

The subject was initiated by Marshall Hall (Counting subgroups of finite index in free groups, 1949).
Definition. If G is a finitely-generated group, and n is a positive integer, let:

$$
a_{n}(G)=\text { number of index } n \text { subgroups of } G
$$

Write also: $s_{n}(G)=a_{1}(G)+\cdots+a_{n}(G)$.
Other numbers that come up:

- $a_{n}^{\triangleleft}(G)=$ number of index n normal subgroups of G;
- $c_{n}(G)=$ number of conjugacy classes of index n subgroups of G;
- $h_{n}(G)=\left|\operatorname{Hom}\left(G, S_{n}\right)\right|=$ number of representations of G to the symmetric group;
- $t_{n}(G)=$ number of transitive representations of G to S_{n}.

If $H \leq G$ and $[G: H]=n$, we may identify
$G / H \cong[n]=\{1, \ldots, n\}$, with $H \leftrightarrow 1$. There are $(n-1)$! ways to do this identification.
G acts transitively on [n], with $\operatorname{Stab}(1)=H$.
Conversely, a transitive rep. $\rho: G \rightarrow S_{n}$ defines an index n subgroup $H=\operatorname{Stab}_{\rho}(1)$. Thus:

$$
a_{n}(G)=\frac{t_{n}(G)}{(n-1)!}
$$

We also have:

$$
h_{n}(G)=\sum_{k=1}^{n}\binom{n-1}{k-1} t_{k}(G) h_{n-k}(G)
$$

since the orbit of 1 can have size k (with
$1 \leq k \leq n)$, and there are

- $\binom{n-1}{k-1}$ ways to choose the orbit of 1
- $t_{k}(G)$ ways to act on this orbit
- $h_{n-k}(G)$ ways to act on its complement

The two previous formulas yield:
$a_{n}(G)=\frac{1}{(n-1)!} h_{n}(G)-\sum_{k=1}^{n-1} \frac{1}{(n-k)!} h_{n-l}(G) a_{k}(G)$
Example (Hall). Let F_{r} be the free group of rank r. Clearly, $h_{n}\left(F_{r}\right)=(n!)^{r}$. Thus:

$$
a_{n}\left(F_{r}\right)=n(n!)^{r-1}-\sum_{k=1}^{n-1}((n-k)!)^{r-1} a_{k}\left(F_{r}\right)
$$

$r \backslash n$	1	2	3	4	5
2	1	3	13	71	461
3	1	7	97	2,143	68,641
4	1	15	625	54,335	$8,563,601$
5	1	31	3,841	$1,321,471$	$1,035,045,121$
6	1	63	23,233	$31,817,471$	$124,374,986,561$
7	1	127	139,777	$764,217,343$	$14,928,949,808,641$

Asymptotically (Newman),

$$
a_{n}\left(F_{r}\right) \sim n \cdot(n!)^{r-1}
$$

That's because the number of non-transitive reps $F_{r} \rightarrow S_{n}$ is bounded by
$P=\sum_{k=1}^{n-1}\binom{n-1}{k-1} h_{k}\left(F_{r}\right) h_{n-k}\left(F_{r}\right)=\sum_{k=1}^{n-1}\binom{n-1}{k-1}(k!)^{r}((n-k)!)^{r}$
Clearly, $\lim _{n \rightarrow \infty} \frac{P}{(n!)^{r}}=0$, and so

$$
a_{n}=\frac{t_{n}}{(n-1)!} \sim \frac{h_{n}}{(n-1)!}=n(n!)^{r-1} .
$$

We also have (Liskovec):

$$
c_{n}\left(F_{r}\right)=\frac{1}{n} \sum_{k \mid n} a_{k}\left(F_{r}\right) \sum_{d \left\lvert\, \frac{n}{k}\right.} \mu\left(\frac{n}{k d}\right) d^{(r-1) k+1}
$$

