QG → ĝr(QG) with

the property that gr(E) = id (see [20, 2, 41]). As shown in [41], a finitely generated group G is

filtered-formal if and only if it has an expansion E which induces an isomorphism of complete Hopf

algebras, Ê : Q̂G → ĝr(QG).

2.2. The Magnus expansion for a free group. Let F be a finitely generated free group, with

generating set x = {x1, . . . , xn}, and let ZF be its group-ring. Then the degree completion of the

associated graded ring, ĝr(ZF), can be identified with the completed tensor ring T̂ (Fab) = Z〈〈x〉〉,

the power series ring over Z in n non-commuting variables, by sending [xi − 1] to xi. There is a well

known expansion M : ZF → Z〈〈x〉〉, called the Magnus expansion, given by

(4) M(xi) = 1 + xi and M(x−1
i ) = 1 − xi + x2

i − x3
i + · · · .

The Fox derivatives are the ring morphisms ∂i : ZF → ZF defined by the rules ∂i(1) = 0, ∂i(x j) =

δi j, and ∂i(uv) = ∂i(u)ε(v) + u∂i(v) for u, v ∈ ZF, where ε : ZF → Z is the augmentation map. The

higher Fox derivatives ∂i1,...,ik are then defined inductively. We refer to [9, 10, 23, 27] for more

details and references on these notions.

The Magnus expansion can be computed in terms of the Fox derivatives, as follows. Given an

element y ∈ F, if we write M(y) = 1+
∑

aI xI , then aI = εI(y), where I = (i1, . . . , is), and εI = ε ◦ ∂I

is the composition of the augmentation map with the iterated Fox derivative ∂I : ZF → ZF. For

each k ≥ 1, let Mk be the composite

(5) ZF
M //

Mk

))

T̂ (Fab)
grk // grk(T̂ (Fab)) .

For each y in F, we have that M1(y) =
∑n

i=1 εi(y)xi, while for each y in the commutator subgroup

[F, F], we have

(6) M2(y) =
∑

i< j

εi, j(y)(xix j − x jxi).

The tensor algebra T (FQ) on the Q-vector space FQ = Fab ⊗Q has a natural graded Hopf algebra

structure, with comultiplication ∆ and counit ε given by ∆(a) = a ⊗ 1 + 1 ⊗ a and ε(a) = 0 for

a ∈ FQ. The set of primitive elements in T (FQ) is the free Lie algebra lie(FQ) = {v ∈ T (FQ) |

∆(v) = v ⊗ 1 + 1 ⊗ v}, with Lie bracket [v,w] = v ⊗ w − w ⊗ v. Notice that, if y ∈ [F, F], then

M2(y) is a primitive element in the degree 2 piece of the Hopf algebra T (FQ) = gr(T̂ (FQ)), which

corresponds to the degree 2 element
∑

i< j εi, j(y)[xi, x j] in the free Lie algebra lie(FQ).

2.3. The Magnus expansion relative to a finitely generated group. Given a finitely generated

group G, there exists an epimorphism ϕ : F ։ G from a free group F of finite rank to G. Let

ϕab : Fab ։ Gab be the induced epimorphism between the respective abelianizations.
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Definition 2.1. The Magnus κ-expansion for F relative to G, denoted by κG (or κ for short), is the

composition

(7)
ZF

M //

κ

((

T̂ (Fab)
T̂ (ϕab)

// T̂ (Gab) ,

where M is the classical Magnus expansion for the free group F, and the morphism T̂ (ϕab) : T̂ (Fab)։

T̂ (Gab) is induced by the abelianization map ϕab.

In particular, if the group G is a commutator-relators group, i.e., if all the relators of G lie in

the commutator subgroup [F, F], then the projection ϕab identifies Fab with Gab, and the Magnus

expansion κ coincides with the classical Magnus expansion M.

More generally, let G be a group generated by x = {x1, . . . , xn}, and let F be the free group gener-

ated by the same set. The rational Magnus κ-expansion, still denoted by κG or κ, is the composition

(8) QF
M // T̂ (FQ)

T̂ (π)
// T̂ (GQ) ,

where π = ϕab ⊗ Q = H1(ϕ,Q) is the induced epimorphism in homology from FQ := H1(F;Q) to

GQ := H1(G;Q). Pick a basis y = {y1, . . . , yb} for GQ, and identify T̂ (GQ) with Q〈〈y〉〉. Let κ(r)I be

the coefficient of yI := yi1 · · · yis
in κ(r), for I = (i1, . . . , is). Then we can write

(9) κ(r) = 1 +
∑

I

κ(r)IyI .

Lemma 2.2. If r ∈ ΓkF, then κ(r)I = 0, for |I| < k. Furthermore, if r ∈ Γ2F, then κ(r)i, j = −κ(r) j,i.

Proof. Since M(r)I = εI(r) = 0 for |I| < k (see for instance [27]), we have that κ(r)I = 0 for |I| < k.

To prove the second assertion, identify the completed symmetric algebras Ŝym(FQ) and Ŝym(GQ)

with the power series rings Q[[x]] and Q[[y]], respectively, in the following commuting diagram of

Q-linear maps.

(10) QF

κ

""❉
❉

❉

❉

❉

❉

❉

❉

M // T̂ (FQ)

T̂ (π)
��

α1 // Ŝym(FQ)

Ŝym(π)
��

T̂ (GQ)
α2 // Ŝym(GQ) .

When r ∈ [F, F], we have that α2 ◦ κ(r) = Ŝym(π) ◦ α1 ◦ M(r) = 1. Thus, κi(r) = 0 and

κ(r)i, j + κ(r) j,i = 0. �

Lemma 2.3. If u, v ∈ F satisfy κ(u)J = κ(v)J = 0 for all |J| < s, for some s ≥ 2, then

κ(uv)I = κ(u)I + κ(v)I , for |I| = s.

Moreover, the above formula is always true for s = 1.

Proof. We have that κ(uv) = κ(u)κ(v) for u, v ∈ F. If κ(u)J = κ(v)J = 0 for all |J| < s, then

κ(u) = 1 +
∑
|I|=s κ(u)IyI up to higher-order terms, and similarly for κ(v). Then

(11) κ(uv) = κ(u)κ(v) = 1 +
∑

|I|=s

(κ(u)I + κ(v)I)yI + higher-order terms.

Therefore, κ(uv)i = κ(u)i + κ(v)i, and so κ(uv)I = κ(u)I + κ(v)I . �
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2.4. Truncating the Magnus expansions. Recall that we defined in (5) truncations Mk of the

Magnus expansion M of a free group F. In a similar manner, we can also define the truncations of

the Magnus expansion κ for any finitely generated group G.

Lemma 2.4. For each k ≥ 1, the following diagram commutes:

(12)

QF

κ

""❋
❋

❋

❋

❋

❋

❋

❋

❋

M // T̂ (FQ)

T̂ (π)
��

grk // grk(T̂ (FQ))

grk(T̂ (π))
��

⊗k
Qn

⊗kπ
��

T̂ (GQ)
grk // grk(T̂ (GQ))

⊗k
Qb.

Proof. The triangle on the left of diagram (12) commutes, since it consists of ring morphisms,

by the definition of the Magnus expansion for a group. The morphisms in the two squares are

homomorphisms between Q-vector spaces. The squares commute, since π is a linear map. �

In diagram (12), let us denote the composition of κ and grk by κk. We then obtain the diagram

(13)
QF

κ //

κk

))

T̂ (GQ)
grk // grk(T̂ (GQ)) .

In particular, κ1(r) =
∑b

i=1 κ(r)iyi for r ∈ F. By Lemma 2.2, if r ∈ [F, F], then

(14) κ2(r) =
∑

1≤i< j≤b

κ(r)i, j(yiy j − y jyi).

Notice that κ2(r) is a primitive element in the Hopf algebra T (GQ), which corresponds to the element∑
i< j κi, j(r)[yi, y j] in the free Lie algebra lie(GQ).

The next lemma provides a close connection between the Magnus expansion κ and the classical

Magnus expansion M.

Lemma 2.5. Let (ai,s) be the b × n matrix associated to the linear map π : FQ → GQ, and let r ∈ F

be an arbitrary element. Then, for each 1 ≤ i, j ≤ b, we have that

κ(r)i =

n∑

s=1

ai,sεs(r) and κ(r)i, j =

n∑

s,t=1

ai,sa j,tεs,t(r).

