Which 3-manifold groups are Kähler groups?

arXiv:0709.4350

Alex Suciu

Northeastern University

Joint with Alex Dimca
Université de Nice

Special Session Arrangements and Related Topics
AMS 2008 Spring Southeastern Meeting
Baton Rouge, Louisiana
March 29, 2008

Realizing finitely presented groups

- Every finitely presented group G can be realized as

$$
G=\pi_{1}(M),
$$

for some smooth, compact, connected, orientable manifold M^{n} of dimension $n \geq 4$.

- The manifold M^{n} (n even) can be chosen to be symplectic (Gompf 1995).
- The manifold M^{n} (n even, $n \geq 6$) can be chosen to be complex (Taubes 1992).

If M is a compact Kähler manifold, $G=\pi_{1}(M)$ is called a Kähler group (or, projective group, if M is actually a smooth projective variety). This puts strong restrictions on G, e.g.:

- $b_{1}(G)$ is even (Hodge theory).
- G is 1-formal, i.e., its Malcev Lie algebra is quadratic (Deligne-Griffiths-Morgan-Sullivan 1975).
- G cannot split non-trivially as a free product (Gromov 1989).

Example. Every finite group is a projective group (Serre 1958).

Remark. If G is a Kähler group, and $H<G$ is a finite-index subgroup, then H is also a Kähler group.

Requiring M to be a (compact, connected, orientable) 3-manifold also puts severe restrictions on $G=\pi_{1}(M)$. For example, if G is abelian, then G is either $\mathbb{Z} / n \mathbb{Z}$, or \mathbb{Z}, or \mathbb{Z}^{3}.

Question (Donaldson-Goldman 1989, Reznikov 1993). What are the 3-manifold groups which are Kähler groups?

Partial answer:

Theorem (Reznikov 2002). Let M be an irreducible, atoroidal 3-manifold. Suppose there is a homomorphism $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}(2, \mathbb{C})$ with Zariski dense image. Then $G=\pi_{1}(M)$ is not a Kähler group.

We answer the question for all 3-manifold groups:

Theorem. Let G be a 3-manifold group. If G is a Kähler group, then G is finite.

By the Thurston Geometrization Conjecture (Perelman 2003), a closed, orientable 3-manifold M has finite fundamental group iff it admits a metric of constant positive curvature. Thus, $M=S^{3} / G$, where G is a finite subgroup of $\mathrm{SO}(4)$, acting freely on S^{3}. By (Milnor 1957), the list of such finite groups is:

$$
1, D_{4 n}^{*}, O^{*}, I^{*}, D_{2^{k}(2 n+1)}, P_{8 \cdot 3^{k}}^{\prime}
$$

and products of one of these with a cyclic group of relatively prime order.

Remark. The Theorem holds for fundamental groups of non-orientable (closed) 3-manifolds, as well: use the orientation double cover, and previous Remark.

Characteristic varieties

Let X be a connected, finite-type CW-complex, $G=\pi_{1}(X)$, and $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ the character torus $\left(\cong\left(\mathbb{C}^{*}\right)^{n}, n=b_{1}(G)\right)$.

Every $\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ determines a rank 1 local system, \mathbb{C}_{ρ}, on X. The characteristic varieties of X are the jumping loci for cohomology with coefficients in such local systems:

$$
V_{d}^{i}(X)=\left\{\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \mid \operatorname{dim} H^{i}\left(X, \mathbb{C}_{\rho}\right) \geq d\right\} .
$$

Note. $V_{d}(X)=V_{d}^{1}(X)$ depends only on $G=\pi_{1}(X)$, so we may write it as $V_{d}(G)$.

Theorem (Beauville, Green-Lazarsfeld, Simpson, Campana). If $G=\pi_{1}(M)$ is a Kähler group, then $V_{d}(G)$ is a union of (possibly translated) subtori:

$$
V_{d}(G)=\bigcup_{\alpha} \rho_{\alpha} \cdot f_{\alpha}^{*} \operatorname{Hom}\left(\pi_{1}\left(C_{\alpha}\right), \mathbb{C}^{*}\right)
$$

where each $f_{\alpha}: M \rightarrow C_{\alpha}$ is a surjective, holomorphic map to a compact, complex curve of positive genus.

