Counting Subgroups of Finite Index

Alex Suciu

Graduate Student Seminar Mathematics Department Northeastern University

May 15, 2000

The subject was initiated by Marshall Hall (*Counting subgroups of finite index in free groups*, 1949).

Definition. If G is a finitely-generated group, and n is a positive integer, let:

 $a_n(G) =$ number of index *n* subgroups of *G*.

Write also: $s_n(G) = a_1(G) + \cdots + a_n(G)$.

Other numbers that come up:

- $a_n^{\triangleleft}(G)$ =number of index n normal subgroups of G;
- $c_n(G)$ = number of conjugacy classes of index *n* subgroups of *G*;
- $h_n(G) = |\operatorname{Hom}(G, S_n)| =$ number of representations of G to the symmetric group;
- $t_n(G)$ = number of transitive representations of G to S_n .

If $H \leq G$ and [G : H] = n, we may identify $G/H \cong [n] = \{1, \ldots, n\}$, with $H \leftrightarrow 1$. There are (n-1)! ways to do this identification. G acts transitively on [n], with $\operatorname{Stab}(1) = H$. Conversely, a transitive rep. $\rho : G \to S_n$ defines an index n subgroup $H = \operatorname{Stab}_{\rho}(1)$. Thus:

$$a_n(G) = \frac{t_n(G)}{(n-1)!}$$

We also have:

$$h_n(G) = \sum_{k=1}^n \binom{n-1}{k-1} t_k(G) h_{n-k}(G)$$

since the orbit of 1 can have size k (with $1 \le k \le n$), and there are

- $\binom{n-1}{k-1}$ ways to choose the orbit of 1
- $t_k(G)$ ways to act on this orbit
- $h_{n-k}(G)$ ways to act on its complement

The two previous formulas yield:

$$a_n(G) = \frac{1}{(n-1)!} h_n(G) - \sum_{k=1}^{n-1} \frac{1}{(n-k)!} h_{n-l}(G) a_k(G)$$

Example (Hall). Let F_r be the free group of rank r. Clearly, $h_n(F_r) = (n!)^r$. Thus:

$$a_n(F_r) = n(n!)^{r-1} - \sum_{k=1}^{n-1} ((n-k)!)^{r-1} a_k(F_r)$$

k-1										
$r \backslash n$	1	2	3	4	5					
2	1	3	13	71	461					
3	1	7	97	$2,\!143$	68,641					
4	1	15	625	$54,\!335$	$8,\!563,\!601$					
5	1	31	3,841	$1,\!321,\!471$	$1,\!035,\!045,\!121$					
6	1	63	$23,\!233$	31,817,471	$124,\!374,\!986,\!561$					
7	1	127	139,777	764,217,343	14,928,949,808,641					

Asymptotically (Newman),

$$a_n(F_r) \sim n \cdot (n!)^{r-1}.$$

That's because the number of *non-transitive* reps $F_r \to S_n$ is bounded by

$$P = \sum_{k=1}^{n-1} {\binom{n-1}{k-1}} h_k(F_r) h_{n-k}(F_r) = \sum_{k=1}^{n-1} {\binom{n-1}{k-1}} (k!)^r ((n-k)!)^r$$

Clearly, $\lim_{n \to \infty} \frac{P}{(n!)^r} = 0$, and so
 $a_n = \frac{t_n}{(n-1)!} \sim \frac{h_n}{(n-1)!} = n(n!)^{r-1}.$

We also have (Liskovec):

$$\left| c_n(F_r) = \frac{1}{n} \sum_{k|n} a_k(F_r) \sum_{d|\frac{n}{k}} \mu\left(\frac{n}{kd}\right) d^{(r-1)k+1} \right|$$

Example (Mednykh). Let $G = \pi_1(M^2)$ be the fundamental group of a compact, connected surface. Then:

$$a_n(G) = n \sum_{q=1}^n \frac{(-1)^{q+1}}{q} \sum_{\substack{i_1 + \dots + i_q = n \\ i_1, \dots, i_q \ge 1}} \beta_{i_1} \cdots \beta_{i_q}$$

where $\beta_k = \sum_{\lambda \in \operatorname{Irreps}(S_k)} \left(\frac{k!}{\deg(\lambda)}\right)^{|\chi(M)|}$

Example (Newman). For $G = \text{PSL}(2, \mathbb{Z})$: $a_n(G) \sim \left(12\pi e^{\frac{1}{2}}\right)^{-\frac{1}{2}} \exp\left(\frac{n\log n}{6} - \frac{n}{6} + n^{1/2} + n^{1/3} + \frac{\log n}{2}\right)$ $a_{100}(G) = 159,299,552,010,504,751,878,902,805,384,624$

> **Example** (Lubotzky). For $G = PSL(3, \mathbb{Z})$: $n^{a \log n} \leq a_n(SL(3, \mathbb{Z})) \leq n^{b \log^2 n}.$

Example. Let \mathbb{Z}^r be the free abelian group of rank r. A finite-index subgroup $L < \mathbb{Z}^r$ is also known as a *lattice*.