Proof. By assumption, π(xs) =
∑b

i=1 ai,syi. By Lemma 2.4 (for k = 1), we have

κ1(r) = π ◦ M1(r) = π


n∑

s=1

εs(r)xs

 =
n∑

s=1

b∑

i=1

ai,sεs(r)yi,

which gives the claimed formula for κ(r)i. By Lemma 2.4 (for k = 2), we have

κ2(r) = π ⊗ π ◦ M2(r) = π ⊗ π


n∑

s,t=1

εs,t(r)xs ⊗ xt

 =
n∑

s,t=1

b∑

i, j=1

εs,t(r)ai,sa j,tyi ⊗ y j,

which gives the claimed formula for κ(r)i, j. �
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3. Echelon presentations and cellular chain complexes

In this section we associate to every finitely presented group G an “echelon approximation”, Ge,

such that they have isomorphic cohomology on their respective 2-complexes.

3.1. Presentation 2-complex. We start with a brief review of the cellular chain complexes associ-

ated to a presentation 2-complex of a group, following the exposition from [4, 9, 10, 27, 33]. Let G

be a group with a finite presentation P = 〈x | r〉, where x = {x1, . . . , xn} and r = {r1, . . . , rm}. Then

G = F/R, where F is the free group on generating set x and R is the (free) subgroup of F normally

generated by the set r ⊂ F.

Let KP be the 2-complex associated to this presentation of G, consisting of a 0-cell e0, one-cells

{e1
1
, · · · , e1

n} corresponding to the generators, and two-cells {e2
1
, . . . , e2

m} corresponding to the relators.

The 2-complex KP depends on the presentation P for the group G. However, if the presentation is

understood, we may also denote this 2-complex by KG.

The (integral) cellular chain complex C∗ = C∗(KP;Z) is of the form C2

d2
−−→ C1

d1
−−→ C0, where

C j are the free abelian groups on the specified bases. Furthermore, d1 = 0, while the matrix of the

boundary map d2 : C2(KP;Z)→ C1(KP;Z) is the m × n Jacobian matrix JP = (εi(rk)).

Next, let p : K̃P → KP be the universal cover of the presentation 2-complex, and fix a lift ẽ0 of

the basepoint e0. The cells ei
j

of KP lift to cells ẽi
j

at the basepoint ẽ0. Let C̃∗ = C∗(K̃P;Z) be the

(equivariant) cellular chain complex of the universal cover. This is a chain complex of free ZG-

modules of the form C̃2

d̃2
−−→ C̃1

d̃1
−−→ C̃0, with C̃0 = ZG, C̃1 = (ZG)n generated by the set {ẽ1

1
, . . . , ẽ1

n},

and C̃2 = (ZG)m generated by the set {ẽ2
1
, . . . , ẽ2

m}. The differentials in this chain complex are the

ZG-linear maps given by

(15) d̃1(ẽ1
i ) = xi − 1, d̃2(ẽ2

j ) =

m∑

k=1

ϕ(∂kr j)ẽ
1
k ,

where ϕ : F ։ G is the presenting homomorphism for our group.

3.2. Echelon presentations. We now introduce a special type of group presentations which will

play an important role in the sequel.

Definition 3.1. Let G be a group with a finite presentation P = 〈x | w〉, where x = {x1, . . . , xn}

and w = {w1, . . . ,wm}. We say P is an echelon presentation if the augmented Fox Jacobian matrix

(εi(wk)) is in row-echelon form.

Let KG be the 2-complex associated to the above presentation for G. Suppose the pivot elements

of the m × n matrix (εi(wk)) are in position {i1, . . . , id}, and let b = n − d. Since this matrix is in

row-echelon form, the vector space H1(KG;Q) = Qb has basis y = {y1, . . . , yb}, where y j = e1
id+ j

for 1 ≤ j ≤ b. Furthermore, the vector space H2(KG;Q) = Qm−d has basis {e2
d+1

, . . . , e2
m}. We will

choose as basis for H1(KG;Q) the set {u1, . . . , ub}, where ui is the Kronecker dual to yi.

Remark 3.2. Suppose G admits a commutator-relators presentation of the form P = F/R, with

R ⊂ [F, F]. Then the augmented Fox Jacobian matrix (εi(rk)) is the zero matrix, and thus the

presentation P is an echelon presentation. In this case, the integer (co)homology groups of KG are

torsion-free, and so the aforementioned choices of bases work for integer (co)homology, as well.
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More generally, the next proposition shows that for any finitely presented group, we can con-

struct a group with an echelon presentation such that the cohomology groups of the corresponding

presentation 2-complexes are isomorphic.

Proposition 3.3. Let G be a finitely presented group. There exists then a group Ge with echelon

presentation, and a map f : KGe
→ KG between the respective presentation 2-complexes such that

the induced homomorphism on fundamental groups, ρ = f♯ : Ge ։ G, is surjective, and the induced

homomorphism in cohomology, f ∗ : H∗(KG;Z)→ H∗(KGe
;Z), in an isomorphism.

Proof. Suppose G has presentation 〈x1, . . . , xn | r1, . . . , rm〉. As in the above discussion, the matrix

of the boundary map d∗
2

: C1(KG;Z) → C2(KG;Z) is the transpose of the m × n Jacobian matrix

(εi(rk)). By Gaussian elimination over Z, there exists a matrix C = (cl,k) ∈ GL(m;Z) such that C · d∗
2

is in row-echelon form (also known as Hermite normal form). We define a new group,

(16) Ge = 〈x1, . . . , xn | w1, . . . ,wm〉,

by setting wk = r
c1,k

1
r

c2,k

2
· · · r

cm,k
m for 1 ≤ k ≤ m.

Let h : K
(1)

Ge
→ K

(1)

G
be the homeomorphism between the 1-skeleta of the respective 2-complexes

obtained by matching 1-cells. If ψk : S 1 → K
(1)
Ge

denotes the attaching map of the 2-cell in KGe

corresponding to the relator wk, then by construction h ◦ ψk is null-homotopic in KG. Thus, h

extends to a cellular map f : KGe
→ KG. Clearly, the induced homomorphism ρ = f♯ : Ge → G

is surjective. Furthermore, the map f induces a chain map between the respective cellular chain

complexes, f∗ : C∗(KGe
;Z) → C∗(KG;Z), with f2 given by the matrix C. It is now straightforward

to see that the map f induces an isomorphism in homology, and thus, by the Universal Coefficients

theorem, an isomorphism in cohomology, too. �

Note that the group Ge constructed above depends on the given (finite) presentation for G, not

just on the isomorphism type of G. On the other hand, if G is a commutator-relators group, then, by

Remark 3.2, the group Ge is isomorphic to G.

3.3. A transferred basis. Once again, let G be a group admitting a finite presentation 〈x | r〉, where

x = {x1, . . . , xn} and r = {r1, . . . , rm}, and let KG be the corresponding presentation 2-complex.

Using an echelon approximation for the given presentation, we describe now convenient bases for

the Q-vector spaces H1(KG,Q) and H2(KG,Q), which will be used extensively in the next two

sections.

By Proposition 3.3, there exists a group Ge with echelon presentation 〈x | w〉, where w =

{w1, . . . ,wm}, and a map f : KGe
→ KG inducing an isomorphism in (co)homology. As in §3.2, we

may choose a basis y = {y1, . . . , yb} for the Q-vector space H1(KG;Q) � H1(KGe
;Q); let {u1, . . . , ub}

be the dual basis for H1(KG;Q) � H1(KGe
;Q). We also choose a basis {z1, . . . , zm} for C2(KG;Q)

and a basis {e2
1
, . . . , e2

m} for C2(KGe
;Q) corresponding to {1 ⊗ ẽ2

1
, . . . , 1 ⊗ ẽ2

m}. Finally, if we set

(17) γk := f∗(e
2
k) =

m∑

l=1

cl,kzl ,

then {γ1, . . . γm} is another basis for C2(KG;Q). Furthermore, {e2
d+1

, . . . , e2
m} is a basis for H2(KGe

;Q)

and {γd+1, . . . , γm} is a basis for H2(KG;Q). Thus, H2(KG;Q) has dual basis {βd+1, . . . , βm}.
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4. Group presentations and (co)homology

We compute in this section the cup-product in the cohomology ring of the 2-complex of a finitely

presented group in terms of the Magnus expansion associated to the presentation.

4.1. A chain transformation. We start by reviewing the classical bar construction. Let G be a

discrete group, and let B∗(G) be the normalized bar resolution (see e.g. [4, 10]), where Bp(G) is the

free left ZG-module on generators [g1| . . . |gp], with gi ∈ G and gi , 1, and B0(G) = ZG is free on

one generator, [ ]. The boundary operators are G-module homomorphisms, δp : Bp(G) → Bp−1(G),

defined by

(18) δp[g1| . . . |gp] = g1[g2| . . . |gp] +

p−1∑

i=1

(−1)i[g1 | . . . |gigi+1| . . . |gp] + (−1)p[g1| . . . |gp−1].

