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Université de Nice

Special Session Arrangements and Related Topics

AMS 2008 Spring Southeastern Meeting

Baton Rouge, Louisiana

March 29, 2008

1

http://arxiv.org/abs/0709.4350


Which 3-manifold groups are Kähler groups?

Realizing finitely presented groups

• Every finitely presented group G can be realized
as

G = π1(M),

for some smooth, compact, connected, orientable
manifold Mn of dimension n ≥ 4.

• The manifold Mn (n even) can be chosen to be
symplectic (Gompf 1995).

• The manifold Mn (n even, n ≥ 6) can be chosen
to be complex (Taubes 1992).

If M is a compact Kähler manifold, G = π1(M) is
called a Kähler group (or, projective group, if M
is actually a smooth projective variety). This puts
strong restrictions on G, e.g.:

• b1(G) is even (Hodge theory).

• G is 1-formal, i.e., its Malcev Lie algebra is
quadratic (Deligne–Griffiths–Morgan–Sullivan 1975).

• G cannot split non-trivially as a free product
(Gromov 1989).
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Example. Every finite group is a projective group
(Serre 1958).

Remark. If G is a Kähler group, and H < G is a
finite-index subgroup, then H is also a Kähler group.

Requiring M to be a (compact, connected, orientable)
3-manifold also puts severe restrictions on G = π1(M).
For example, if G is abelian, then G is either Z/nZ, or
Z, or Z3.

Question (Donaldson–Goldman 1989, Reznikov 1993).
What are the 3-manifold groups which are Kähler
groups?

Partial answer:

Theorem (Reznikov 2002). Let M be an irreducible,
atoroidal 3-manifold. Suppose there is a homomor-
phism ρ : π1(M)→ SL(2,C) with Zariski dense image.
Then G = π1(M) is not a Kähler group.
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We answer the question for all 3-manifold groups:

Theorem. Let G be a 3-manifold group. If G is a
Kähler group, then G is finite.

By the Thurston Geometrization Conjecture (Perel-
man 2003), a closed, orientable 3-manifold M has
finite fundamental group iff it admits a metric of
constant positive curvature. Thus, M = S3/G, where
G is a finite subgroup of SO(4), acting freely on S3.
By (Milnor 1957), the list of such finite groups is:

1, D∗4n, O
∗, I∗, D2k(2n+1), P

′
8·3k ,

and products of one of these with a cyclic group of
relatively prime order.

Remark. The Theorem holds for fundamental groups
of non-orientable (closed) 3-manifolds, as well: use the
orientation double cover, and previous Remark.
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Characteristic varieties

Let X be a connected, finite-type CW-complex,
G = π1(X), and Hom(G,C∗) the character torus
(∼= (C∗)n, n = b1(G)).

Every ρ ∈ Hom(G,C∗) determines a rank 1 local
system, Cρ, on X. The characteristic varieties of
X are the jumping loci for cohomology with coefficients
in such local systems:

V id (X) = {ρ ∈ Hom(G,C∗) | dimHi(X,Cρ) ≥ d}.

Note. Vd(X) = V 1
d (X) depends only on G = π1(X),

so we may write it as Vd(G).

Theorem (Beauville, Green–Lazarsfeld, Simpson,
Campana). If G = π1(M) is a Kähler group, then
Vd(G) is a union of (possibly translated) subtori:

Vd(G) =
⋃
α

ρα · f∗α Hom(π1(Cα),C∗),

where each fα : M → Cα is a surjective, holomorphic
map to a compact, complex curve of positive genus.
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Resonance varieties

Consider now the cohomology algebra H∗(X,C).

Left-multiplication by x ∈ H = H1(X,C) yields a
cochain complex (H∗(X,C), x):

H0(X,C) x· // H1(X,C) x· // H2(X,C) // · · ·

The resonance varieties of X are the jumping loci
for the homology of this complex:

Rid(X) = {x ∈ H | dimHi(H∗(X,C), x) ≥ d}.