 ${\bf Theorem} \ ({\rm Bushnell-Reiner}).$

$r \backslash n$	1	2	3	4	5	6	7
2	1	3	4	7	6	12	8
3	1	7	13	35	31	91	57
4	1	15	40	155	156	600	400
5	1	31	121	651	781	3,751	2,801
6	1	63	364	$2,\!667$	$3,\!906$	$22,\!932$	$19,\!608$
7	1	127	$1,\!093$	10,795	$19,\!531$	$138,\!811$	$137,\!257$
8	1	255	3,280	$43,\!435$	$97,\!656$	836,400	960,800
9	1	511	$9,\!841$	$174,\!251$	488,281	5,028,751	6,725,601

 $a_n(\mathbb{Z}^r) = \sum_{k|n} a_k(\mathbb{Z}^{r-1})(\frac{n}{k})^{r-1}, \quad a_n(\mathbb{Z}) = 1$

We get:

- $a_n(\mathbb{Z}^2) = \sigma(n)$, the sum of the divisors of n.
- $a_p(\mathbb{Z}^r) = \frac{p^r 1}{p 1}$, for prime p.
- $a_n(\mathbb{Z}^r) \le n^{r+1}$.

Proof (due to Lind). Every lattice in \mathbb{Z}^r has a unique representation as the row space of an $r \times r$ integral matrix in Hermite normal:

$$A = \begin{pmatrix} d_1 & b_{12} & b_{13} & \cdots & b_{1r} \\ 0 & d_2 & b_{23} & \cdots & b_{2r} \\ 0 & 0 & d_3 & \cdots & b_{3r} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_r \end{pmatrix},$$

where
$$d_i \ge 1$$
 for $1 \le i \le r$,
and $0 \le b_{ij} \le d_j - 1$ for $1 \le i < j$.

Let L be a lattice of index n. Then:

$$n = d_1 d_2 \cdots d_r.$$

Let $k = d_r$. Each of $b_{r1}, \ldots, b_{r,r-1}$ can assume the values $0, 1, \ldots, k-1$, giving k^{r-1} choices for the last column. There are $a_{n/k}(\mathbb{Z}^{r-1})$ choices for the rest of the matrix. Summing over all the divisors k of n gives the formula. \Box

Definition. The zeta function of a finitelygenerated group G is the Dirichlet series with coefficients $a_n(G)$:

$$\zeta_G(s) := \sum_{n=1}^{\infty} a_n(G) n^{-s}$$

In other words, $\zeta_G(s) = \sum_{H \leq G} [G:H]^{-s}$.

Example (Bushnell and Reiner).

$$\zeta_{\mathbb{Z}^r}(s) = \zeta(s)\zeta(s-1)\cdots\zeta(s-n+1),$$

where $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ is Riemann's zeta function. The formula follows from the above formula for $a_n(\mathbb{Z}^r)$, together with properties of Dirichlet series. It yields:

$$s_n(\mathbb{Z}^2) \sim \frac{\pi^2}{12} n^2$$

A far-reaching generalization to nilpotent groups was given by Grunewald, Segal, and Smith in 1988, sparking much research.

Example (Geoff Smith). Let G be the Heisenberg group

$$G = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}.$$

Then:

$$\zeta_G(s) = \frac{\zeta(s)\zeta(s-1)\zeta(2s-2)\zeta(2s-3)}{\zeta(3s-3)},$$

and

$$s_n(G) \sim \frac{\zeta(2)^2}{2\zeta(3)} n^2 \log n.$$

Theorem (GSS). Let G be a finitely-generated, nilpotent group. Then:

1. $a_n(G)$ grows polynomially, and so

$$\alpha(G) := \limsup \frac{\log s_n(G)}{\log n} < \infty$$

- 2. $\zeta_G(s)$ is convergent for $\operatorname{Re}(s) > \alpha(G)$.
- 3. Euler factorization:

$$\zeta_G(s) = \prod_{p \ prime} \zeta_{G,p}(s),$$

where
$$\zeta_{G,p}(s) = \sum_{k=1}^{\infty} a_{p^k}(G) p^{-ks}$$
.

- 4. $\zeta_{G,p}(s)$ is a rational function of p^{-s} , $\forall p$.
- Theorem (duSautoy & Grunewald).

1. $\alpha(G)$ is rational, and

$$s_n(G) \sim c \cdot n^{\alpha(G)} (\log n)^b.$$

for some $b \in \mathbb{Z}_{\geq 0}$, and $c \in \mathbb{R}$.

2. $\zeta_G(s)$ can be meromorphically continued to $\operatorname{Re}(s) > \alpha(G) - \delta$, for some $\delta > 0$.

Theorem (duSautoy, McDermott, Smith). Let G be a finite extension of a free abelian group of finite rank. Then $\zeta_G(s)$ can be extended to a meromorphic function on the whole complex plane.

