HOMOLOGICAL FINITENESS IN THE JOHNSON FILTRATION

Alex Suciu

Northeastern University

Geometry & Topology Seminar Yale University February 4, 2014 Stefan Papadima and Alexander I. Suciu

- Homological finiteness in the Johnson filtration of the automorphism group of a free group
 J. Topol. 5 (2012), no. 4, 909–944.
- Vanishing resonance and representations of Lie algebras
 J. Reine Angew. Math. (to appear)

- 2 ALEXANDER INVARIANTS
- **3** RESONANCE VARIETIES
- 4 ROOTS, WEIGHTS, AND VANISHING RESONANCE
- 5 AUTOMORPHISM GROUPS OF FREE GROUPS

FILTRATIONS AND GRADED LIE ALGEBRAS

Let *G* be a group, with commutator $(x, y) = xyx^{-1}y^{-1}$. Suppose given a descending filtration

$$G = \Phi^1 \supseteq \Phi^2 \supseteq \cdots \supseteq \Phi^s \supseteq \cdots$$

by subgroups of *G*, satisfying

$$(\Phi^{s}, \Phi^{t}) \subseteq \Phi^{s+t}, \quad \forall s, t \ge 1.$$

Then $\Phi^{s} \triangleleft G$, and Φ^{s}/Φ^{s+1} is abelian. Set

$$\operatorname{gr}_{\Phi}(G) = \bigoplus_{s \ge 1} \Phi^s / \Phi^{s+1}.$$

This is a graded Lie algebra, with bracket [,]: $gr_{\Phi}^{s} \times gr_{\Phi}^{t} \rightarrow gr_{\Phi}^{s+t}$ induced by the group commutator.

Basic example: the *lower central series*, $\Gamma^{s} = \Gamma^{s}(G)$, defined as

$$\Gamma^1 = G, \Gamma^2 = G', \ldots, \Gamma^{s+1} = (\Gamma^s, G), \ldots$$

Then for any filtration Φ as above, $\Gamma^s \subseteq \Phi^s$; thus, we have a morphism of graded Lie algebras,

$$\iota_{\Phi} \colon \operatorname{gr}_{\Gamma}(G) \longrightarrow \operatorname{gr}_{\Phi}(G)$$
 .

EXAMPLE (P. HALL, E. WITT, W. MAGNUS)

Let $F_n = \langle x_1, \dots, x_n \rangle$ be the free group of rank *n*. Then:

- F_n is residually nilpotent, i.e., $\bigcap_{s \ge 1} \Gamma^s(F_n) = \{1\}.$
- $\operatorname{gr}_{\Gamma}(F_n)$ is isomorphic to the free Lie algebra $\mathcal{L}_n = \operatorname{Lie}(\mathbb{Z}^n)$.
- $\operatorname{gr}_{\Gamma}^{s}(F_{n})$ is free abelian, of rank $\frac{1}{s}\sum_{d|s} \mu(d) n^{\frac{s}{d}}$.
- If $n \ge 2$, the center of \mathcal{L}_n is trivial.

AUTOMORPHISM GROUPS

Let Aut(*G*) be the group of all automorphisms $\alpha : G \to G$, with $\alpha \cdot \beta := \alpha \circ \beta$. The Andreadakis–Johnson filtration,

 $\operatorname{Aut}(G) = F^0 \supseteq F^1 \supseteq \cdots \supseteq F^s \supseteq \cdots$

has terms $F^s = F^s(Aut(G))$ consisting of those automorphisms which act as the identity on the *s*-th nilpotent quotient of *G*:

$$F^{s} = \ker \left(\operatorname{Aut}(G) \to \operatorname{Aut}(G/\Gamma^{s+1}) \right)$$
$$= \{ \alpha \in \operatorname{Aut}(G) \mid \alpha(x) \cdot x^{-1} \in \Gamma^{s+1}, \ \forall x \in G \}$$

Kaloujnine [1950]: $(F^s, F^t) \subseteq F^{s+t}$. First term is the *Torelli group*,

$$\mathcal{T}_G = F^1 = \ker \big(\operatorname{Aut}(G) \to \operatorname{Aut}(G_{\operatorname{ab}})\big).$$

By construction, $F^1 = T_G$ is a normal subgroup of $F^0 = Aut(G)$. The quotient group,

 $\mathcal{A}(G) = \mathcal{F}^0/\mathcal{F}^1 = \operatorname{im}(\operatorname{Aut}(G) \to \operatorname{Aut}(G_{\operatorname{ab}}))$

is the symmetry group of \mathcal{T}_G ; it fits into exact sequence

$$1 \longrightarrow \mathcal{T}_G \longrightarrow \operatorname{Aut}(G) \longrightarrow \mathcal{A}(G) \longrightarrow 1$$
.

