Which 3-manifold groups are Kähler groups?

arXiv:0709.4350

Alex Suciu

Northeastern University

Joint with **Alex Dimca** Université de Nice

Special Session Arrangements and Related Topics AMS 2008 Spring Southeastern Meeting Baton Rouge, Louisiana March 29, 2008

Realizing finitely presented groups

• Every finitely presented group G can be realized as

 $G = \pi_1(M),$

for some smooth, compact, connected, orientable manifold M^n of dimension $n \ge 4$.

- The manifold M^n (*n* even) can be chosen to be symplectic (Gompf 1995).
- The manifold M^n (*n* even, $n \ge 6$) can be chosen to be complex (Taubes 1992).

If M is a compact Kähler manifold, $G = \pi_1(M)$ is called a **Kähler group** (or, **projective group**, if Mis actually a smooth projective variety). This puts strong restrictions on G, e.g.:

- $b_1(G)$ is even (Hodge theory).
- G is 1-*formal*, i.e., its Malcev Lie algebra is quadratic (Deligne–Griffiths–Morgan–Sullivan 1975).
- G cannot split non-trivially as a free product (Gromov 1989).

Example. Every finite group is a projective group (Serre 1958).

Remark. If G is a Kähler group, and H < G is a finite-index subgroup, then H is also a Kähler group.

Requiring M to be a (compact, connected, orientable) 3-manifold also puts severe restrictions on $G = \pi_1(M)$. For example, if G is abelian, then G is either $\mathbb{Z}/n\mathbb{Z}$, or \mathbb{Z} , or \mathbb{Z}^3 .

Question (Donaldson–Goldman 1989, Reznikov 1993). What are the 3-manifold groups which are Kähler groups?

Partial answer:

Theorem (Reznikov 2002). Let M be an irreducible, atoroidal 3-manifold. Suppose there is a homomorphism $\rho: \pi_1(M) \to SL(2, \mathbb{C})$ with Zariski dense image. Then $G = \pi_1(M)$ is not a Kähler group. We answer the question for all 3-manifold groups:

Theorem. Let G be a 3-manifold group. If G is a Kähler group, then G is finite.

By the Thurston Geometrization Conjecture (Perelman 2003), a closed, orientable 3-manifold M has finite fundamental group iff it admits a metric of constant positive curvature. Thus, $M = S^3/G$, where G is a finite subgroup of SO(4), acting freely on S^3 . By (Milnor 1957), the list of such finite groups is:

1,
$$D_{4n}^*$$
, O^* , I^* , $D_{2^k(2n+1)}$, $P'_{8\cdot 3^k}$,

and products of one of these with a cyclic group of relatively prime order.

Remark. The Theorem holds for fundamental groups of non-orientable (closed) 3-manifolds, as well: use the orientation double cover, and previous Remark.

Characteristic varieties

Let X be a connected, finite-type CW-complex, $G = \pi_1(X)$, and $\operatorname{Hom}(G, \mathbb{C}^*)$ the character torus $(\cong (\mathbb{C}^*)^n, n = b_1(G)).$

Every $\rho \in \text{Hom}(G, \mathbb{C}^*)$ determines a rank 1 local system, \mathbb{C}_{ρ} , on X. The *characteristic varieties* of X are the jumping loci for cohomology with coefficients in such local systems:

$$V_d^i(X) = \{ \rho \in \operatorname{Hom}(G, \mathbb{C}^*) \mid \dim H^i(X, \mathbb{C}_\rho) \ge d \}.$$

Note. $V_d(X) = V_d^1(X)$ depends only on $G = \pi_1(X)$, so we may write it as $V_d(G)$.

Theorem (Beauville, Green–Lazarsfeld, Simpson, Campana). If $G = \pi_1(M)$ is a Kähler group, then $V_d(G)$ is a union of (possibly translated) subtori:

$$V_d(G) = \bigcup_{\alpha} \rho_{\alpha} \cdot f_{\alpha}^* \operatorname{Hom}(\pi_1(C_{\alpha}), \mathbb{C}^*),$$

where each $f_{\alpha}: M \to C_{\alpha}$ is a surjective, holomorphic map to a compact, complex curve of positive genus.

Resonance varieties

Consider now the cohomology algebra $H^*(X, \mathbb{C})$. Left-multiplication by $x \in H = H^1(X, \mathbb{C})$ yields a cochain complex $(H^*(X, \mathbb{C}), x)$:

$$H^0(X,\mathbb{C}) \xrightarrow{x \cdot} H^1(X,\mathbb{C}) \xrightarrow{x \cdot} H^2(X,\mathbb{C}) \longrightarrow \cdots$$

The *resonance varieties* of X are the jumping loci for the homology of this complex:

$$R_d^i(X) = \{ x \in H \mid \dim H^i(H^*(X, \mathbb{C}), x) \ge d \}.$$

Note. $x \in H$ belongs to $R^1_d(X) \iff \exists$ subspace $W \subset H$ of dim d + 1 such that $x \cup y = 0, \forall y \in W$.