In particular, δ1[g] = (g − 1)[ ] and δ2[g1|g2] = g1[g2] − [g1g2] + [g1]. Let ε : B0(G) → Z be the

augmentation map. We then have a free resolution B∗(G)
ε
−→ Z of the trivial G-module Z.

We view here Z as a right ZG-module, with action induced by the augmentation map. An element

of the cochain group Bp(G) = HomZG(Bp(G),Z) may be viewed as a set function u : Gp → Z

satisfying the normalization condition u(g1, . . . , gp) = 0 if some gi = 1. The cup-product of two

1-dimensional classes u, u′ ∈ H1(G;Z) � Hom(G,Z) is given by

(19) u ∪ u′[g1|g2] = u(g1)u′(g2).

For future use, we record a result due to Fenn and Sjerve ([10, Thm. 2.1 and p. 327]).

Lemma 4.1 ([10]). There exists a chain transformation T : C∗(K̃G) → B∗(G) of augmented chain

complexes,

0 Zoo C0(K̃G)
εoo

T0

��

C1(K̃G)
d̃1oo

T1

��

C2(K̃G)
d̃2oo

T2

��

0oo

��

· · ·oo

0 Zoo B0(G)
εoo B1(G)

δ1oo B2(G)
δ2oo B3(G)oo · · · .oo

defined by T0(λ) := λ[ ],

(20) T1(ẽ1
i ) = [xi] and T2(ẽ2

k) = τ1T1d̃2(ẽ2
k),

where τ1 : B1(G)→ B2(G) is the homomorphism defined by

(21) τ1(g[g1]) = [g|g1],

for all g, g1 ∈ G.

4.2. Cup products for echelon presentations. Now let G be a group with echelon presentation

G = 〈x | w〉, where x = {x1, . . . , xn} and w = {w1, . . . ,wm}, as in Definition 3.1. We let B∗(G;Q) =

Q ⊗ B∗(G) and B∗(G;Q) = Q ⊗ B∗(G).

Lemma 4.2. For each basis element ui ∈ H1(KG;Q) � H1(G;Q) as above, and each r ∈ F, we

have that

ui([ϕ(r)]) =

n∑

s=1

εs(r)ai,s = κi(r),

where (ai,s) is the b × n matrix for the projection map π : FQ → GQ.
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Proof. If r ∈ F, then ϕ(r) ∈ G and [ϕ(r)] ∈ B1(G). Hence,

(22) ui([ϕ(r)]) =

n∑

s=1

εs(r)ui([xs]) =

n∑

s=1

εs(r)ai,s = κi(r).

Since H1(G;Q) � B1(G;Q) � Hom(G,Q), we may view ui as a group homomorphism. This

yields the first equality in (22). Since π(xs) =
∑b

j=1 ai,syi and ui = y∗
i
, the second equality follows.

The last equality follows from Lemma 2.5. �

Theorem 4.3. Let G be a group with echelon presentation G = 〈x | w〉. The cup-product map

µKG
: H1(KG;Q) ∧ H1(KG;Q)→ H2(KG;Q) is given by (ui ∪ u j, e

2
k
) = κ(wk)i, j, for 1 ≤ i, j ≤ b and

d + 1 ≤ k ≤ m, where κ is the Magnus expansion of G.

Proof. Let us write the Fox derivative ∂t(wk) as a finite sum,

(23) ∂t(wk) =
∑

x∈F

px
tk x,

for 1 ≤ t ≤ n, and 1 ≤ k ≤ m. We then have

T2(ẽ2
k) = τ1T1(d̃2(ẽ2

k)) by (20)

= τ1T1 (ϕ(∂1(wk)), . . . , ϕ(∂n(wk))) by (15)(24)

= τ1

( n∑

t=1

ϕ
(
∂t(wk)

)
[xt]

)
by (20)

=

n∑

t=1

∑

x∈F

px
tk[ϕ(x)|xt]. by (21)

The chain transformation T : C∗(K̃G;Q) → B∗(G;Q) induces an isomorphism on first cohomol-

ogy, T ∗ : H1(G;Q)→ H1(KG;Q). Let us view ui and u j as elements in H1(G;Q). We then have

(ui ∪ u j, 1 ⊗ ẽ2
k) = (ui ∪ u j, 1 ⊗ T2(ẽ2

k))

= (ui ∪ u j,

n∑

t=1

∑

x∈F

px
tk[ϕ(x)|xt]) by (24)

=

n∑

t=1

∑

x∈F

px
tkui(ϕ(x))u j(xt) by (19)

=

n∑

t=1

∑

x∈F

px
tkui(ϕ(x))a j,t by Lemma 4.2

=

n∑

t=1

∑

x∈F

px
tk

n∑

s=1

ai,sεs(x)a j,t by Lemma 4.2

=

n∑

t=1

n∑

s=1

(
a j,tai,sεs,t(wk)

)
by (23)

= κ(wk)i, j, by Lemma 2.5

and this completes the proof. �
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4.3. Cup products for finite presentations. Let G be a group with a finite presentation 〈x | r〉. By

Proposition 3.3, there exists a group Ge with echelon presentation 〈x | w〉, and a map f : KGe
→ KG

inducing an isomorphism in cohomology. Using the bases for H∗(KG;Q) transferred from suitable

bases for H∗(KGe
;Q) as in §3.3, we obtain an explicit formula for computing cup-products in the

rational cohomology of the presentation 2-complex KG.

Theorem 4.4. In the aforementioned bases for H∗(KG;Q), the cup-product map µKG
: H1(KG;Q)∧

H1(KG;Q)→ H2(KG;Q) is given by

ui ∪ u j =

m∑

k=d+1

κ(wk)i, jβk.

That is, (ui ∪ u j, γk) = κ(wk)i, j, for all 1 ≤ i, j ≤ b.

Proof. As in the discussion from §3.3, the elements γk = f∗(wk) with d < k ≤ m form a basis for

H2(KG;Q). Hence,

(ui ∪ u j, γk) =
(
ui ∪ u j, f∗(e

2
k)
)
=

(
f ∗(ui ∪ u j), e

2
k

)

=
(
ui ∪ u j, e

2
k

)
since f ∗(ui) = ui

= κ(wk)i, j by Theorem 4.3.

The claim follows. �

Let us consider now in more detail the case when the group G is a commutator-relators group.

In that case, as noted in §2.3, the Magnus expansion κ = κG coincides with the classical Magnus

expansion M. Furthermore, by Remark 3.2 both H∗(KG;Z) and H∗(KG;Z) are torsion-free, and the

aforementioned rational bases are also integral bases for these free Z-modules. Moreover, we may

take Ge = G, and note that all the arguments from this section work over Z in this case. Using these

observations, and the fact that M(rk)i, j = εi j(rk), we recover as a corollary the following result of

Fenn and Sjerve [10].

Corollary 4.5 ([10], Thm. 2.4). For a commutator-relators group G = 〈x | r〉, the cup-product map

µK : H1(KG;Z) ∧ H1(KG;Z) → H2(KG;Z) is given by (ui ∪ u j, e
2
k
) = εi j(rk), for 1 ≤ i, j ≤ n and

1 ≤ k ≤ m.

5. A presentation for the holonomy Lie algebra

In this section, we give presentations for the holonomy Lie algebra of a finitely presented group,

and for the solvable quotients of this Lie algebra. In the process, we complete the proof of Theorem

1.2 from the Introduction.

5.1. The holonomy Lie algebra of a group. We start by reviewing the construction of the holo-

nomy Lie algebra of a finitely generated group G, following [6, 13, 24, 31, 41]. Set

(25) h(G) = lie(H1(G;Q))/〈im µ∨G〉,

where µ∨
G

is the dual to the cup-product map µG : H1(G;Q)∧H1(G;Q)→ H2(G;Q). If ϕ : G1 → G2

is a group homomorphism, then the induced homomorphism in cohomology, ϕ∗ : H1(G2;Q) →

H1(G1;Q), yields a morphism of graded Lie algebras, h(ϕ) : h(G1) → h(G2). Moreover, if ϕ is

surjective, then h(ϕ) is also surjective.
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In the definition of the holonomy Lie algebra of G, we used the cohomology ring of a classifying

space K(G, 1). More generally, if X is a connected space with b1(X) < ∞, we may define its

holonomy Lie algebra as h(X) = lie(H1(X;Q))/〈im µ∨
X
〉. As above, a continuous map f : X → Y

induces a morphism h( f ) : h(X)→ h(Y); moreover, if f ≃ g, then h( f ) = h(g). The proof of the next

lemma is straightforward.