Note. x ∈ H belongs to R1
d(X) ⇐⇒ ∃ subspace

W ⊂ H of dim d+ 1 such that x ∪ y = 0, ∀y ∈W .

Note. Rd(X) = R1
d(X) depends only on G = π1(X),

so write it as Rd(G).
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Set n = b1(X), m = b2(X). Fix bases {e1, . . . , en} for
H = H1(X,C) and {f1, . . . , fm} for H2(X,C), and
write

ei ∪ ej =
m∑
k=1

µi,j,kfk.

Define an m× n matrix ∆ of linear forms in variables
x1, . . . , xn, with entries

∆k,j =
n∑
i=1

µi,j,kxi.

Then:
R1
d(X) = V (Ed(∆)),

where

Ed = ideal of (n− d)× (n− d) minors

Note. x ∪ x = 0 (∀x ∈ H) implies ∆ · ~x = 0, where ~x
is the column vector (x1, . . . , xn).

Remark. When G is a commutator-relators group,
∆ = Alin, the linearized Alexander matrix, from
Cohen-S. [1999, 2006], Matei-S. [2000].
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The tangent cone theorem

Let H1(X,C) = Hom(G,C) be the Lie algebra of
the character group Hom(G,C∗), and consider the
exponential map,

Hom(G,C)
exp // Hom(G,C∗)

Rid(X)
?�

OO

V id (X)
?�

OO

The tangent cone to V id (X) at 1 is contained in Rid(X)
(Libgober 2002).

In general, the inclusion is strict (Matei–S. 2002).

Theorem (Dimca–Papadima–S. 2005). Let G be a
1-formal group (e.g., a Kähler group). Then, ∀d ≥ 1,

exp: (Rd(G), 0) '−→ (Vd(G), 1)

is an iso of complex analytic germs. Consequently,

TC1(Vd(G)) = Rd(G).
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Resonance varieties of Kähler groups

The description of the irreducible components of
V1(M) in terms of pullbacks of tori H1(C,C∗) along
holomorphic maps f : M → C, together with the
Tangent Cone Theorem yield:

Theorem (Dimca–Papadima–S. 2005). Let G be
a Kähler group. Then every positive-dimensional
component of R1(G) is an 1-isotropic linear subspace
of H1(G,C), of dimension at least 4.

Here, a subspace W ⊆ H1(G,C) is 1-isotropic with
respect to the cup-product map

∪G : H1(G,C) ∧H1(G,C)→ H2(G,C)

if the restriction of ∪G to W ∧W has rank 1.

Corollary. Let G be a Kähler group. Suppose
R1(G) = H1(G,C), and H1(G,C) is not 1-isotropic.
Then b1(G) = 0.
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Resonance varieties of 3-manifold groups

Let M be a compact, connected, orientable 3-manifold.
Fix an orientation [M ] ∈ H3(M,Z) ∼= Z.

With this choice, the cup product on M determines
an alternating 3-form µM on H1(M,Z):

µM (x, y, z) = 〈x ∪ y ∪ z, [M ]〉,

where 〈 , 〉 is the Kronecker pairing.

In turn, ∪M : H1(M,Z) ∧ H1(M,Z) → H2(M,Z) is
determined by µM , via 〈x ∪ y, γ〉 = µM (x, y, z), where
z = PD(γ) is the Poincaré dual of γ ∈ H2(M,Z).

Now fix a basis {e1, . . . , en} for H1(M,C), and choose
as basis for H2(X,C) the set {e∨1 , . . . , e∨n}, where e∨i is
the Kronecker dual of the Poincaré dual of ei. Then

µ(ei, ej , ek) = 〈
∑

1≤m≤n

µi,j,me
∨
m,PD(ek)〉 = µi,j,k.

Recall the n× n matrix ∆, with ∆k,j =
∑n
i=1 µi,j,kxi.