Note. $R_d(X) = R_d^1(X)$ depends only on $G = \pi_1(X)$, so write it as $R_d(G)$. Set $n = b_1(X)$, $m = b_2(X)$. Fix bases $\{e_1, \ldots, e_n\}$ for $H = H^1(X, \mathbb{C})$ and $\{f_1, \ldots, f_m\}$ for $H^2(X, \mathbb{C})$, and write

$$e_i \cup e_j = \sum_{k=1}^m \mu_{i,j,k} f_k.$$

Define an $m \times n$ matrix Δ of linear forms in variables x_1, \ldots, x_n , with entries

$$\Delta_{k,j} = \sum_{i=1}^{n} \mu_{i,j,k} x_i.$$

Then:

$$R^1_d(X) = V(E_d(\Delta)),$$

where

$$E_d$$
 = ideal of $(n-d) \times (n-d)$ minors

Note. $x \cup x = 0$ ($\forall x \in H$) implies $\Delta \cdot \vec{x} = 0$, where \vec{x} is the column vector (x_1, \ldots, x_n) .

Remark. When G is a commutator-relators group, $\Delta = A^{\text{lin}}$, the *linearized Alexander matrix*, from Cohen-S. [1999, 2006], Matei-S. [2000].

The tangent cone theorem

Let $H^1(X, \mathbb{C}) = \text{Hom}(G, \mathbb{C})$ be the Lie algebra of the character group $\text{Hom}(G, \mathbb{C}^*)$, and consider the exponential map,

$$\operatorname{Hom}(G, \mathbb{C}) \xrightarrow{\exp} \operatorname{Hom}(G, \mathbb{C}^*)$$

$$\bigwedge_{R^i_d(X)} \qquad \qquad \bigwedge_{V^i_d(X)}$$

The tangent cone to $V_d^i(X)$ at 1 is contained in $R_d^i(X)$ (Libgober 2002).

In general, the inclusion is strict (Matei–S. 2002).

Theorem (Dimca–Papadima–S. 2005). Let G be a 1-formal group (e.g., a Kähler group). Then, $\forall d \geq 1$,

$$\exp\colon (R_d(G), 0) \xrightarrow{\simeq} (V_d(G), 1)$$

is an iso of complex analytic germs. Consequently,

$$TC_1(V_d(G)) = R_d(G).$$

Resonance varieties of Kähler groups

The description of the irreducible components of $V_1(M)$ in terms of pullbacks of tori $H^1(C, \mathbb{C}^*)$ along holomorphic maps $f: M \to C$, together with the Tangent Cone Theorem yield:

Theorem (Dimca–Papadima–S. 2005). Let G be a Kähler group. Then every positive-dimensional component of $R_1(G)$ is an 1-isotropic linear subspace of $H^1(G, \mathbb{C})$, of dimension at least 4.

Here, a subspace $W \subseteq H^1(G, \mathbb{C})$ is 1-isotropic with respect to the cup-product map

 $\cup_G \colon H^1(G,\mathbb{C}) \wedge H^1(G,\mathbb{C}) \to H^2(G,\mathbb{C})$

if the restriction of \cup_G to $W \wedge W$ has rank 1.

Corollary. Let G be a Kähler group. Suppose $R_1(G) = H^1(G, \mathbb{C})$, and $H^1(G, \mathbb{C})$ is not 1-isotropic. Then $b_1(G) = 0$.

Resonance varieties of 3-manifold groups

Let M be a compact, connected, orientable 3-manifold. Fix an orientation $[M] \in H^3(M, \mathbb{Z}) \cong \mathbb{Z}$.

With this choice, the cup product on M determines an alternating 3-form μ_M on $H^1(M, \mathbb{Z})$:

$$\mu_M(x, y, z) = \langle x \cup y \cup z, [M] \rangle,$$

where \langle , \rangle is the Kronecker pairing.

In turn, $\bigcup_M : H^1(M, \mathbb{Z}) \wedge H^1(M, \mathbb{Z}) \to H^2(M, \mathbb{Z})$ is determined by μ_M , via $\langle x \cup y, \gamma \rangle = \mu_M(x, y, z)$, where $z = PD(\gamma)$ is the Poincaré dual of $\gamma \in H_2(M, \mathbb{Z})$.

Now fix a basis $\{e_1, \ldots, e_n\}$ for $H^1(M, \mathbb{C})$, and choose as basis for $H^2(X, \mathbb{C})$ the set $\{e_1^{\vee}, \ldots, e_n^{\vee}\}$, where e_i^{\vee} is the Kronecker dual of the Poincaré dual of e_i . Then

$$\mu(e_i, e_j, e_k) = \langle \sum_{1 \le m \le n} \mu_{i,j,m} e_m^{\vee}, \operatorname{PD}(e_k) \rangle = \mu_{i,j,k}.$$

Recall the $n \times n$ matrix Δ , with $\Delta_{k,j} = \sum_{i=1}^{n} \mu_{i,j,k} x_i$. Since μ is an alternating form, Δ is skew-symmetric. **Proposition.** Let M be a closed, orientable 3manifold. Then:

- 1. $H^1(M, \mathbb{C})$ is not 1-isotropic.
- 2. If $b_1(M)$ is even, then $R_1(M) = H^1(M, \mathbb{C})$.