The Torelli group comes endowed with two filtrations:

- The Johnson filtration $\{F^{s}(\mathcal{T}_{G})\}_{s \ge 1}$, inherited from Aut(*G*).
- The lower central series filtration, $\{\Gamma^{s}(\mathcal{T}_{G})\}$.

The respective associated graded Lie algebras, $\operatorname{gr}_{F}(\mathcal{T}_{G})$ and $\operatorname{gr}_{\Gamma}(\mathcal{T}_{G})$, come endowed with natural actions of $\mathcal{A}(G)$; moreover, the morphism $\iota_{F} \colon \operatorname{gr}_{\Gamma}(\mathcal{T}_{G}) \to \operatorname{gr}_{F}(\mathcal{T}_{G})$ is $\mathcal{A}(G)$ -equivariant.

THE JOHNSON HOMOMORPHISM

Given a graded Lie algebra \mathfrak{g} , let

 $\mathsf{Der}^{s}(\mathfrak{g}) = \{\delta \colon \mathfrak{g}^{\bullet} \to \mathfrak{g}^{\bullet+s} \text{ linear } | \ \delta[x, y] = [\delta x, y] + [x, \delta y], \forall x, y \in \mathfrak{g} \}.$

Then $\text{Der}(\mathfrak{g}) = \bigoplus_{s \ge 1} \text{Der}^{s}(\mathfrak{g})$ is a graded Lie algebra, with bracket $[\delta, \delta'] = \delta \circ \delta' - \delta' \circ \delta$.

Theorem

Given a group G, there is a monomorphism of graded Lie algebras,

 $J \colon \operatorname{gr}_F(\mathcal{T}_G) \longrightarrow \operatorname{Der}(\operatorname{gr}_{\Gamma}(G))$,

given on homogeneous elements $\alpha \in F^{s}(\mathcal{T}_{G})$ and $x \in \Gamma^{t}(G)$ by

 $J(\bar{\alpha})(\bar{x}) = \overline{\alpha(x) \cdot x^{-1}}.$

Moreover, J is equivariant with respect to the natural actions of $\mathcal{A}(G)$.

The Johnson homomorphism informs on the Johnson filtration.

THEOREM

Let G be a group. For each $q \ge 1$, the following are equivalent:

- 2 $\Gamma^{s}(\mathcal{T}_{G}) = F^{s}(\mathcal{T}_{G})$, for all $s \leq q + 1$.

PROPOSITION

Suppose G is residually nilpotent, $\operatorname{gr}_{\Gamma}(G)$ is centerless, and $J \circ \iota_{F} \colon \operatorname{gr}_{\Gamma}^{1}(\mathcal{T}_{G}) \to \operatorname{Der}^{1}(\operatorname{gr}_{\Gamma}(G))$ is injective. Then $F^{2}(\mathcal{T}_{G}) = \mathcal{T}'_{G}$.

Problem

Determine the homological finiteness properties of the groups $F^{s}(\mathcal{T}_{G})$. In particular, decide whether dim $H_{1}(\mathcal{T}'_{G}, \mathbb{Q}) < \infty$.

AN OUTER VERSION

Let $Inn(G) = im(Ad: G \rightarrow Aut(G))$, where $Ad_x: G \rightarrow G$, $y \mapsto xyx^{-1}$. Define the *outer* automorphism group of a group *G* by

 $1 \longrightarrow \operatorname{Inn}(G) \longrightarrow \operatorname{Aut}(G) \xrightarrow{\pi} \operatorname{Out}(G) \longrightarrow 1 .$

We then have

- Filtration $\{\widetilde{F}^s\}_{s\geq 0}$ on Out(G): $\widetilde{F}^s := \pi(F^s)$.
- The outer Torelli group of G: subgroup $\widetilde{\mathcal{T}}_G = \widetilde{F}^1$ of Out(G).
- Exact sequence: $1 \longrightarrow \widetilde{\mathcal{T}}_{G} \longrightarrow Out(G) \longrightarrow \mathcal{A}(G) \longrightarrow 1$.

