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COMPLEX HYPERPLANE ARRANGEMENTS

MICHAEL FALK AND ALEXANDER I. SUCIU∗

In the Fall of 2004, we were fortunate to spend the semester in residence at MSRI for
the program “Hyperplane Arrangements and Applications.” It was an intense, stimulating,
productive, enlightening, eventful and most enjoyable experience. It was especially so for
us “long-timers” in the field because the program truly marked a coming-of-age in the
evolution of the subject from relative obscurity thirty years ago. We had an opportunity
to introduce the wonders of arrangements to a group of graduate students during the
two-week MSRI graduate school in Eugene in early August, and to an impressive group of
post-docs and many other unsuspecting mathematicians during the program. We are glad
to have this chance to bring some of the ideas to a wider audience. For general reference,
we suggest the reader consult the books and survey articles listed on the summer school
web page, www.math.neu.edu/~suciu/eugene04.html.

In its simplest manifestation, an arrangement is merely a finite collection of lines in the
real plane. The complement of the lines consists of a finite number of polygonal regions.
Determining the number of regions turns out to be a purely combinatorial problem: one
can easily find a recursion for the number of regions, whose solution is given by a formula
involving only the number of lines and the numbers of lines through each intersection point.
This formula generalizes to collections of hyperplanes in Rℓ, where the recursive formula
is satisfied by an evaluation of the characteristic polynomial of the (reverse-ordered) poset
of intersections. The study of characteristic polynomials forms the backbone of the com-
binatorial, and much of the algebraic theory of arrangements, which were featured in the
MSRI workshop “Combinatorial Aspects of Hyperplane Arrangements” last November.

From the topological standpoint, a richer situation is presented by arrangements of
complex hyperplanes, that is, finite collections of hyperplanes in Cℓ (or in projective space
Pℓ). In this case, the complement is connected, and its topology, as reflected in the
fundamental group or the cohomology ring for instance, is much more interesting.

The motivation and many of the applications of the topological theory arose initially
from the connection with braids. Let Aℓ = {zi = zj}1≤i<j≤ℓ be the arrangement of

diagonal hyperplanes in Cℓ, with complement the configuration space Xℓ. In 1962, Fox
and Neuwirth showed that π1(Xℓ) = Pℓ, the pure braid group on ℓ strings, while Neuwirth
and Fadell showed that Xℓ is aspherical. A few years later, as part of his approach to
Hilbert’s thirteenth problem, Arnol’d computed the cohomology ring H∗(Xℓ, C).
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Figure 1. The A3 matroid, and a neighborly partition

For an arbitrary hyperplane arrangement in Cℓ, the fundamental group of the comple-
ment, G = π1(X), can be computed algorithmically, using the braid monodromy associ-
ated to a generic projection of a generic slice in C2, see [3] and references there. The end
result is a finite presentation with generators xi corresponding to meridians around the
n hyperplanes, and commutator relators of the form xiαj(xi)

−1, where αj ∈ Pn are the
(pure) braid monodromy generators, acting on the meridians via the Artin representation
Pn →֒ Aut(Fn).

The cohomology ring H∗(X, Q) was computed by Brieskorn in the early 1970’s. His
proof shows that X is a formal space, in the sense of Sullivan: the rational homotopy
type of X is determined by H∗(X, Q). In particular, all rational Massey products vanish.
In 1980, Orlik and Solomon gave a simple combinatorial description of the k-algebra
H∗(X, k), for any field k: it is the quotient A = E/I of the exterior algebra E on classes
dual to the meridians, modulo a certain ideal I determined by the intersection poset, see
[17, 18].

For each a ∈ A1 ∼= kn, the Orlik-Solomon algebra can be turned into a cochain complex
(A, a), with i-th term the degree i graded piece of A, and with differential given by
multiplication by a, cf. [29]. The resonance varieties of A were defined in [7] to be the
jumping loci for the cohomology of this cochain complex:

(1) Ri
d(A) = {a ∈ A1 | dimk H i(A, a) ≥ d}.

