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The subject was initiated by Marshall Hall
(Counting subgroups of finite index in free
groups, 1949).

Definition. If G is a finitely-generated group,
and n is a positive integer, let:

a,(G) = number of index n subgroups of G.

Write also: s,(G) = a1(G) + - - - 4+ an(G).
Other numbers that come up:

e a7 (G)=number of index n normal subgroups

of G;

e ¢,(G) = number of conjugacy classes of

index n subgroups of G;

e h,(G)=|Hom(G,S,)| = number of repre-

sentations of G to the symmetric group;

e t,(G) = number of transitive representa-
tions of G to S,,.



If H < G and |G : H] = n, we may identify
G/H = [n] ={1,...,n}, with H < 1. There
are (n — 1)! ways to do this identification.

G acts transitively on [n], with Stab(1) = H.
Conversely, a transitive rep. p : G — §,, defines

an index n subgroup H = Stab,(1). Thus:

since the orbit of 1 can have size k (with
1 <k <mn), and there are

o (Z“j) ways to choose the orbit of 1
e t1(G) ways to act on this orbit

e h, (G) ways to act on its complement



The two previous formulas yield:

1 — 1
an(G) = m hn(G)—; m hin—1(G) ax(G)

Example (Hall). Let F;. be the free group of
rank r. Clearly, h,(F;.) = (n!)". Thus:

n—1
an(Fy) =n(n) " = ((n— k)" ar(F,)
r\n || 1| 2 3 ) 41 5

2 1 3 13 71 461
3 1 7 97 2,143 68,641
4 1] 15 625 54,335 8,563,601
5 || 1] 31 | 3,841 1,321,471 1,035,045,121
6 || 1| 63 | 23,233 | 31,817,471 124,374,986,561
7 1| 127 | 139,777 | 764,217,343 | 14,928,949,808,641

Asymptotically (Newman),

an(F.) ~n-(n)" L.




That’s because the number of non-transitive
reps F,. — S, is bounded by

P = g (=) e (Fy Y- (Fy) = g (oZ1) ()" ((n—=K))"

P
Clearly, lim —— = 0, and so
tn hn .
Ay = ~ = n(n!) 1

We also have (Liskovec):

cn(Fr) =2 ap(F) ) p () dr D!

k|n d| &




Example (Mednykh). Let G = 71 (M?) be the
fundamental group of a compact, connected

surface. Then:

" (ay?
an(G)=n) Yo BB,
q:1 q 7,1—}——|—7,q:n
i1yeyig>1
LX)
h = :
e se= 3 (Gaw)
AEIrreps(Sk)

Example (Newman). For G = PSL(2,7Z):

1
5) eXp(nl%gn o % —|-TL1/2—|—’TL1/3—|— logn)

an(G) ~ (127re%)

a100(G) = 159,299,552,010,504,751,878,902,805,384,624

Example (Lubotzky). For G = PSL(3,Z):

nalogn < CLn(SL(S,Z)) < nbloan.



Example. Let Z" be the free abelian group of

rank r. A finite-index subgroup L < Z" is also

known as a lattice.

Theorem (Bushnell-Reiner).

T\ __ r—1\/n\r—1 —
an(Z") = 3 ap(Z" ) ()", an(Z) =1
k|n
r\n 1 2 3 4 5 6 7
2 |1 4 7 6 12 8
3 |1 13 35 31 91 57
4 || 1] 15 | 40 155 156 600 400
5 || 1] 31 | 121 651 781 3,751 2,801
6 || 1] 63 | 364 | 2,667 | 3,906 22,932 19,608
7 || 1] 127 | 1,003 | 10,795 | 19,531 | 138,811 | 137,257
8 || 1| 255 | 3,280 | 43,435 | 97,656 | 836,400 | 960,800
9 || 1| 511 | 9,841 | 174,251 | 488,281 | 5,028,751 | 6,725,601
We get
¢ a,(Z*) = o(n), the sum of the divisors of n.
ry _ p —1 :
® a,(Z") = t—, for prime p.
¢ a,(Z") <n"tl,




Proof (due to Lind). Every lattice in Z" has a
unique representation as the row space of an
r X r integral matrix in Hermite normal:

(dv bz bz - biy)
0 do Doz -+ Dbop
A = 0 0 d3 b3r :

where d; > 1for 1 <i<r,

andogbijgdj—1f0r1§i<j.

Let L be a lattice of index n. Then:

n — d1d2°°'dr.
Let k = d,. Each of b,1,...,b,,_1 can assume
the values 0,1, ...,k — 1, giving k"' choices for

the last column. There are a,/,(Z" ") choices
for the rest of the matrix. Summing over all the
divisors k of n gives the formula. []



Definition. The zeta function of a finitely-
generated group G is the Dirichlet series with

coefficients a, (G):

Ca(s) := Z an(G)n~?

n=1

In other words, (a(s) = ) y<qlG: H|*.