Lemma 5.1. Let f : X → Y be a map between connected spaces with finite first Betti num-

bers. Suppose f induces isomorphisms in rational cohomology in degrees 1 and 2. Then the map

h( f ) : h(X)→ h(Y) is an isomorphism.

In definition (25), we may replace the classifying space K(G, 1) used to compute group coho-

mology by any other connected CW-complex with the same fundamental group. The next lemma,

which slightly improves on a result from [31, 41], makes this more precise.

Lemma 5.2. Let G be a finitely generated group, and let X be a connected CW-complex with

π1(X) = G. There is then a natural isomorphism h(X) ≃−−→ h(G).

Proof. We may construct a classifying space for the group G by attaching cells of dimension 3 and

higher to the space X. The inclusion map, j = jX : X → K(G, 1), induces a map on cohomology

rings, j∗ : H∗(K(G, 1);Q) → H∗(X;Q), which is an isomorphism in degree 1 and an injection in

degree 2. In particular, b1(X) = b1(G) < ∞. Furthermore, j2 restricts to an isomorphism from

im(µG) to im(µX). Taking duals, we obtain the following diagram.

(26)

H2(X;Q)

j∗
����

µ∨
X

**
// // im(µ∨

X
)

� j∗

��

� � // H1(X;Q) ⊗ H1(X;Q)

� j∗⊗ j∗

��
H2(G;Q) // //

µ∨
G

66
im(µ∨

G
)
� � // H1(G;Q) ⊗ H1(G;Q)

Hence, the isomorphism j∗ ⊗ j∗ identifies im(µ∨
X

) with im(µ∨
G

). Thus, the extension to free Lie al-

gebras of the isomorphism j∗ : H1(X;Q)→ H1(G;Q) factors through an isomorphism h( j) : h(X)→

h(G).

To show that this isomorphism is natural, let f : X → Y be a map of pointed, connected CW-

complexes with finitely generated fundamental groups, and let g : K(π1(X), 1) → K(π1(Y), 1) be the

map (unique up to homotopy) induced by the homomorphism f# : π1(X) → π1(Y). Then g ◦ jX ≃

jY ◦ f , and thus h(g) ◦ h( jX) = h( jY ) ◦ h( f ). �

Putting together the previous two lemmas, we obtain the following corollary.

Corollary 5.3. Let G1 and G2 be two finitely generated groups, with presentation 2-complexes K1

and K2. Let f : K1 → K2 be a cellular map, and let ϕ = f♯ : G1 → G2 be the induced homomor-

phism. If f ∗ : H∗(K2,Q) → H∗(K1,Q) is an isomorphism, then h(ϕ) : h(G1) → h(G2) is also an

isomorphism.

Next, we show that, if need be, the group G we started with may be replaced by a finitely pre-

sented group with the same holonomy Lie algebra.
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Proposition 5.4. Let G be a finitely generated group. There exists then a finitely presented group

G f and a homomorphism G f → G inducing an isomorphism h(G f )
≃−−→ h(G).

Proof. Let X be a connected CW-complex with π1(X) = G. Since G is finitely generated, we

may assume X has finitely many 1-cells. The proof of Proposition 4.1 from [34] shows that there

exists a connected, finite subcomplex Z of X such that the inclusion Z → X induces isomorphisms

H1(Z;Q) � H1(X;Q) and im(µ∨
Z

) � im(µ∨
X

). Consequently, h(Z) � h(X). Letting G f = π1(Z), the

claim follows from Lemma 5.2. �

5.2. Magnus expansion and holonomy. Let G be a group admitting a finite presentation, P = 〈x |

r〉. As shown in Proposition 3.3, there exists a group Ge with echelon presentation Pe = 〈x | w〉,

and a map f : KGe
→ KG inducing an isomorphism in cohomology and an epimorphism ρ : Ge ։ G

on fundamental groups. By Corollary 5.3, the induced map between the respective holonomy Lie

algebras, h(ρ) : h(Ge) ≃−−→ h(G), is an isomorphism.

So let us consider a group G = F/R admitting an echelon presentation P = 〈x | w〉, where

x = {x1, . . . , xn} and w = {w1, . . . ,wm}. We now give a more explicit presentation for the holonomy

Lie algebra h(G).

Let ∂i(wk) ∈ ZF be the Fox derivatives of the relations, and let εi(wk) = ε(∂i(wk)) ∈ Z be their

augmentations. Recall from §4.2 that we can choose a basis y = {y1, . . . , yb} for H1(KP;Q) and a

basis {e2
d+1

, . . . , e2
m} for H2(KP;Q), where d is the rank of Jacobian matrix JP = (εi(wk)), viewed as

an m × n matrix over Q. Let lie(y) be the free Lie algebra over Q generated by y in degree 1. Recall

that κ2 is the degree 2 part of the Magnus expansion of G given explicitly in (14). Thus, we can

identify κ2(wk) with
∑

i< j κ(wk)i, j[yi, y j] in lie(y) for d + 1 ≤ k ≤ m.

Theorem 5.5. Let G be a group admitting an echelon presentation P = 〈x | w〉. Then there exists

an isomorphism of graded Lie algebras

h(G)
� // lie(y)/ideal(κ2(wd+1), . . . , κ2(wm)) .

Proof. Combining Theorem 4.3 with the fact that (ui ∧ u j, µ
∨(e2

k
)) = (µ(ui ∧ u j), e

2
k
), we see that the

dual cup-product map, µ∨ : H2(KP;Q)→ H1(KP;Q) ∧ H1(KP;Q), is given by

(27) µ∨(e2
k) =

∑

1≤i< j≤b

κ(wk)i, j(yi ∧ y j).

Hence, the following diagram commutes,

(28)

H2(KP;Q)
µ∨

//
� _

��

H1(KP;Q) ∧ H1(KP;Q)
� _

��
C2(KP;Q)

κ2 // H1(KP;Q) ⊗ H1(KP;Q) .

Using now the identification of κ2(wk) and
∑

i< j κ(wk)i, j[yi, y j] as elements of lie(y), the definition

of the holonomy Lie algebra, and the fact that h(G) � h(KP), we arrive at the desired conclusion. �

Corollary 5.6. The universal enveloping algebra of h(G) has presentation

U(h(G)) = Q〈y〉/ ideal(κ2(wn−b+1), . . . , κ2(wm)).
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If G = 〈x | r〉 is a commutator-relators group, then the group H1(KG;Z) is torsion-free, and

thus the integer holonomy Lie ring h(G;Z) can be defined as in (25), using integer (co)homology,

instead, see [24, 31] for details. Furthermore, as in §2.2, for each r ∈ [F, F], the primitive element

M2(r) ∈ T̂2(Fab) corresponds to the element
∑

i< j εi, j(r)[xi, x j] from the degree 2 piece of the free

Lie ring lieZ(x). Using this observation and Corollary 4.5, we recover a result from [31].

Corollary 5.7 ([31], Prop. 7.2). If G = 〈x1, . . . , xn | r〉 is a commutator-relators group, then

h(G;Z) = lieZ(x)/ideal

{ ∑

1≤i< j≤n

εi, j(r)[xi, x j]
∣∣∣ r ∈ r

}
.

Proposition 5.8. For every quadratic Lie algebra g over Q, there exists a commutator-relators

group Gc such that h(Gc) = g.

Proof. We use an approach similar to the proof of [35, Prop. 6.2]. By assumption, we may write

g = lie(x)/a, where x = {x1, . . . , xn} and a is an ideal generated by elements of the form ℓk =∑
1≤i< j≤n ci jk[xi, x j] for 1 ≤ k ≤ m, and where the coefficients ci jk are in Q. Clearing denominators,

we may assume all ci jk are integers. We can then define words rk =
∏

1≤i< j≤n[xi, x j]
ci jk in the free

group generated by x, and set Gc = 〈x | r1, . . . , rm〉. Clearly, εi, j(rk) = ci jk. The desired conclusion

follows from Corollary 5.7. �

Corollary 5.9. For every finitely generated group G, there exists a commutator-relators group Gc

such that h(Gc) = h(G).

Proof. From Proposition 5.4, the holonomy Lie algebra h(G) has a quadratic presentation. Letting

g = h(G) and applying Proposition 5.8 yields the desired conclusion. �

5.3. Solvable quotients of holonomy Lie algebras. The next lemma follows straight from the

definitions, using the standard isomorphism theorems.

Lemma 5.10. Let g = lie(V)/r be a finitely generated Lie algebra. Then g/g(i) � lie(V)/(r+lie(V)(i)).