Proof. To prove (1), suppose dim $\operatorname{im}(\bigcup_M) = 1$. This means there is a hyperplane $E \subset H := H^1(M, \mathbb{C})$ such that $x \cup y \cup z = 0$, for all $x, y \in H$ and $z \in E$. Hence, the skew 3-form $\mu \colon \bigwedge^3 H \to \mathbb{C}$ factors through a skew 3-form $\bar{\mu} \colon \bigwedge^3(H/E) \to \mathbb{C}$. But dim H/E = 1 forces $\bar{\mu} = 0$, and so $\mu = 0$, a contradiction.

To prove (2), recall $R_1(M) = V(E_1(\Delta))$. Since Δ is a skew-symmetric matrix of even size, it follows from (Buchsbaum-Eisenbud 1977) that

$$V(E_1(\Delta)) = V(E_0(\Delta)).$$

But $\Delta \vec{x} = 0 \Rightarrow \det \Delta = 0$; hence, $V(E_0(\Delta)) = H$.

Kazhdan's property T

Definition. A discrete group G satisfies *Kazhdan's* property T if

$$H^1(G, \mathbb{C}^k_\rho) = 0,$$

for all representations $\rho \colon G \to \mathrm{U}(k)$.

In particular, $b_1(G) \neq 0 \implies G$ not Kazhdan.

Theorem (Reznikov 2002). Let G be a Kähler group. If G is not Kazhdan, then $b_2(G) \neq 0$.

Theorem (Fujiwara 1999). Let G be a 3-manifold group. If G is Kazhdan, then G is finite.

Remark. The last theorem holds for any subgroup G of $\pi_1(M)$, where M is a compact (not necessarily boundaryless), orientable 3-manifold. Fujiwara assumes that each piece of the JSJ decomposition of M admits one of the 8 geometric structures in the sense of Thurston, but this is now guaranteed by the work of Perelman.

Proof of Main Theorem

Let G be the fundamental group of a compact, connected, orientable 3-manifold M.

Suppose G is a Kähler group, and G is not finite.

Step 1. Claim: M is irreducible.

Otherwise, M splits as a connected sum $M_1 \# M_2$, with $M_i \not\cong S^3$. Thus, by van Kampen's Theorem,

 $G = G_1 * G_2.$

Each group $G_i = \pi_1(M_i)$ is non-trivial, by the Poincaré conjecture (proved by Perelman).

But G is a Kähler group, so it does not admit such a non-trivial splitting, by Gromov's Theorem.

Step 2. Since M is irreducible and $G = \pi_1(M)$ is infinite, the Sphere Theorem of Papakyriakopoulos implies

$$M = K(G, 1).$$

Thus, by Poincaré duality,

$$b_1(G) = b_2(G).$$

Step 3. Since G is an infinite 3-manifold group, G is not Kazhdan, by Fujiwara's Theorem.

Since G is Kähler and not Kazhdan, $b_2(G) \neq 0$, by Reznikov's Theorem.

Thus, by Step 2,

 $b_1(G) \neq 0.$

Step 4. Since G is Kähler, $b_1(G)$ must be even. Since M is a closed 3-manifold with $G = \pi_1(M)$, the Proposition gives

$$R_1(G) = H^1(G, \mathbb{C})$$

and $H^1(G, \mathbb{C})$ is not 1-isotropic.

Since, on the other hand, G is Kähler, the Corollary gives

$$b_1(G) = 0.$$

Our assumptions have led to a contradiction. Thus, the Theorem is proved.

Quasi-Kähler groups

A group G is *quasi-Kähler* (*quasi-projective*) if $G = \pi_1(M \setminus D)$, where M is a Kähler (projective) manifold and D is a divisor with normal crossings. E.g., arrangement groups are quasi-projective.

Question. Which 3-manifold groups are quasi-Kähler?

We have partial results, including a complete answer in the case of *boundary manifolds* of line arrangements.

Theorem (Cohen–S. 2008, Dimca–Papadima–S. 2008). Let $\mathcal{A} = \{\ell_0, \ldots, \ell_n\}$ be a line arrangement in \mathbb{CP}^2 . Let M be the boundary of a regular neighborhood of \mathcal{A} , and $G = \pi_1(M)$. The following are equivalent:

- 1. G is 1-formal.
- 2. TC₁($V_d(G)$) = $R_d(G)$.
- 3. G is quasi-Kähler.
- 4. G is quasi-projective.
- 5. A is either a pencil or a near-pencil.

In this case, $M = \sharp^n S^1 \times S^2$ or $M = S^1 \times \Sigma_{n-1}$.