Example (Bushnell and Reiner).
Czr(s) = C(s)¢(s =1)---((s =n +1),

where ((s) = Y7, n~® is Riemann’s zeta
function. The formula follows from the above
formula for a,,(Z"), together with properties of
Dirichlet series. It yields:

Sp(Z%) ~ T 2

A far-reaching generalization to nilpotent groups
was given by Grunewald, Segal, and Smith in
1988, sparking much research.



Example (Geoff Smith). Let G be the Heisen-
berg group

(1 a b ‘
G=<|0 1 ¢||abceZy.
\0 0 1 )
Then:
Cals) = ¢(s)¢(s — 12(Cg(fi;)2)C(28 — 3)7
and
50 (G) ~ gg; n?logn.
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Theorem (GSS). Let G be a finitely-generated,
nilpotent group. Then:

1. an(G) grows polynomially, and so

log s, (G
a(G) := limsup Oglc;sg?(z ) < 00

2. (a(s) is convergent for Re(s) > a(G).

3. Fuler factorization:

a(s)= 1] Cenls).

p prime
where (Gp(8) = > ry apr(G)p~Fs.
4. Cap(s) is a rational function of p=7, Vp.
Theorem (duSautoy & Grunewald).

1. (@) is rational, and
sn(G) ~ ¢-n¥% (logn)®.
for some b € Z>¢p, and c € R.

2. Ca(s) can be meromorphically continued to

Re(s) > a(G) — 9, for some § > 0.

11



Theorem (duSautoy, McDermott, Smith). Let
G be a finite extenston of a free abelian group
of finite rank. Then (g(s) can be extended to
a meromorphic function on the whole complex
plane.

Example. Let D = Z X Z9 be the infinite
dihedral group. Then:

Ca(s) =27°C(s) + (s — 1).

Definition. Two groups GG and H are called
isospectral if (q(s) = Cu(s).

Example. Let G = Z2, and H = 7(K?) =
(x,y | yry~! = 271). Then G and H are
isospectral, although they have non-isomorphic
lattices of subgroups of finite index.

More generally, the oriented and unoriented
surface groups of same genus are isospectral, by
Mednykh'’s result.

Question. Do there exist isospectral groups
G and H, with G 2 H but G*P = Hab?
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Proposition. Let G be a finitely-generated
group, with G*® = 7Z". For each prime p,

ay(G) = B,
"+a,(G)—1
cp(G) = * = p( =

Proof. Every index p, normal subgroup of G
is the kernel of an epimorphism A : G — Z,,
and two epimorphisms A and A\ have the same
kernel if and only if A = ¢ - X', for some ¢ € Z.
Thus, a5(G) = |P(Z})], and the first formula
follows. The second formula follows from the
fact that a, = pc, — (p — 1)as,. O

Remark. For every finitely-generated group G,
the following formula of Stanley holds:

an(G X Z) = % den, (G).

Hence, if G?® = Z", and p is prime, we have:

ap(G X Z) = pcp(G) +1 = a,(G) +p".
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Theorem (Matei-S.). Let G be a finitely-
presented group, with G®® = Z". Then:

G/Q(G) = 2" — 1,

as(G) = )

pEHom(G,Z%)

dzs (p)+1
7 3.9 141,

where dz,(p) = max{d | p € Vq(G,Z3)} is the
depth of p with respect to the stratification of
the character torus Hom(G,Z3) = (Z5)" by the

characteristic varieties.

For example, a3(F,) = 3(3"~1 —1)2"1 + 1,
which agrees with M. Hall’s computation.

For orientable surface groups, we get
az(m1(Zg)) = (3971 = 3)(2%971 +-1) + 4,

which agrees with Mednykh’s computation.
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Let G = (x1,...,x¢ | S1,...,8m) be af.p. group.
Assume H,(G) 2 Z" (with basis t1,...,t,.).

Let K be a field.
Character variety: Hom(G,K*) = (K*)"
(algebraic torus, with coordinate ring K[t£*, ..., t).

Characteristic varieties of G (over K):

Va(G,K) = {t € Hom(G,K*) | dimg H'(G,Ky) > d}
where K¢ is the G-module K with action
given by representation t : G — K”.

For d < n, we have:
Va(G,K) ={t € (K*)" | rankg Ag(t) < ¢ —d}

where Ag = (%)ab is the Alexander
J

matrix of G (of size £ x m).
The varieties Vg = V4(G,K) form a descending
tower, (K*)" =V, 2 V4 D --- D V,._1 DV,
which depends only on the isomorphism type of
G, up to a monomial change of basis in (K*)".
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