Furthermore, if r is a homogeneous ideal, then this is an isomorphism of graded Lie algebras.

The next result sharpens and extends the first part of Theorem 7.3 from [31].

Theorem 5.11. Let G = 〈x | r〉 be a finitely presented group, and set h = h(G). Let y = {y1, . . . , yb}

be a basis of H1(G;Q). Then, for each i ≥ 2,

h/h(i) � lie(y)/(ideal(κ2(wn−b+1), . . . , κ2(wm)) + lie(i)(y)),

where b = b1(G) and wk is defined in (16).

Proof. By Theorem 5.5, the holonomy Lie algebra h is isomorphic to the quotient of the free Lie

algebra lie(y) by the ideal generated by κ2(wn−b+1), . . . , κ2(wm). The claim follows from Lemma

5.10. �

Using Corollary 5.7, we obtain the following consequence.

Corollary 5.12. Let G = 〈x1, . . . , xn | r1, . . . , rm〉 be a commutator-relators group, and let h = h(G).

Then, for each i ≥ 2, the Lie algebra h/h(i) is isomorphic to the quotient of the free Lie algebra lie(x)

by the sum of the ideals M2(r1), . . . , M2(rm), and lie(i)(x).
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6. Lower central series and the holonomy Lie algebra

6.1. Lower central series. Let G be a finitely generated group, and let {ΓkG}k≥1 be its lower central

series (LCS). The LCS quotients of G are finitely generated abelian groups. Taking the direct sum

of these groups, we obtain a graded Lie ring over Z,

(29) gr(G;Z) =
⊕

k≥1

ΓkG/Γk+1G.

The Lie bracket [x, y] on gr(G;Z) is induced from the group commutator, [x, y] = xyx−1y−1. More

precisely, if x ∈ ΓrG and y ∈ ΓsG, then [x + Γr+1G, y + Γs+1G] = xyx−1y−1 + Γr+s+1G. The Lie

algebra gr(G;Q) = gr(G;Z) ⊗ Q is called the associated graded Lie algebra (over Q) of the group

G. For simplicity, we will usually drop the Q-coefficients, and simply write it as gr(G).

The group G is said to be nilpotent of class ≤ k if Γk+1G = {1}. For each k ≥ 2, the factor group

G/ΓkG is the maximal (k − 1)-step nilpotent quotient of G. The canonical projection G → G/ΓkG

induces an epimorphism gr(G) → gr(G/ΓkG), which is an isomorphism in degrees s < k. We refer

to Lazard [18] and Magnus et al. [23] for more details..

6.2. A comparison map. Once again, let G be a finitely generated group. Although the next lemma

is known, we provide a proof, both for the sake of completeness, and for later use.

Lemma 6.1 ([24, 31]). There exists a natural epimorphism of graded Q-Lie algebras,

ΦG : h(G) // // gr(G) ,

inducing isomorphisms in degrees 1 and 2.

Proof. As first noted by Sullivan [45] in a particular case, and then proved by Lambe [17] in general,

there is a natural exact sequence

(30) 0 // (Γ2G/Γ3G ⊗ Q)∗
β

// H1(G;Q) ∧ H1(G;Q)
µG

// H2(G;Q) ,

where β is the dual of Lie bracket product. Consequently, im(µ∨
G

) = ker(β∨).

Recall now that the associated graded Lie algebra gr(G) is generated by its degree 1 piece,

H1(G;Q) � gr1(G). Hence, there is a natural epimorphism of graded Q-Lie algebras,

(31) ϕG : lie(H1(G;Q)) // // gr(G) ,

restricting to the identity in degree 1, and to the Lie bracket map [ , ] :
∧2 gr1(G) → gr2(G) in

degree 2. By the above observation, the kernel of this map coincides with the image of µ∨
G

. Thus,

ϕG factors through a morphism ΦG : h(G)→ gr(G), which enjoys all the claimed properties. �

6.3. Nilpotent and derived quotients. As a quick application, let us compare the holonomy Lie

algebra of a group to the holonomy Lie algebras of its nilpotent quotients and derived quotients.

Proposition 6.2. Let G be a finitely generated group. Then

h(G/ΓkG) =


h(G)/h(G)′ for k = 2,

h(G) for k ≥ 3.

In particular, the holonomy Lie algebra of G depends only on the second nilpotent quotient, G/Γ3G.
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Proof. The case k = 2 is trivial, so let us assume k ≥ 3. By a previous remark, the projection G →

G/ΓkG induces an isomorphism gr2(G) → gr2(G/ΓkG). Furthermore, H1(G;Q) � H1(G/ΓkG).

Using now the dual of the exact sequence (30), we see that im(µ∨
G

) = im(µ∨
G/ΓkG

). The desired

conclusion follows. �

Proposition 6.3. The holonomy Lie algebras of the derived quotients of G are given by

h(G/G(i)) =


h(G)/h(G)′ for i = 1,

h(G) for i ≥ 2.

Proof. For i = 1, the statement trivially holds, so we may as well assume i ≥ 2. It is readily proved

by induction that G(i) ⊆ Γ2i(G). Hence, the projections

(32) G // // G/G(i) // // G/Γ2iG

yield natural projections h(G) ։ h(G/G(i)) ։ h(G/Γ2iG) = h(G). By Proposition 6.2, the com-

position of these projections is an isomorphism of Lie algebras. Therefore, the surjection h(G) ։

h(G/G(i)) is an isomorphism. �

An analogous result holds for associated graded Lie algebras, albeit in somewhat weaker form.

The quotient map, qi : G ։ G/G(i), induces a surjective morphism between associated graded Lie

algebras. Plainly, this morphism is the canonical identification in degree 1. In fact, more is true.

Lemma 6.4. For each i ≥ 2 and each k ≤ 2i − 1, the map gr(qi) : grk(G) ։ grk(G/G(i)) is an

isomorphism.

Proof. Taking associated graded Lie algebras in sequence (32) yields epimorphisms

(33) gr(G) // // gr
(
G/G(i)) // // gr

(
G/Γ2iG

)
.

By a remark we made at the end of §6.1, the composition of these maps is an isomorphism in

degrees k < 2i. The conclusion follows at once. �

The next result distills the statements of Theorem 9.3 and Corollary 9.5 from [41], in a form

needed here; this result sharpens and extends Theorem 4.2 from [31].

Theorem 6.5 ([41]). Let G be a finitely generated group. For each i ≥ 2, the quotient map

G ։ G/G(i) induces a natural epimorphism of graded Lie algebras, gr(G)/ gr(G)(i)
։ gr(G/G(i)).

Moreover, if G is a 1-formal group, then h(G)/h(G)(i)
� gr(G/G(i)).

Combining Theorem 6.5 with Theorem 5.11, we obtain the following corollary.

Corollary 6.6. Let G = 〈x | r〉 be a finitely presented, 1-formal group. Let y = {y1, . . . , yb} be a

basis of H1(G;Q). Then, for each i ≥ 2,

gr(G/G(i)) � lie(y)/(ideal(κ2(wn−b+1), . . . , κ2(wm)) + lie(i)(y)),

where b = b1(G) and wk is defined in (16).
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6.4. Graded-formality. We conclude our discussion of associated graded Lie algebras and holo-

nomy Lie algebras by recalling a notion that will be important in the sequel. Recall from Lemma

6.1 that, for any finitely generated group G, there is a canonical epimorphism of graded Lie alge-

bras, ΦG : h(G) ։ gr(G). We say that the group G is graded-formal (over Q) if the map ΦG is an

isomorphism.

This notion was considered in various ways by Chen [6], Kohno [13], Labute [15], and Hain

[11]. It was also recently studied by Lee in [19], where it was called ‘graded 1-formality.’ Var-

ious relationships between graded-formality and other formality properties were studied in [41].

In particular, a finitely generated group G is 1-formal if and only if it is both graded-formal and

filtered-formal. We give here two alternate characterizations of graded formality, which oftentimes

are easier to verify.

Proposition 6.7. A finitely generated group G is graded-formal if and only if one of the following

two conditions is satisfied.

(1) The Lie algebra gr(G) is quadratic.

(2) dimQ hn(G) = dimQ grn(G), for all n ≥ 1.

Proof. Clearly, if the group G is graded-formal, then both conditions are satisfied.

Assume now that (1) holds, that is, the graded Lie algebra gr(G) admits a presentation of the form

lie(V)/〈U〉, where V is a finite-dimensional Q-vector space concentrated in degree 1 and U is a Q-

vector subspace of lie2(V). In particular, V = gr1(G) = H1(G;Q). From the exact sequence (30), we

see that the image of µ∨
G

coincides with the kernel of the Lie bracket map [ , ] :
∧2 gr1(G)→ gr2(G),

which can be identified with U. Hence, the surjection ϕG : lie(V)։ gr(G) induces an isomorphism

ΦG : h(G) ≃−−→ gr(G).