Example (Mednykh). Let $G=\pi_{1}\left(M^{2}\right)$ be the fundamental group of a compact, connected surface. Then:

$$
a_{n}(G)=n \sum_{q=1}^{n} \frac{(-1)^{q+1}}{q} \sum_{\substack{i_{1}+\cdots+i_{q}=n \\ i_{1}, \ldots, i_{q} \geq 1}} \beta_{i_{1}} \cdots \beta_{i_{q}}
$$

where $\beta_{k}=\sum_{\lambda \in \operatorname{Irreps}\left(S_{k}\right)}\left(\frac{k!}{\operatorname{deg}(\lambda)}\right)^{|\chi(M)|}$

Example (Newman). For $G=\operatorname{PSL}(2, \mathbb{Z})$:

$$
a_{n}(G) \sim\left(12 \pi e^{\frac{1}{2}}\right)^{-\frac{1}{2}} \exp \left(\frac{n \log n}{6}-\frac{n}{6}+n^{1 / 2}+n^{1 / 3}+\frac{\log n}{2}\right)
$$

$$
a_{100}(G)=159,299,552,010,504,751,878,902,805,384,624
$$

Example (Lubotzky). For $G=\operatorname{PSL}(3, \mathbb{Z})$:

$$
n^{a \log n} \leq a_{n}(\mathrm{SL}(3, \mathbb{Z})) \leq n^{b \log ^{2} n}
$$

Example. Let \mathbb{Z}^{r} be the free abelian group of rank r. A finite-index subgroup $L<\mathbb{Z}^{r}$ is also known as a lattice.
Theorem (Bushnell-Reiner).

$$
a_{n}\left(\mathbb{Z}^{r}\right)=\sum_{k \mid n} a_{k}\left(\mathbb{Z}^{r-1}\right)\left(\frac{n}{k}\right)^{r-1}, \quad a_{n}(\mathbb{Z})=1
$$

$r \backslash n$	1	2	3	4	5	6	7
2	1	3	4	7	6	12	8
3	1	7	13	35	31	91	57
4	1	15	40	155	156	600	400
5	1	31	121	651	781	3,751	2,801
6	1	63	364	2,667	3,906	22,932	19,608
7	1	127	1,093	10,795	19,531	138,811	137,257
8	1	255	3,280	43,435	97,656	836,400	960,800
9	1	511	9,841	174,251	488,281	$5,028,751$	$6,725,601$

We get:

- $a_{n}\left(\mathbb{Z}^{2}\right)=\sigma(n)$, the sum of the divisors of n.
- $a_{p}\left(\mathbb{Z}^{r}\right)=\frac{p^{r}-1}{p-1}$, for prime p.
- $a_{n}\left(\mathbb{Z}^{r}\right) \leq n^{r+1}$.

Proof (due to Lind). Every lattice in \mathbb{Z}^{r} has a unique representation as the row space of an $r \times r$ integral matrix in Hermite normal:

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
d_{1} & b_{12} & b_{13} & \cdots & b_{1 r} \\
0 & d_{2} & b_{23} & \cdots & b_{2 r} \\
0 & 0 & d_{3} & \cdots & b_{3 r} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & d_{r}
\end{array}\right) \\
& \\
& \text { where } d_{i} \geq 1 \text { for } 1 \leq i \leq r, \\
& \text { and } 0 \leq b_{i j} \leq d_{j}-1 \text { for } 1 \leq i<j .
\end{aligned}
$$

Let L be a lattice of index n. Then:

$$
n=d_{1} d_{2} \cdots d_{r}
$$

Let $k=d_{r}$. Each of $b_{r 1}, \ldots, b_{r, r-1}$ can assume the values $0,1, \ldots, k-1$, giving k^{r-1} choices for the last column. There are $a_{n / k}\left(\mathbb{Z}^{r-1}\right)$ choices for the rest of the matrix. Summing over all the divisors k of n gives the formula.