The case of a line arrangement in P2 is already quite fascinating. The subarrangements
that contribute components to R1

d(A) have very special combinatorial and geometric prop-
erties. To be eligible, the incidence matrix for the lines and intersection points must have
null-space of dimension at least two, with full support. In addition, the subarrangement
must have a partition into at least three classes such that no point p is incident with
one line of one class, while all other lines incident with p belong to a second class. Such
partitions are termed “neighborly.” The simplest non-trivial example is provided by the
braid arrangement A3, see Figure 1. In this figure the points represent hyperplanes and
the lines correspond to the points of multiplicity greater than two. This is a diagram of
the matroid associated with the arrangement.

When k has characteristic zero, the Vinberg classification of generalized Cartan matrices
implies an even more exceptional situation, see [12]. One can assign multiplicities to the
lines so that the partition is into classes of equal size d, with the same number of lines
from each class containing each “inter-class” intersection point. This partition gives rise
to a pencil of degree d curves which interpolates the completely reducible (not necessarily
reduced) curves formed by the classes in the partition. The pencil that corresponds to
Figure 1 consists of the curves ax2 + by2 + cz2 = 0, with a + b + c = 0, see Figure 2. The
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Figure 2. A pencil of conics including the braid arrangement

singular fibers are given by a = 0, b = 0, and c = 0. A non-reduced example is provided
by the arrangement of symmetry planes of the cube with vertices (±1,±1,±1), with the
coordinate hyperplanes having multiplicity two. This multi-arrangement is interpolated
by a pencil of quartics. Such pencils often yield (non-linear) fiberings of the complement
by punctured surfaces, showing in particular that the complement is aspherical.

There is also an apparent connection between the cohomology of (A, a) and critical
points of certain multi-variate rational functions. A resonant degree-one element a is
represented (up to a scalar) by a logarithmic deRham one-form d log Φ, where Φ is a
product of the defining linear forms of the hyperplanes, raised to integral powers. The
dimension of H i(A, a) is related to the number of components in the critical locus of
Φ of codimension i. In particular we expect Φ to have nonisolated critical points when
a is “generically resonant.” This is known to be the case for certain high-dimensional
arrangements with certain weights [6], and was established for arrangements of rank three
during the Fall program. A precise description of this relationship in general is a topic of
current study.

In our example of the A3 arrangement, d log Φ is resonant precisely when Φ(x, y, z) =
(x2 − y2)α(y2 − z2)β(z2 − x2)γ , with α + β + γ = 0. The critical set dΦ = 0 is given
(projectively) by [x2 − y2 : y2 − z2 : z2 − x2] = [α : β : γ]. It is not a coincidence that
these critical loci are curves in the pencil of Figure 2.

Through the connection with generalized hypergeometric functions, the critical locus
of Φ is of interest in relation to the Bethe Ansatz in mathematical physics, see [28]. This
was a major topic of discussion in the MSRI workshop “Topology of Arrangements and
Applications” last October. Somewhat serendipitously, the same problem for k = R is of
interest to the combinatorialists studying algebraic statistics, who were well-represented
in Berkeley last fall.

The characteristic varieties of a space X are the jumping loci for the cohomology of X
with coefficients in rank 1 local systems:

(2) V i
d (X) = {t ∈ Hom(π1(X), C∗) | dimC H i(X, Ct) ≥ d},

where Ct denotes the abelian group C, with π1(X)-module structure given by the repre-
sentation t : π1(X) → C∗.

Now suppose X is the complement of an arrangement of n hyperplanes. By work of
Arapura [1], the irreducible components of the characteristic varieties of X are algebraic
subtori of the character torus Hom(π1(X), C∗) ∼= (C∗)n, possibly translated by unitary
characters. It turns out that the tangent cone at the origin to V i

d (X) coincides with the
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resonance variety Ri
d(A), see [4, 11, 2]. Consequently, the resonance varieties are unions

of linear subspaces; moreover, the algebraic subtori in the characteristic varieties are
determined by the intersection lattice. Nevertheless, there exist arrangements for which
the characteristic varieties have components that do not pass through the origin, [26]; it
is an open question whether such components are combinatorially determined.