Since µ is an alternating form, ∆ is skew-symmetric.
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Proposition. Let M be a closed, orientable 3-
manifold. Then:

1. H1(M,C) is not 1-isotropic.

2. If b1(M) is even, then R1(M) = H1(M,C).

Proof. To prove (1), suppose dim im(∪M ) = 1. This
means there is a hyperplane E ⊂ H := H1(M,C) such
that x ∪ y ∪ z = 0, for all x, y ∈ H and z ∈ E. Hence,
the skew 3-form µ :

∧3
H → C factors through a skew

3-form µ̄ :
∧3(H/E) → C. But dimH/E = 1 forces

µ̄ = 0, and so µ = 0, a contradiction.

To prove (2), recall R1(M) = V (E1(∆)). Since ∆ is
a skew-symmetric matrix of even size, it follows from
(Buchsbaum–Eisenbud 1977) that

V (E1(∆)) = V (E0(∆)).

But ∆~x = 0⇒ det ∆ = 0; hence, V (E0(∆)) = H.
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Kazhdan’s property T

Definition. A discrete group G satisfies Kazhdan’s

property T if

H1(G,Ckρ) = 0,

for all representations ρ : G→ U(k).

In particular, b1(G) 6= 0 =⇒ G not Kazhdan.

Theorem (Reznikov 2002). Let G be a Kähler group.
If G is not Kazhdan, then b2(G) 6= 0.

Theorem (Fujiwara 1999). Let G be a 3-manifold
group. If G is Kazhdan, then G is finite.

Remark. The last theorem holds for any subgroup

G of π1(M), where M is a compact (not necessarily

boundaryless), orientable 3-manifold. Fujiwara assumes

that each piece of the JSJ decomposition of M admits one

of the 8 geometric structures in the sense of Thurston, but

this is now guaranteed by the work of Perelman.
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Proof of Main Theorem

Let G be the fundamental group of a compact,
connected, orientable 3-manifold M .

Suppose G is a Kähler group, and G is not finite.

Step 1. Claim: M is irreducible.

Otherwise, M splits as a connected sum M1#M2, with
Mi 6∼= S3. Thus, by van Kampen’s Theorem,

G = G1 ∗G2.

Each group Gi = π1(Mi) is non-trivial, by the Poincaré
conjecture (proved by Perelman).

But G is a Kähler group, so it does not admit such a
non-trivial splitting, by Gromov’s Theorem.
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Step 2. Since M is irreducible and G = π1(M) is
infinite, the Sphere Theorem of Papakyriakopoulos
implies

M = K(G, 1).

Thus, by Poincaré duality,

b1(G) = b2(G).

Step 3. Since G is an infinite 3-manifold group, G is
not Kazhdan, by Fujiwara’s Theorem.

Since G is Kähler and not Kazhdan, b2(G) 6= 0, by
Reznikov’s Theorem.

Thus, by Step 2,
b1(G) 6= 0.
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Step 4. Since G is Kähler, b1(G) must be even.

Since M is a closed 3-manifold with G = π1(M), the
Proposition gives

R1(G) = H1(G,C)

and H1(G,C) is not 1-isotropic.

Since, on the other hand, G is Kähler, the Corollary
gives

b1(G) = 0.

Our assumptions have led to a contradiction. Thus,
the Theorem is proved.
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Quasi-Kähler groups

A group G is quasi-Kähler (quasi-projective) if
G = π1(M \ D), where M is a Kähler (projective)
manifold and D is a divisor with normal crossings.
E.g., arrangement groups are quasi-projective.

Question. Which 3-manifold groups are quasi-Kähler?

We have partial results, including a complete answer
in the case of boundary manifolds of line arrangements.

Theorem (Cohen–S. 2008, Dimca–Papadima–S. 2008).
Let A = {`0, . . . , `n} be a line arrangement in CP2.
Let M be the boundary of a regular neighborhood of A,
and G = π1(M). The following are equivalent:

1. G is 1-formal.

2. TC1(Vd(G)) = Rd(G).

3. G is quasi-Kähler.

4. G is quasi-projective.

5. A is either a pencil or a near-pencil.

In this case, M = ]nS1 × S2 or M = S1 × Σn−1.
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