THEOREM

Suppose $Z(gr_{\Gamma}(G)) = 0$. Then the Johnson homomorphism induces an $\mathcal{A}(G)$ -equivariant monomorphism of graded Lie algebras,

$$\widetilde{J}\colon\operatorname{gr}_{\widetilde{F}}(\widetilde{\mathcal{T}}_G)\longrightarrow \widetilde{\operatorname{Der}}(\operatorname{gr}_{\Gamma}(G))$$
 ,

where $\widetilde{\mathsf{Der}}(\mathfrak{g}) = \mathsf{Der}(\mathfrak{g}) / \mathsf{im}(\mathsf{ad} \colon \mathfrak{g} \to \mathsf{Der}(\mathfrak{g})).$

THE ALEXANDER INVARIANT

- Let G be a group, and $G_{ab} = G/G'$ its maximal abelian quotient.
- Let G'' = (G', G'); then G/G'' is the maximal metabelian quotient. Get exact sequence $0 \longrightarrow G'/G'' \longrightarrow G/G'' \longrightarrow G_{ab} \longrightarrow 0$.
- Conjugation in G/G" turns the abelian group

 $B(G) := G' / G'' = H_1(G', \mathbb{Z})$

into a module over $R = \mathbb{Z}G_{ab}$, called the Alexander invariant of G.

Since both G' and G'' are characteristic subgroups of G, the action of Aut(G) on G induces an action on B(G). This action need not respect the *R*-module structure. Nevertheless:

PROPOSITION

The Torelli group \mathcal{T}_G acts R-linearly on the Alexander invariant B(G).

ALEX SUCIU (NORTHEASTERN) HOMOLOGY IN THE JOHNSON FILTRATION

CHARACTERISTIC VARIETIES

- Let G be a finitely generated group.
- Let G
 = Hom(G, C*) be its character group: an algebraic group, with coordinate ring C[G_{ab}].
- The map ab: G → G_{ab} induces an isomorphism G_{ab} → G.
 Ĝ^o ≃ (C^{*})ⁿ, where n = rank G_{ab}.

DEFINITION

The (first) *characteristic variety* of *G* is the support of the (complexified) Alexander invariant $B = B(G) \otimes \mathbb{C}$:

 $\mathcal{V}(G) := V(\operatorname{ann} B) \subset \widehat{G}.$

This variety informs on the Betti numbers of normal subgroups $H \lhd G$ with G/H abelian. In particular (for H = G'):

PROPOSITION

The set $\mathcal{V}(G)$ is finite if and only if $b_1(G') = \dim_{\mathbb{C}} B(G) \otimes \mathbb{C}$ is finite.

RESONANCE VARIETIES

Let V be a finite-dimensional C-vector space, and let $K \subset V \land V$ be a subspace.

DEFINITION

The resonance variety $\mathcal{R} = \mathcal{R}(V, K)$ is the set of elements $a \in V^*$ for which there is an element $b \in V^*$, not proportional to a, such that $a \wedge b$ belongs to the orthogonal complement $K^{\perp} \subseteq V^* \wedge V^*$.

- \mathcal{R} is a conical, Zariski-closed subset of the affine space V^* .
- For instance, if K = 0 and dim V > 1, then $\mathcal{R} = V^*$.
- At the other extreme, if $K = V \wedge V$, then $\mathcal{R} = 0$.

The resonance variety \mathcal{R} has several other interpretations.

KOSZUL MODULES

• Let S = Sym(V) be the symmetric algebra on V.