Finally, assume (2) holds. In general, the homomorphism (ΦG)n : hn(G) → grn(G) is an iso-

morphism for n ≤ 2 and an epimorphism for n ≥ 3. Our assumption, together with the fact that

each Q-vector space hn(G) is finite-dimensional implies that all homomorphisms (ΦG)n are isomor-

phisms. Therefore, the map ΦG : h(G)։ gr(G) is an isomorphism of graded Lie algebras. �

7. Mildness and graded-formality

We start this section with the notion of mild (or inert) presentation of a group, due to J. Labute and

D. Anick, and its relevance to the associated graded Lie algebra. We then continue with some appli-

cations to two important classes of finitely presented groups: one-relator groups and fundamental

groups of link complements.

7.1. Mild presentations. Let F be a free group generated by x = {x1, . . . , xn}. The weight of a

word r ∈ F is defined as ω(r) = sup{k | r ∈ ΓkF}. Since F is residually nilpotent, ω(r) is finite. The

image of r in grω(r)(F) is called the initial form of r, and is denoted by in(r).

Let G = F/R be a quotient of F, with presentation G = 〈x | r〉, where r = {r1, . . . , rm}. Let

in(r) be the ideal of the free Q-Lie algebra lie(x) generated by {in(r1), . . . , in(rm)}. Clearly, this is a

homogeneous ideal; thus, the quotient

(34) L(G) := lie(x)/ in(r)

is a graded Lie algebra. As noted by Labute in [15], the ideal in(r) is contained in grΓ̃(R), where

Γ̃kR = ΓkF ∩ R is the induced filtration on R. Hence, there exists an epimorphism L(G)։ gr(G).
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Proposition 7.1. Let G be a commutator-relators group, and let h(G) be its holonomy Lie algebra.

Then the canonical projection ΦG : h(G)։ gr(G) factors through an epimorphism h(G)։ L(G).

Proof. Let G = 〈x | r〉 be a commutator-relators presentation for our group. By Corollary 5.7, the

holonomy Lie algebra h(G) admits a presentation of the form lie(x)/a, where a is the ideal generated

by the degree 2 part of M(r) − 1, for all r ∈ r. On the other hand, in(r) is the smallest degree

homogeneous part of M(r) − 1. Hence, a ⊆ in(r), and this complete the proof. �

Following [1, 15], we say that a group G is a mildly presented group (over Q) if it admits a

presentation G = 〈x | r〉 such that the quotient in(r)/[in(r), in(r)], viewed as a U(L(G))-module via

the adjoint representation of L(G), is a free module on the images of in(r1), . . . , in(rm). As shown

by Anick in [1], a presentation G = 〈x1, . . . , xn | r1, . . . rm〉 is mild if and only if

(35) Hilb(U(L(G)), t) =

1 − nt +

m∑

i=1

tω(ri)


−1

.

Theorem 7.2 (Labute [14, 15]). Let G be a finitely-presented group.

(1) If G is mildly presented, then gr(G) = L(G).

(2) If G has a single relator r, then G is mildly presented. Moreover, the LCS ranks φk(G) :=

rank grk(G) are given by

(36) φk(G) =
1

k

∑

d|k

µ(k/d)


∑

0≤i≤[d/e]

(−1)i d

d + i − ei

(
d + i − ie

i

)
nd−ei

 ,

where µ is the Möbius function and e = ω(r).

Labute states this theorem over Z, but his proof works for any commutative PID with unity. There

is an example in [15] showing that the mildness condition is crucial for part (1) of the theorem to

hold. We give now a much simpler example to illustrate this phenomenon.

Example 7.3. Let G = 〈x1, x2, x3 | x3, x3[x1, x2]〉. Clearly, G � 〈x1, x2 | [x1, x2]〉, which is a

mild presentation. However, the Lie algebra lie(x1, x2, x3)/ideal(x3) is not isomorphic to gr(G) =

lie(x1, x2)/ideal([x1, x2]). Hence, the first presentation is not a mild.

Under different assumptions, alternative methods for computing the LCS ranks of a group G can

be found in [47, 43].

7.2. Mildness and graded formality. We now use Labute’s work on the associated graded Lie

algebra and our presentation of the holonomy Lie algebra to give two graded-formality criteria.

Corollary 7.4. Let G be a group admitting a mild presentation 〈x | r〉. If ω(r) ≤ 2 for each r ∈ r,

then G is graded-formal.

Proof. By Theorem 7.2, the associated graded Lie algebra gr(H;Q) has a presentation of the form

lie(x)/ in(r), with in(r) a homogeneous ideal generated in degrees 1 and 2. Using the degree 1 rela-

tions to eliminate superfluous generators, we arrive at a presentation with only quadratic relations.

The desired conclusion follows from Proposition 6.7. �

An important sufficient condition for mildness of a presentation was given by Anick [1]. Recall

that ι denotes the canonical injection from the free Lie algebra lie(x) into Q〈x〉. Fix an ordering

on the set {x}. The set of monomials in the homogeneous elements ι(in(r1)), . . . , ι(in(rm)) inherits
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the lexicographic order. Let wi be the highest term of ι(in(ri)) for 1 ≤ i ≤ m. Suppose that (i)

no wi equals zero; (ii) no wi is a submonomial of any w j for i , j, i.e., w j = uwiv cannot occur;

and (iii) no wi overlaps with any w j, i.e., wi = uv and w j = vw cannot occur unless v = 1, or

u = w = 1. Then, the set {r1, . . . , rn} is mild (over Q). We use this criterion to provide an example

of a finitely-presented group G which is graded-formal, but not filtered-formal.

Example 7.5. Let G be the group with generators x1, . . . , x4 and relators r1 = [x2, x3], r2 = [x1, x4],

and r3 = [x1, x3][x2, x4]. Ordering the generators as x1 ≻ x2 ≻ x3 ≻ x4, we find that the highest

terms for {ι(in(r1)), ι(in(r2)), ι(in(r3))} are {x2x3, x1x4, x1x3}, and these words satisfy the above con-

ditions of Anick. Thus, by Theorem 7.2, the Lie algebra gr(G) is the quotient of lie(x1, . . . , x4) by

the ideal generated by [x2, x3], [x1, x4], and [x1, x3] + [x2, x4]. Hence, h(G) � gr(G), that is, G is

graded-formal. On the other hand, using the Tangent Cone Theorem from [7], one can show that

the group G is not 1-formal. Therefore, G is not filtered-formal.

7.3. The rational Murasugi conjecture. Let L = (L1, . . . , Ln) be an n-component link in S 3. The

complement of the link, X = S 3 \
⋃n

i=1 Li, is a a connected, 3-dimensional manifold, which has the

homotopy type of a finite, 2-dimensional CW-complex. The link group, G = π1(X), carries crucial

information about the homotopy type of X. For instance, if n = 1 (i.e., the link is a knot), or if n > 1

and L is a not a split link, then the complement X is a K(G, 1).

Let ℓi, j = lk(Li, L j) be the linking numbers of L. The information coming from these numbers is

conveniently encoded in a graph Γ with vertex set {1, . . . , n}, and edges (i, j) whenever ℓi, j , 0. As

noted in [24, 31], the holonomy Lie algebra h(G) = h(X) is determined by these data:

(37) h(G) = lie(y1, . . . , yn)
/( n∑

j=1

ℓi, j[yi, y j] = 0, 1 ≤ i < n

)
.

Turning now to the associated graded Lie algebra of a link group G, Murasugi conjectured in

[29] that grk(G;Z) = grk(Fn−1;Z) for all k > 1, provided that the link L has n components, and all

the linking numbers are equal to ±1. This conjecture was proved by Massey–Traldi [26] and Labute

[16], who also proved an analogous result for the Chen ranks of such links. In [46], Traldi com-

puted the Chen groups grk(G/G′′;Z) for all links with connected linking graph. The next theorem,

which can be viewed as a rational version of Murasugi’s conjecture, combines results of Anick [1],

Berceanu–Papadima [3], and Papadima–Suciu [31].

Theorem 7.6. Let L be an n-component link in S 3, and let G be the fundamental group of its

complement. Assuming the linking graph Γ is connected, the following hold.

(1) The group G is graded-formal, and thus, the associated graded Lie algebra gr(G) is iso-

morphic to the holonomy Lie algebra h(G), with presentation given by (37).