Resonance varieties

Consider now the cohomology algebra $H^{*}(X, \mathbb{C})$.
Left-multiplication by $x \in H=H^{1}(X, \mathbb{C})$ yields a cochain complex $\left(H^{*}(X, \mathbb{C}), x\right)$:

$$
H^{0}(X, \mathbb{C}) \xrightarrow{x} H^{1}(X, \mathbb{C}) \xrightarrow{x} H^{2}(X, \mathbb{C}) \longrightarrow \cdots
$$

The resonance varieties of X are the jumping loci for the homology of this complex:

$$
R_{d}^{i}(X)=\left\{x \in H \mid \operatorname{dim} H^{i}\left(H^{*}(X, \mathbb{C}), x\right) \geq d\right\} .
$$

Note. $x \in H$ belongs to $R_{d}^{1}(X) \Longleftrightarrow \exists$ subspace $W \subset H$ of $\operatorname{dim} d+1$ such that $x \cup y=0, \forall y \in W$.

Note. $R_{d}(X)=R_{d}^{1}(X)$ depends only on $G=\pi_{1}(X)$, so write it as $R_{d}(G)$.

Set $n=b_{1}(X), m=b_{2}(X)$. Fix bases $\left\{e_{1}, \ldots, e_{n}\right\}$ for $H=H^{1}(X, \mathbb{C})$ and $\left\{f_{1}, \ldots, f_{m}\right\}$ for $H^{2}(X, \mathbb{C})$, and write

$$
e_{i} \cup e_{j}=\sum_{k=1}^{m} \mu_{i, j, k} f_{k} .
$$

Define an $m \times n$ matrix Δ of linear forms in variables x_{1}, \ldots, x_{n}, with entries

$$
\Delta_{k, j}=\sum_{i=1}^{n} \mu_{i, j, k} x_{i} .
$$

Then:

$$
R_{d}^{1}(X)=V\left(E_{d}(\Delta)\right)
$$

where

$$
E_{d}=\text { ideal of }(n-d) \times(n-d) \text { minors }
$$

Note. $x \cup x=0(\forall x \in H)$ implies $\Delta \cdot \vec{x}=0$, where \vec{x} is the column vector $\left(x_{1}, \ldots, x_{n}\right)$.

Remark. When G is a commutator-relators group, $\Delta=A^{\text {lin }}$, the linearized Alexander matrix, from Cohen-S. [1999, 2006], Matei-S. [2000].

The tangent cone theorem

Let $H^{1}(X, \mathbb{C})=\operatorname{Hom}(G, \mathbb{C})$ be the Lie algebra of the character group $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$, and consider the exponential map,

The tangent cone to $V_{d}^{i}(X)$ at 1 is contained in $R_{d}^{i}(X)$ (Libgober 2002).

In general, the inclusion is strict (Matei-S. 2002).
Theorem (Dimca-Papadima-S. 2005). Let G be a 1-formal group (e.g., a Kähler group). Then, $\forall d \geq 1$,

$$
\exp :\left(R_{d}(G), 0\right) \xrightarrow{\simeq}\left(V_{d}(G), 1\right)
$$

is an iso of complex analytic germs. Consequently,

$$
\mathrm{TC}_{1}\left(V_{d}(G)\right)=R_{d}(G)
$$

Resonance varieties of Kähler groups

The description of the irreducible components of $V_{1}(M)$ in terms of pullbacks of tori $H^{1}\left(C, \mathbb{C}^{*}\right)$ along holomorphic maps $f: M \rightarrow C$, together with the Tangent Cone Theorem yield:

Theorem (Dimca-Papadima-S. 2005). Let G be a Kähler group. Then every positive-dimensional component of $R_{1}(G)$ is an 1-isotropic linear subspace of $H^{1}(G, \mathbb{C})$, of dimension at least 4 .