• Let $(S \otimes_{\mathbb{C}} \bigwedge V, \delta)$ be the Koszul resolution, with differential $\delta_p: S \otimes_{\mathbb{C}} \bigwedge^p V \to S \otimes_{\mathbb{C}} \bigwedge^{p-1} V$ given by

$$\mathcal{V}_{i_1} \wedge \cdots \wedge \mathcal{V}_{i_p} \mapsto \sum_{j=1}^{p} (-1)^{j-1} \mathcal{V}_{i_j} \otimes (\mathcal{V}_{i_1} \wedge \cdots \wedge \widehat{\mathcal{V}}_{i_j} \wedge \cdots \wedge \mathcal{V}_{i_p}).$$

• Let $\iota: K \to V \land V$ be the inclusion map.

• The Koszul module $\mathcal{B}(V, K)$ is the graded S-module presented as

$$S \otimes_{\mathbb{C}} \left(\bigwedge^{3} V \oplus K \right) \xrightarrow{\delta_{3} + \mathsf{id} \otimes \iota} S \otimes_{\mathbb{C}} \bigwedge^{2} V \longrightarrow \mathcal{B}(V, K)$$

PROPOSITION

The resonance variety $\mathcal{R} = \mathcal{R}(V, K)$ is the support of the Koszul module $\mathcal{B} = \mathcal{B}(V, K)$:

 $\mathcal{R} = \textit{V}(\textit{ann}(\mathcal{B})) \subset \textit{V}^*.$

In particular, $\mathcal{R} = 0$ if and only if dim_C $\mathcal{B} < \infty$.

COHOMOLOGY JUMP LOCI

- Let A = A(V, K) be the quadratic algebra defined as the quotient of the exterior algebra $E = \bigwedge V^*$ by the ideal generated by $K^{\perp} \subset V^* \land V^* = E^2$.
- Then \mathcal{R} is the set of points $a \in A^1$ where the cochain complex

$$A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2$$

is not exact (in the middle).

 The graded pieces of the (dual) Koszul module can be reinterpreted in terms of the linear strand in a Tor module:

$$\mathcal{B}_q^* \cong \operatorname{Tor}_{q+1}^{\mathcal{E}}(\mathcal{A}, \mathbb{C})_{q+2}$$

VANISHING RESONANCE

Setting $m = \dim K$, we may view K as a point in the Grassmannian $\operatorname{Gr}_m(V \wedge V)$, and $\mathbb{P}(K^{\perp})$ as a codimension m projective subspace in $\mathbb{P}(V^* \wedge V^*)$.

LEMMA

Let $\operatorname{Gr}_2(V^*) \hookrightarrow \mathbb{P}(V^* \land V^*)$ be the Plücker embedding. Then,

 $\mathcal{R}(V, K) = \mathbf{0} \Longleftrightarrow \mathbb{P}(K^{\perp}) \cap \operatorname{Gr}_{\mathbf{2}}(V^*) = \emptyset.$

THEOREM

For any integer *m* with $0 \le m \le {n \choose 2}$, where $n = \dim V$, the set

 $U_{n,m} = \left\{ K \in \operatorname{Gr}_m(V \wedge V) \mid \mathcal{R}(V, K) = 0 \right\}$

is Zariski open. Moreover, this set is non-empty if and only if $m \ge 2n - 3$, in which case there is an integer q = q(n, m) such that $\mathcal{B}_q(V, K) = 0$, for every $K \in U_{n,m}$.

RESONANCE VARIETIES OF GROUPS

• The resonance variety of a f.g. group G:

 $\mathcal{R}(\mathbf{G}) = \mathcal{R}(\mathbf{V}, \mathbf{K}),$

where $V^* = H^1(G, \mathbb{C})$ and $K^{\perp} = \ker(\cup_G : V^* \wedge V^* \to H^2(G, \mathbb{C})).$

• Rationally, every resonance variety arises in this fashion:

PROPOSITION

Let V be a finite-dimensional \mathbb{C} -vector space, and let $K \subseteq V \land V$ be a linear subspace, defined over \mathbb{Q} . Then, there is a finitely presented, commutator-relators group G with $V^* = H^1(G, \mathbb{C})$ and $K^{\perp} = \ker(\cup_G)$.

• $\mathcal{R} = \mathcal{R}(\mathbf{G})$ is an approximation to $\mathcal{V} = \mathcal{V}(\mathbf{G})$.