(2) There exists a graded Lie algebra isomorphism gr(G/G′′) � h(G)/h(G)′′.

(3) If, furthermore, L is the closure of a pure braid, then G admits a mild presentation.

Proof. The first assertion follows from Lemma 4.1 and Theorems 3.2 and 4.2 in [3], the second

assertion is proved in [31, Thm. 10.1], while the last assertion follows from [1, Thm. 3.7]. �

We conclude this section with several examples illustrating the concepts discussed above. In

each example, L is a link in S 3, and G is the corresponding link group. The first two examples were

computed by Hain in [11] using a slightly different method.
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Example 7.7. Let L be the Borromean rings. All the linking numbers are 0, and so h(G) = lie(x, y, z).

The link group G has a presentation with three generators x, y, z and two relators, r1 = [x, [y, z]] and

r2 = [z, [y, x]]. It is readily seen that the link L passes Anick’s mildness test; hence G admits a mild

presentation. Thus, gr(G) = lie(x, y, z)/ ideal([x, [y, z]], [z, [y, x]]), and so G is not graded-formal.

Example 7.8. Let L be the Whitehead link. This is a 2-component link with linking number 0; its

link group has presentation G = 〈x, y | r〉, where r = x−1y−1xyx−1yxy−1xyx−1y−1xy−1x−1y. Since G

has only one relator, Theorem 7.2 insures that this presentation is mild. Direct computation shows

that in(r) = [x, [y, [x, y]]]. Thus, gr(G) = lie(x, y)/ ideal([x, [y, [x, y]]]), and G is not graded-formal.

Example 7.9. Let L be the link of great circles in S 3 corresponding to the arrangement of transverse

planes through the origin of R4 denoted as A (31425) in Matei–Suciu [28]. By construction, L is

the closure of a pure braid, and its linking graph is a complete graph. Thus, by Theorem 7.6, the

link group G is graded-formal, and admits a mild presentation. On the other hand, as noted in [7,

Example 8.2], the group G is not 1-formal.

8. One-relator groups

We turn now to some other specific classes of finitely presented groups where our approach

applies. We start with a well-known and much-studied class of groups in group theory.

8.1. Holonomy and graded-formality. If the group G admits a finite presentation with a single

relator, we saw in the previous section that G is mildly presented. In fact, more can be said.

Proposition 8.1. Let G = 〈x | r〉 be a 1-relator group.

(1) If r is a commutator relator, then h(G) = lie(x)/ideal(M2(r)).

(2) If r is not a commutator relator, then h(G) = lie(y1, . . . , yn−1).

Proof. Part (1) follows from Corollary 5.7. When r is not a commutator relator, the Jacobian matrix

JG = (ε(∂ir)) has rank 1. Part (2) then follows from Theorem 5.5. �

Corollary 8.2. Let G = 〈x1, . . . xn | r〉 be a 1-relator group, and let h = h(G). Then

(38) Hilb(U(h); t) =



1/(1 − (n − 1)t) if ω(r) = 1,

1/(1 − nt + t2) if ω(r) = 2,

1/(1 − nt) if ω(r) ≥ 3.

Proof. Let x = {x1, . . . , xn}. By Proposition 8.1, the universal enveloping algebra U(h) is isomorphic

to either T (y1, . . . , yn−1) if ω(r) = 1, or to T (x)/ ideal(M2(r)) if ω(r) = 2, or to T (x) if ω(r) ≥ 3. The

claim now follows from Theorem 7.2 and formula (35). �

Theorem 8.3. Let G = 〈x | r〉 be a group defined by a single relation. Then G is graded-formal if

and only if ω(r) ≤ 2.

Proof. By Theorem 7.2, the given presentation of G is mild. The weight ω(r) can also be computed

as ω(r) = inf{|I| | M(r)I , 0}. If ω(r) ≤ 2, then, by Proposition 8.1, we have that h(G) � gr(G) �

lie(x)/ideal(in(r)), and so G is graded-formal.

On the other hand, if ω(r) ≥ 3, then h(G) = lie(x). However, gr(G) = lie(x)/ideal(in(r)). Hence,

G is not graded-formal. �
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Example 8.4. Let G = 〈x1, x2 | r〉, where r = [x1, [x1, x2]]. Clearly, ω(r) = 3. Hence, G is not

graded-formal.

The next example shows that there exists a graded-formal group which is not filtered-formal.

Example 8.5. Let G = 〈x1, . . . , x5 | w〉, where w = [x1, x2][x3, [x4, x5]]. Since ω(w) = 2, Theorem

8.3 implies that the group G is graded-formal. On the other hand, as shown in [41], G is not 1-

formal, and so G is not filtered-formal.

8.2. Chen ranks. We now determine the ranks of the (rational) Chen Lie algebra associated to an

arbitrary finitely presented, 1-relator, 1-formal group, thereby extending a result of Papadima and

Suciu from [31]. By definition, the Chen ranks of a finitely generated group G are the LCS ranks of

its maximal metabelian quotient,

(39) θk(G) := dimQ(grk(G/G′′)).

The projection π : G ։ G/G′′ induces an epimorphism, gr(π) : gr(G) ։ gr(G/G′′), which is an

isomorphism in degrees k ≤ 3. Consequently, φk(G) ≥ θk(G), with equality for k ≤ 3. The Chen

ranks were introduced and studied by K.-T. Chen [5], who showed that, for all k ≥ 2,

(40) θk(Fn) = (k − 1)

(
n + k − 2

k

)
.

The holonomy Chen ranks of the group G are defined as θ̄k(G) := dim(h/h′′)k, where h = h(G).

It is readily seen that θ̄k(G) ≥ θk(G), with equality for k ≤ 2. A basic result in the subject reads as

follows: If G is 1-formal, then

(41) θk(G) = θ̄k(G),

for all k ≥ 1. This result was proved in [31, Cor. 9.4] for 1-formal groups admitting a finite,

commutator-relators presentation, and in full generality in [43, Prop. 8.1 and Cor. 8.6].

Proposition 8.6. Let G = F/〈r〉 be a one-relator group, where F = 〈x1, . . . , xn〉, and suppose G is

1-formal. Then

Hilb(gr(G/G′′), t) =



1 + nt −
1 − nt + t2

(1 − t)n
if r ∈ [F, F],

1 + (n − 1)t −
1 − (n − 1)t

(1 − t)n−1
otherwise.

Proof. First assume that r ∈ [F, F]. The claim is then proved in [31, Thm. 7.3].

Now assume that r < [F, F]. In that case, Theorem 5.5 implies that h(G) � lie(y1, . . . , yn−1),

which in turn is isomorphic to h(Fn−1). Since both G are Fn−1 is 1-formal, formula (41) implies that

(42) θk(G) = θ̄k(G) = θ̄k(Fn−1) = θk(Fn−1).

The claim then follows from Chen’s formula (40). �

8.3. Surface groups. The Riemann surface Σg is a compact Kähler manifold, and thus, a formal

space. The formality of Σg also implies the 1-formality of Πg. As a consequence, the associated
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graded Lie algebra gr(Πg) is isomorphic to the holonomy Lie algebra h(Πg), which has a presen-

tation h(Πg) = lie(2g)
/〈∑g

i=1
[xi, yi] = 0

〉
, where lie(2g) := lie(x1, y1, . . . , xg, yg). It follows from

formula (36) that the LCS ranks of the 1-relator group Πg are given by

(43) φk(Πg) =
1

k

∑

d|k

µ(k/d)


[d/2]∑

i=0

(−1)i d

d − i

(
d − i

i

)
(2g)d−2i

 .

Using now Theorem 5.11, we see that the Chen Lie algebra of Πg has presentation

(44) gr
(
Πg/Π

′′
g

)
= lie(2g)

/〈〈 g∑

i=1

[xi, yi]
〉
+ lie′′(2g)

〉
.

Furthermore, Proposition 8.6 shows that the Chen ranks of our surface group are given by θ1(Πg) =

2g, θ2(Πg) = 2g2 − g − 1, and

(45) θk(Πg) = (k − 1)

(
2g + k − 2

k

)
−

(
2g + k − 3

k − 2

)
, for k ≥ 3.

Let Nh be the nonorientable surface of genus h ≥ 1. It is well known that Nh has the rational

homotopy type of a wedge of h − 1 circles, see [7, Example 6.18]. Hence, Nh is a formal space, and

thus π1(Nh) is a 1-formal group. Furthermore, Proposition 8.1 shows that the holonomy Lie algebra

of π1(Nh) is isomorphic to the free Lie algebra with h − 1 generators, and Proposition 8.6 implies

that the Chen ranks of π1(Nh) are given by θk(π1(Nh)) = (k − 1)
(
h+k−3

k

)
for k ≥ 2.