Counting certain torsion points on the character torus, according to their depth with
respect to the stratification by the characteristic varieties, yields information about the
homology of finite abelian covers of the complement, see [16]. This approach gives a
practical algorithm for computing the Betti numbers of the Milnor fiber F of a central
arrangement in C3. It has also led to examples of multi-arrangements with torsion in
H1(F ), see [5]. There are no known examples of ordinary arrangements with this property.

The tangent-cone theorem, and the linearity of resonance components, both fail over
fields of characteristic p > 0. There is evidence that this failure is related to the existence
of non-vanishing Massey products over Zp, cf. [14]. In addition, there is an empirical
connection between translated components of characteristic varieties over C and resonance
varieties over fields or rings of positive characteristic. The study of resonance varieties in
prime characteristic, started in [15], leads naturally to the theory of line complexes and
ruled varieties, developed in [8]. The counter-example to the linearity question, raised in
[26], is a singular, irreducible cubic threefold in P4 ruled by lines, in characteristic three.
The underlying arrangement is the Hessian arrangement of 12 lines determined by the
inflection points on a general cubic; see [8].

As noted by Rybnikov [22], the fundamental group of the complement, G = π1(X),
is not necessarily determined by the intersection poset. Even so, the ranks φk(G) of
the successive quotients of the lower central series {Gk}k≥1, where G1 = G and Gk+1 =
[G,Gk], are combinatorially determined. Indeed, according to Sullivan, the formality of
X implies that the graded Lie algebra gr(G) =

⊕

k≥1 Gk/Gk+1 is rationally isomorphic

to the holonomy Lie algebra hA associated to A = H∗(X; Q). Furthermore, the Chen Lie
algebra gr(G/G′′), associated to the lower central series of G/G′′, is rationally isomorphic
to hA/h′′A, and so the Chen ranks θk(G) are also combinatorially determined, see [19].

Much effort has been put in computing explicitly the LCS and Chen ranks of an ar-
rangement group G. It turns out that both can be expressed in terms of the Betti numbers
of the linear strands in certain free resolutions (over A or E):

(3)
∞
∏

k=1

(1 − tk)φk(G) =
∞
∑

i=0

dim TorA
i (Q, Q)i ti,

(4) θk(G) = dim TorE
k−1(A, Q)k, for k ≥ 2.

When the arrangement is of fiber-type (equivalently, the intersection lattice is super-
solvable), A is a Koszul algebra. As noted in [21, 25], formula (3) and Koszul duality yield
the classical LCS formula of Kohno [10] and Falk-Randell [9]:

(5)
∞
∏

k=1

(1 − tk)φk(G) = Hilb(A,−t).
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In [26], two conjectures were made, expressing (under some conditions) the LCS and
Chen ranks of an arrangement group in terms of the dimensions of the components of the
first resonance variety. Write R1

1(A) = L1 ∪ · · · ∪ Lq, with dim Li = di. Then:

(6)

∞
∏

k=2

(1 − tk)φk(G) =

q
∏

i=1

1 − dit

(1 − t)di

, provided φ4(G) = θ4(G),

(7) θk(G) = (k − 1)

q
∑

i=1

(

k + di − 2

k

)

, for k sufficiently large.

The inequality ≥ from (7) has been proven in [24]. The reverse inequality has an
algebro-geometric interpretation in terms of the sheaf on Cn determined by the linearized
Alexander invariant. Equality in both (6) and (7) has been verified for two important
classes of arrangements: decomposable arrangements (essentially, those for which all com-
ponents of R1

1(A) arise from sub-arrangements of rank two), and graphic arrangements
(i.e., sub-arrangements of the braid arrangement); see [23, 20, 24, 13].

Many of the results and observations reported on here represent joint work (or work in
progress) with our friends and collaborators: Dan Cohen, Graham Denham, Dani Matei,
Stefan Papadima, Hal Schenck, Sasha Varchenko, and Sergey Yuzvinsky. Our thanks go
to them. In addition, we are grateful to many other unnamed participants in the MSRI
program last Fall, for the countless hours spent in helpful and stimulating conversations
about arrangements.
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