Definition. The zeta function of a finitelygenerated group G is the Dirichlet series with coefficients $a_{n}(G)$:

$$
\zeta_{G}(s):=\sum_{n=1}^{\infty} a_{n}(G) n^{-s}
$$

In other words, $\zeta_{G}(s)=\sum_{H \leq G}[G: H]^{-s}$.
Example (Bushnell and Reiner).

$$
\zeta_{\mathbb{Z}^{r}}(s)=\zeta(s) \zeta(s-1) \cdots \zeta(s-n+1)
$$

where $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ is Riemann's zeta function. The formula follows from the above formula for $a_{n}\left(\mathbb{Z}^{r}\right)$, together with properties of Dirichlet series. It yields:

$$
s_{n}\left(\mathbb{Z}^{2}\right) \sim \frac{\pi^{2}}{12} n^{2}
$$

A far-reaching generalization to nilpotent groups was given by Grunewald, Segal, and Smith in 1988, sparking much research.

Example (Geoff Smith). Let G be the Heisen-
berg group

$$
G=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}
$$

Then:

$$
\zeta_{G}(s)=\frac{\zeta(s) \zeta(s-1) \zeta(2 s-2) \zeta(2 s-3)}{\zeta(3 s-3)}
$$

and

$$
s_{n}(G) \sim \frac{\zeta(2)^{2}}{2 \zeta(3)} n^{2} \log n
$$

Theorem (GSS). Let G be a finitely-generated, nilpotent group. Then:

1. $a_{n}(G)$ grows polynomially, and so

$$
\alpha(G):=\lim \sup \frac{\log s_{n}(G)}{\log n}<\infty
$$

2. $\zeta_{G}(s)$ is convergent for $\operatorname{Re}(s)>\alpha(G)$.
3. Euler factorization:

$$
\zeta_{G}(s)=\prod_{p \text { prime }} \zeta_{G, p}(s)
$$

where $\zeta_{G, p}(s)=\sum_{k=1}^{\infty} a_{p^{k}}(G) p^{-k s}$.
4. $\zeta_{G, p}(s)$ is a rational function of $p^{-s}, \forall p$.

Theorem (duSautoy \& Grunewald).

1. $\alpha(G)$ is rational, and

$$
s_{n}(G) \sim c \cdot n^{\alpha(G)}(\log n)^{b}
$$

for some $b \in \mathbb{Z}_{\geq 0}$, and $c \in \mathbb{R}$.
2. $\zeta_{G}(s)$ can be meromorphically continued to $\operatorname{Re}(s)>\alpha(G)-\delta$, for some $\delta>0$.

Theorem (duSautoy, McDermott, Smith). Let G be a finite extension of a free abelian group of finite rank. Then $\zeta_{G}(s)$ can be extended to a meromorphic function on the whole complex plane.
Example. Let $D_{\infty}=\mathbb{Z} \rtimes \mathbb{Z}_{2}$ be the infinite dihedral group. Then:

$$
\zeta_{G}(s)=2^{-s} \zeta(s)+\zeta(s-1)
$$

Definition. Two groups G and H are called isospectral if $\zeta_{G}(s)=\zeta_{H}(s)$.
Example. Let $G=\mathbb{Z}^{2}$, and $H=\pi_{1}\left(K^{2}\right)=$ $\left\langle x, y \mid y x y^{-1}=x^{-1}\right\rangle$. Then G and H are isospectral, although they have non-isomorphic lattices of subgroups of finite index.
More generally, the oriented and unoriented surface groups of same genus are isospectral, by Mednykh's result.
Question. Do there exist isospectral groups G and H, with $G \not \approx H$ but $G^{\mathrm{ab}} \cong H^{\mathrm{ab}}$?

Proposition. Let G be a finitely-generated group, with $G^{\mathrm{ab}}=\mathbb{Z}^{r}$. For each prime p,

$$
\begin{aligned}
& a_{p}^{\triangleleft}(G)=\frac{p^{r}-1}{p-1} \\
& c_{p}(G)=\frac{p^{r}+a_{p}(G)-1}{p} .
\end{aligned}
$$

Proof. Every index p, normal subgroup of G is the kernel of an epimorphism $\lambda: G \rightarrow \mathbb{Z}_{p}$, and two epimorphisms λ and λ^{\prime} have the same kernel if and only if $\lambda=q \cdot \lambda^{\prime}$, for some $q \in \mathbb{Z}_{p}^{*}$. Thus, $a_{p}^{\triangleleft}(G)=\left|\mathbb{P}\left(\mathbb{Z}_{p}^{r}\right)\right|$, and the first formula follows. The second formula follows from the fact that $a_{p}=p c_{p}-(p-1) a_{p}^{\triangleleft}$.