Here, a subspace $W \subseteq H^{1}(G, \mathbb{C})$ is 1-isotropic with respect to the cup-product map

$$
\cup_{G}: H^{1}(G, \mathbb{C}) \wedge H^{1}(G, \mathbb{C}) \rightarrow H^{2}(G, \mathbb{C})
$$

if the restriction of \cup_{G} to $W \wedge W$ has rank 1 .

Corollary. Let G be a Kähler group. Suppose $R_{1}(G)=H^{1}(G, \mathbb{C})$, and $H^{1}(G, \mathbb{C})$ is not 1-isotropic. Then $b_{1}(G)=0$.

Resonance varieties of 3-manifold groups

Let M be a compact, connected, orientable 3-manifold. Fix an orientation $[M] \in H^{3}(M, \mathbb{Z}) \cong \mathbb{Z}$.

With this choice, the cup product on M determines an alternating 3 -form μ_{M} on $H^{1}(M, \mathbb{Z})$:

$$
\mu_{M}(x, y, z)=\langle x \cup y \cup z,[M]\rangle,
$$

where \langle,$\rangle is the Kronecker pairing.$
In turn, $\cup_{M}: H^{1}(M, \mathbb{Z}) \wedge H^{1}(M, \mathbb{Z}) \rightarrow H^{2}(M, \mathbb{Z})$ is determined by μ_{M}, via $\langle x \cup y, \gamma\rangle=\mu_{M}(x, y, z)$, where $z=\operatorname{PD}(\gamma)$ is the Poincaré dual of $\gamma \in H_{2}(M, \mathbb{Z})$.
Now fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $H^{1}(M, \mathbb{C})$, and choose as basis for $H^{2}(X, \mathbb{C})$ the set $\left\{e_{1}^{\vee}, \ldots, e_{n}^{\vee}\right\}$, where e_{i}^{\vee} is the Kronecker dual of the Poincaré dual of e_{i}. Then

$$
\mu\left(e_{i}, e_{j}, e_{k}\right)=\left\langle\sum_{1 \leq m \leq n} \mu_{i, j, m} e_{m}^{\vee}, \operatorname{PD}\left(e_{k}\right)\right\rangle=\mu_{i, j, k} .
$$

Recall the $n \times n$ matrix Δ, with $\Delta_{k, j}=\sum_{i=1}^{n} \mu_{i, j, k} x_{i}$. Since μ is an alternating form, Δ is skew-symmetric.

Proposition. Let M be a closed, orientable 3manifold. Then:

1. $H^{1}(M, \mathbb{C})$ is not 1-isotropic.
2. If $b_{1}(M)$ is even, then $R_{1}(M)=H^{1}(M, \mathbb{C})$.

Proof. To prove (1), suppose $\operatorname{dimim}\left(\cup_{M}\right)=1$. This means there is a hyperplane $E \subset H:=H^{1}(M, \mathbb{C})$ such that $x \cup y \cup z=0$, for all $x, y \in H$ and $z \in E$. Hence, the skew 3 -form $\mu: \wedge^{3} H \rightarrow \mathbb{C}$ factors through a skew 3 -form $\bar{\mu}: \Lambda^{3}(H / E) \rightarrow \mathbb{C}$. But $\operatorname{dim} H / E=1$ forces $\bar{\mu}=0$, and so $\mu=0$, a contradiction.

To prove (2), recall $R_{1}(M)=V\left(E_{1}(\Delta)\right)$. Since Δ is a skew-symmetric matrix of even size, it follows from (Buchsbaum-Eisenbud 1977) that

$$
V\left(E_{1}(\Delta)\right)=V\left(E_{0}(\Delta)\right) .
$$

But $\Delta \vec{x}=0 \Rightarrow \operatorname{det} \Delta=0$; hence, $V\left(E_{0}(\Delta)\right)=H$.