9. Seifert fibered spaces

We will consider here only orientable, closed Seifert manifolds with orientable base. Every such

manifold M admits an effective circle action, with orbit space an orientable surface of genus g,

and finitely many exceptional orbits, encoded in pairs of coprime integers (α1, β1), . . . , (αs, βs) with

α j ≥ 2. The obstruction to trivializing the bundle η : M → Σg outside tubular neighborhoods of

the exceptional orbits is given by an integer b = b(η). A standard presentation for the fundamental

group of M in terms of the Seifert invariants is given by

πη := π1(M) =
〈
x1, y1, . . . , xg, yg, z1, . . . , zs, h | h central,

[x1, y1] · · · [xg, yg]z1 · · · zs = hb, z
αi

i
hβi = 1 (i = 1, . . . , s)

〉
.

(46)

As shown by Scott in [39], the Euler number e(η) of the Seifert bundle η : M → Σg satisfies e(η) =

−b(η) −
∑s

i=1 βi/αi.

9.1. Holonomy Lie algebra. We now give a presentation for the holonomy Lie algebra of a Seifert

manifold group.

Theorem 9.1. Let η : M → Σg be a Seifert fibration with orientable base. The rational holonomy

Lie algebra of the group πη = π1(M) is given by

h(πη;Q) =


lie(x1, y1, . . . , xg, yg, h)/〈

∑s
i=1[xi, yi] = 0, h central〉 if e(η) = 0;

lie(2g) if e(η) , 0.
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Proof. First assume e(η) = 0. In this case, the row-echelon approximation of πη has presentation

π̃η = 〈x1, y1, . . . , xg, yg, z1, . . . , zs, h | z
αi

i
hβi = 1 (i = 1, . . . , s),

([x1, y1] · · · [xg, yg])α1 ···αs = 1, h central〉
(47)

It is readily seen that the rank of the Jacobian matrix associated to this presentation has rank s.

Furthermore, the map π : FQ → HQ is given by xi 7→ xi, yi 7→ yi, z j 7→ (−βi/αi)h, h 7→ h. Let κ
be the Magnus expansion from Definition 2.1. A Fox Calculus computation shows that κ takes the

following values on the commutator-relators of π̃η: κ([zi, h]) = 1,

κ([xi, h]) = 1 + xih − hxi + terms of degree ≥ 3,

κ([yi, h]) = 1 + yih − hyi + terms of degree ≥ 3,

κ(r) = 1 + (α1 · · ·αs)(x1y1 − y1x1 + · · · + xgyg − ygxg) + terms of degree ≥ 3,

where r = ([x1, y1] · · · [xg, yg])α1 ···αs . The first claim now follows from Theorem 5.5.

Next, assume e(η) , 0. Then the row-echelon approximation of πη is given by

π̃η = 〈x1, y1, . . . , xg, yg, z1, . . . , zs, h | z
αi

i
hβi = 1 (i = 1, . . . , s),

([x1, y1] · · · [xg, yg])α1 ···αs he(η)α1 ···αs = 1, h central〉,
(48)

while the homomorphism π : FQ → HQ is given by xi 7→ xi, yi 7→ yi, z j 7→ (−βi/αi)h, and h 7→ 0.

As before, the second claim follows from Theorem 5.5, and we are done. �

The Malcev Lie algebra of πη, given in [41, Thm.11.6], has an explicit presentation, which is the

degree completion of the graded Lie algebra

(49) L(πη) =


lie(x1, y1, . . . , xg, yg, z)/〈

∑g

i=1
[xi, yi] = 0, z central〉 if e(η) = 0;

lie(x1, y1, . . . , xg, yg,w)/〈
∑g

i=1
[xi, yi] = w, w central〉 if e(η) , 0,

where deg(w) = 2 and the other generators have degree 1. Moreover, gr(πη) � L(πη). From the

presentation of πη and the definition of filtered formality, we immediately obtain that fundamental

groups of orientable Seifert manifolds are filtered-formal.

9.2. LCS ranks. We end this section with a computation of the ranks of the various graded Lie

algebras attached to the fundamental group of an orientable Seifert manifold. Comparing these

ranks, we derive some consequences regarding the non-formality properties of such groups.

We start with the LCS ranks φk(πη) = dim grk(πη) and the holonomy ranks φ̄k(πη) = dim h(πη)k.

Proposition 9.2. The LCS ranks and the holonomy ranks of a Seifert manifold group πη are com-

puted as follows.

(1) If e(η) = 0, then φ1(πη) = φ̄1(πη) = 2g + 1, and φk(πη) = φ̄k(πη) = φk(Πg) for k ≥ 2.

(2) If e(η) , 0, then φ̄k(πη) = φk(F2g) for k ≥ 1.

(3) If e(η) , 0, then φ1(πη) = 2g, φ2(πη) = g(2g − 1), and φk(πη) = φk(Πg) for k ≥ 3.

Here the LCS ranks φk(Πg) are given by formula (43).

Proof. If e(η) = 0, then πη � Πg × Z, and claim (1) readily follows. So suppose that e(η) , 0. In

this case, we know from Theorem 9.1 that h(πη) = h(F2g), and thus claim (2) follows.

By (49), the associated graded Lie algebra gr(πη) is isomorphic to the quotient of the free Lie

algebra lie(x1, y1, . . . , xg, yg,w) by the ideal generated by the elements
∑g

i=1
[xi, yi] − w, [w, xi], and

[w, yi]. Define a morphism χ : gr(πη)→ gr(Πg) by sending xi 7→ xi, yi 7→ yi, and w 7→ 0. It is readily
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seen that the kernel of χ is the Lie ideal of gr(πη) generated by w, and this ideal is isomorphic to the

free Lie algebra on w. Thus, we get a short exact sequence of graded Lie algebras,

(50) 0 // lie(w) // gr(πη)
χ

// gr(Πg) // 0 .

Comparing Hilbert series in this sequence establishes claim (3) and completes the proof. �

Corollary 9.3. If g = 0, the group πη is always 1-formal, while if g > 0, the group πη is graded-

formal if and only if e(η) = 0.

Proof. First suppose e(η) = 0. In this case, we know from (49) that gr(πη) � gr(Πg) × gr(Z). It

easily follows that gr(πη) � h(πη) by comparing the presentations of these two Lie algebras. Hence,

πη is graded-formal, and thus 1-formal, by the fact that πη is filtered formal.

It is enough to assume that g > 0 and e(η) , 0, since the other claims are clear. By Proposition

9.2, we have that φ̄3(πη) = (8g3 − 2g)/3, whereas φ3(πη) = (8g3 − 8g)/3. Hence, h(πη) is not

isomorphic to gr(πη), proving that πη is not graded-formal. �

9.3. Chen ranks. Recall that the Chen ranks are defined as θk(π) = dim grk(π/π′′), while the holo-

nomy Chen ranks are defined as θ̄k(π) = dim(h/h′′)k, where h = h(π).

Proposition 9.4. The Chen ranks and the holonomy Chen ranks of a Seifert manifold group πη are

computed as follows.

(1) If e(η) = 0, then θ1(πη) = θ̄1(πη) = 2g + 1, and θk(πη) = θ̄k(πη) = θk(Πg) for k ≥ 2.

(2) If e(η) , 0, then θ̄k(πη) = θk(F2g) for k ≥ 1.

(3) If e(η) , 0, then θ1(πη) = 2g, θ2(πη) = g(2g − 1), and θk(πη) = θk(Πg) for k ≥ 3.

Here the Chen ranks θk(F2g) and θk(Πg) are given by formulas (40) and (45), respectively.

Proof. Claims (1) and (2) are easily proved, as in Proposition 9.2. To prove claim (3), start by

recalling that the group πη is filtered-formal. Hence, from [41, Theorem 9.3], the Chen Lie algebra

gr(πη/π
′′
η ) is isomorphic to gr(πη)/ gr(πη)

′′. As before, we obtain a short exact sequence of graded

Lie algebras,

(51) 0 // lie(w) // gr(πη/π
′′
η ) // gr(Πg/Π

′′
g ) // 0 .

Comparing Hilbert series in this sequence completes the proof. �

Remark 9.5. The above result can be used to give another proof of Corollary 9.3. Indeed, suppose

e(η) , 0. Then, by Proposition 9.4, we have that θ̄3(πη) − θ3(πη) = 2g. Consequently, the group πη
is not 1-formal. The group πη is not graded-formal, since it is filtered-formal.
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3. Barbu Berceanu and Ştefan Papadima, Cohomologically generic 2-complexes and 3-dimensional Poincaré com-
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