Remark. For every finitely-generated group G, the following formula of Stanley holds:

$$
a_{n}(G \times \mathbb{Z})=\sum_{d \mid n} d c_{n}(G)
$$

Hence, if $G^{\mathrm{ab}}=\mathbb{Z}^{r}$, and p is prime, we have:

$$
a_{p}(G \times \mathbb{Z})=p c_{p}(G)+1=a_{p}(G)+p^{r}
$$

Theorem (Matei-S.). Let G be a finitelypresented group, with $G^{\mathrm{ab}}=\mathbb{Z}^{r}$. Then:

$$
\begin{aligned}
& a_{2}(G)=2^{r}-1 \\
& a_{3}(G)=\sum_{\rho \in \operatorname{Hom}\left(G, \mathbb{Z}_{3}^{*}\right)} \frac{3^{d_{\mathbb{Z}_{3}}(\rho)+1}}{2}-3 \cdot 2^{r-1}+1
\end{aligned}
$$

where $d_{\mathbb{Z}_{3}}(\rho)=\max \left\{d \mid \rho \in V_{d}\left(G, \mathbb{Z}_{3}\right)\right\}$ is the depth of ρ with respect to the stratification of the character torus $\operatorname{Hom}\left(G, \mathbb{Z}_{3}^{*}\right) \cong\left(\mathbb{Z}_{3}^{*}\right)^{r}$ by the characteristic varieties.

For example, $a_{3}\left(F_{r}\right)=3\left(3^{r-1}-1\right) 2^{r-1}+1$, which agrees with M. Hall's computation.

For orientable surface groups, we get

$$
a_{3}\left(\pi_{1}\left(\Sigma_{g}\right)\right)=\left(3^{2 g-1}-3\right)\left(2^{2 g-1}+1\right)+4
$$

which agrees with Mednykh's computation.

Let $G=\left\langle x_{1}, \ldots, x_{\ell} \mid s_{1}, \ldots, s_{m}\right\rangle$ be a f.p. group.
Assume $H_{1}(G) \cong \mathbb{Z}^{r}$ (with basis $\left.t_{1}, \ldots, t_{r}\right)$.
Let \mathbb{K} be a field.
Character variety: $\operatorname{Hom}\left(G, \mathbb{K}^{*}\right) \cong\left(\mathbb{K}^{*}\right)^{r}$
(algebraic torus, with coordinate ring $\mathbb{K}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$).
Characteristic varieties of G (over \mathbb{K}):
$V_{d}(G, \mathbb{K})=\left\{\mathbf{t} \in \operatorname{Hom}\left(G, \mathbb{K}^{*}\right) \mid \operatorname{dim}_{\mathbb{K}} H^{1}\left(G, \mathbb{K}_{\mathbf{t}}\right) \geq d\right\}$
where $\mathbb{K}_{\mathbf{t}}$ is the G-module \mathbb{K} with action given by representation $\mathbf{t}: G \rightarrow \mathbb{K}^{*}$.

For $d<n$, we have:
$V_{d}(G, \mathbb{K})=\left\{\mathbf{t} \in\left(\mathbb{K}^{*}\right)^{r} \mid \operatorname{rank}_{\mathbb{K}} A_{G}(\mathbf{t})<\ell-d\right\}$
where $A_{G}=\left(\frac{\partial s_{i}}{\partial x_{j}}\right)^{\text {ab }}$ is the Alexander matrix of G (of size $\ell \times m$).
The varieties $V_{d}=V_{d}(G, \mathbb{K})$ form a descending tower, $\left(\mathbb{K}^{*}\right)^{r}=V_{0} \supseteq V_{1} \supseteq \cdots \supseteq V_{r-1} \supseteq V_{r}$, which depends only on the isomorphism type of G, up to a monomial change of basis in $\left(\mathbb{K}^{*}\right)^{r}$.