Kazhdan's property T

Definition. A discrete group G satisfies Kazhdan's property T if

$$
H^{1}\left(G, \mathbb{C}_{\rho}^{k}\right)=0,
$$

for all representations $\rho: G \rightarrow \mathrm{U}(k)$.
In particular, $b_{1}(G) \neq 0 \Longrightarrow G$ not Kazhdan.

Theorem (Reznikov 2002). Let G be a Kähler group. If G is not Kazhdan, then $b_{2}(G) \neq 0$.

Theorem (Fujiwara 1999). Let G be a 3 -manifold group. If G is Kazhdan, then G is finite.

Remark. The last theorem holds for any subgroup G of $\pi_{1}(M)$, where M is a compact (not necessarily boundaryless), orientable 3-manifold. Fujiwara assumes that each piece of the JSJ decomposition of M admits one of the 8 geometric structures in the sense of Thurston, but this is now guaranteed by the work of Perelman.

Proof of Main Theorem

Let G be the fundamental group of a compact, connected, orientable 3-manifold M.

Suppose G is a Kähler group, and G is not finite.

Step 1. Claim: M is irreducible.
Otherwise, M splits as a connected sum $M_{1} \# M_{2}$, with $M_{i} \not \neq S^{3}$. Thus, by van Kampen's Theorem,

$$
G=G_{1} * G_{2} .
$$

Each group $G_{i}=\pi_{1}\left(M_{i}\right)$ is non-trivial, by the Poincaré conjecture (proved by Perelman).

But G is a Kähler group, so it does not admit such a non-trivial splitting, by Gromov's Theorem.

Step 2. Since M is irreducible and $G=\pi_{1}(M)$ is infinite, the Sphere Theorem of Papakyriakopoulos implies

$$
M=K(G, 1) .
$$

Thus, by Poincaré duality,

$$
b_{1}(G)=b_{2}(G) .
$$

Step 3. Since G is an infinite 3-manifold group, G is not Kazhdan, by Fujiwara's Theorem.

Since G is Kähler and not Kazhdan, $b_{2}(G) \neq 0$, by Reznikov's Theorem.

Thus, by Step 2,

$$
b_{1}(G) \neq 0 .
$$

Step 4. Since G is Kähler, $b_{1}(G)$ must be even.
Since M is a closed 3 -manifold with $G=\pi_{1}(M)$, the Proposition gives

$$
R_{1}(G)=H^{1}(G, \mathbb{C})
$$

and $H^{1}(G, \mathbb{C})$ is not 1-isotropic.
Since, on the other hand, G is Kähler, the Corollary gives

$$
b_{1}(G)=0 .
$$

Our assumptions have led to a contradiction. Thus, the Theorem is proved.

Quasi-Kähler groups

A group G is quasi-Kähler (quasi-projective) if $G=\pi_{1}(M \backslash D)$, where M is a Kähler (projective) manifold and D is a divisor with normal crossings. E.g., arrangement groups are quasi-projective.

Question. Which 3-manifold groups are quasi-Kähler?
We have partial results, including a complete answer in the case of boundary manifolds of line arrangements. Theorem (Cohen-S. 2008, Dimca-Papadima-S. 2008). Let $\mathcal{A}=\left\{\ell_{0}, \ldots, \ell_{n}\right\}$ be a line arrangement in $\mathbb{C P}^{2}$. Let M be the boundary of a regular neighborhood of \mathcal{A}, and $G=\pi_{1}(M)$. The following are equivalent:

1. G is 1-formal.
2. $\mathrm{TC}_{1}\left(V_{d}(G)\right)=R_{d}(G)$.
3. G is quasi-Kähler.
4. G is quasi-projective.
5. \mathcal{A} is either a pencil or a near-pencil.

In this case, $M=\sharp^{n} S^{1} \times S^{2}$ or $M=S^{1} \times \Sigma_{n-1}$.