Example. Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}_2$ be the infinite dihedral group. Then:

$$\zeta_G(s) = 2^{-s}\zeta(s) + \zeta(s-1).$$

Definition. Two groups G and H are called isospectral if $\zeta_G(s) = \zeta_H(s)$. **Example.** Let $G = \mathbb{Z}^2$, and $H = \pi_1(K^2) = \langle x, y | yxy^{-1} = x^{-1} \rangle$. Then G and H are isospectral, although they have non-isomorphic lattices of subgroups of finite index.

More generally, the oriented and unoriented surface groups of same genus are isospectral, by Mednykh's result.

Question. Do there exist isospectral groups G and H, with $G \not\cong H$ but $G^{ab} \cong H^{ab}$?

Proposition. Let G be a finitely-generated group, with $G^{ab} = \mathbb{Z}^r$. For each prime p,

$$a_p^{\triangleleft}(G) = \frac{p^r - 1}{p - 1},$$
$$c_p(G) = \frac{p^r + a_p(G) - 1}{p}.$$

Proof. Every index p, normal subgroup of Gis the kernel of an epimorphism $\lambda : G \to \mathbb{Z}_p$, and two epimorphisms λ and λ' have the same kernel if and only if $\lambda = q \cdot \lambda'$, for some $q \in \mathbb{Z}_p^*$. Thus, $a_p^{\triangleleft}(G) = |\mathbb{P}(\mathbb{Z}_p^r)|$, and the first formula follows. The second formula follows from the fact that $a_p = pc_p - (p-1)a_p^{\triangleleft}$.

Remark. For every finitely-generated group G, the following formula of Stanley holds:

$$a_n(G \times \mathbb{Z}) = \sum_{d|n} dc_n(G).$$

Hence, if $G^{ab} = \mathbb{Z}^r$, and p is prime, we have:

$$a_p(G \times \mathbb{Z}) = pc_p(G) + 1 = a_p(G) + p^r.$$

Theorem (Matei-S.). Let G be a finitelypresented group, with $G^{ab} = \mathbb{Z}^r$. Then:

$$a_2(G) = 2^r - 1,$$

$$a_3(G) = \sum_{\rho \in \operatorname{Hom}(G, \mathbb{Z}_3^*)} \frac{3^{d_{\mathbb{Z}_3}(\rho) + 1}}{2} - 3 \cdot 2^{r-1} + 1.$$

where $d_{\mathbb{Z}_3}(\rho) = \max\{d \mid \rho \in V_d(G, \mathbb{Z}_3)\}$ is the depth of ρ with respect to the stratification of the character torus $\operatorname{Hom}(G, \mathbb{Z}_3^*) \cong (\mathbb{Z}_3^*)^r$ by the characteristic varieties.

For example, $a_3(F_r) = 3(3^{r-1} - 1)2^{r-1} + 1$, which agrees with M. Hall's computation.

For orientable surface groups, we get

$$a_3(\pi_1(\Sigma_g)) = (3^{2g-1} - 3)(2^{2g-1} + 1) + 4,$$

which agrees with Mednykh's computation.

Let $G = \langle x_1, \ldots, x_\ell \mid s_1, \ldots, s_m \rangle$ be a f.p. group. Assume $H_1(G) \cong \mathbb{Z}^r$ (with basis t_1, \ldots, t_r).

Let \mathbb{K} be a field.

Character variety: $\operatorname{Hom}(G, \mathbb{K}^*) \cong (\mathbb{K}^*)^r$ (algebraic torus, with coordinate ring $\mathbb{K}[t_1^{\pm 1}, \ldots, t_r^{\pm 1}]$). Characteristic varieties of G (over \mathbb{K}):

 $V_d(G,\mathbb{K}) = \{\mathbf{t} \in \operatorname{Hom}(G,\mathbb{K}^*) \mid \dim_{\mathbb{K}} H^1(G,\mathbb{K}_{\mathbf{t}}) \ge d\}$

where $\mathbb{K}_{\mathbf{t}}$ is the *G*-module \mathbb{K} with action given by representation $\mathbf{t} : G \to \mathbb{K}^*$.

For d < n, we have:

 $V_d(G, \mathbb{K}) = \{ \mathbf{t} \in (\mathbb{K}^*)^r \mid \operatorname{rank}_{\mathbb{K}} A_G(\mathbf{t}) < \ell - d \}$ where $A_G = \left(\frac{\partial s_i}{\partial x_j} \right)^{\mathrm{ab}}$ is the Alexander matrix of G (of size $\ell \times m$).

The varieties $V_d = V_d(G, \mathbb{K})$ form a descending tower, $(\mathbb{K}^*)^r = V_0 \supseteq V_1 \supseteq \cdots \supseteq V_{r-1} \supseteq V_r$, which depends only on the isomorphism type of G, up to a monomial change of basis in $(\mathbb{K}^*)^r$.