THEOREM (LIBGOBER, DIMCA-PAPADIMA-S.)

Let $\mathsf{TC}_1(\mathcal{V})$ be the tangent cone to \mathcal{V} at 1, viewed as a subset of $T_1(\widehat{G}) = H^1(G, \mathbb{C})$. Then $\mathsf{TC}_1(\mathcal{V}) \subseteq \mathcal{R}$. Moreover, if G is 1-formal, then equality holds, and \mathcal{R} is a union of rational subspaces.

ALEX SUCIU (NORTHEASTERN)

HOMOLOGY IN THE JOHNSON FILTRATION

EXAMPLE (RIGHT-ANGLED ARTIN GROUPS)

Let $\Gamma = (V, E)$ be a (finite, simple) graph. The corresponding *right-angled Artin group* is

 $G_{\Gamma} = \langle \mathbf{v} \in \mathsf{V} \mid \mathbf{v}\mathbf{w} = \mathbf{w}\mathbf{v} \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathsf{E} \rangle.$

• $V = H_1(G_{\Gamma}, \mathbb{C})$ is the vector space spanned by V.

- $K \subseteq V \land V$ is spanned by $\{v \land w \mid \{v, w\} \in \mathsf{E}\}$.
- A = A(V, K) is the exterior Stanley–Reisner ring of Γ .
- R(G_Γ) is the union of all coordinate subspaces C^W ⊂ C^V, taken over all W ⊂ V for which the induced graph Γ_W is disconnected.

•
$$\sum_{q \ge 0} \dim_{\mathbb{C}}(\mathcal{B}_q) t^{q+2} = Q_{\Gamma}(t/(1-t))$$
, where
 $Q_{\Gamma}(t) = \sum_{k \ge 0} \sum_{W \subset V: |W| = k} \tilde{b}_0(\Gamma_W) t^k$.

ROOTS, WEIGHTS, AND VANISHING RESONANCE

- Let g be a complex, semisimple Lie algebra.
- Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ and a set of simple roots $\Delta \subset \mathfrak{h}^*$.
- $\bullet\,$ Let (,) be the inner product on \mathfrak{h}^* defined by the Killing form.
- Each simple root β ∈ Δ gives rise to elements x_β, y_β ∈ g and h_β ∈ h which generate a subalgebra of g isomorphic to sl₂(C).
- Each irreducible representation of g is of the form V(λ), where λ is a dominant weight.
- A non-zero vector v ∈ V(λ) is a maximal vector (of weight λ) if x_β · v = 0, for all β ∈ Δ. Such a vector is uniquely determined (up to non-zero scalars), and is denoted by v_λ.

Lemma

The representation $V(\lambda) \wedge V(\lambda)$ contains a direct summand isomorphic to $V(2\lambda - \beta)$, for some simple root β , if and only if $(\lambda, \beta) \neq 0$. When it exists, such a summand is unique.

THEOREM

Let $V = V(\lambda)$ be an irreducible g-module, and let $K \subset V \land V$ be a submodule. Let $V^* = V(\lambda^*)$ be the dual module, and let v_{λ^*} be a maximal vector for V^* .

- Suppose there is a root β ∈ Δ such that (λ*, β) ≠ 0, and suppose the vector v_{λ*} ∧ y_βv_{λ*} (of weight 2λ* − β) belongs to K[⊥]. Then R(V, K) ≠ 0.
- 2 Suppose that $2\lambda^* \beta$ is not a dominant weight for K^{\perp} , for any simple root β . Then $\mathcal{R}(V, K) = 0$.

COROLLARY

 $\mathcal{R}(V, K) = 0$ if and only if $2\lambda^* - \beta$ is not a dominant weight for K^{\perp} , for any simple root β such that $(\lambda^*, \beta) \neq 0$.

The case of $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$

- h* is spanned t₁ and t₂ (the dual coordinates on the subspace of diagonal 2 × 2 complex matrices), subject to t₁ + t₂ = 0.
- There is a single simple root, $\beta = t_1 t_2$.
- The defining representation is $V(\lambda_1)$, where $\lambda_1 = t_1$.
- The irreps are of the form

$$V_n = V(n\lambda_1) = \operatorname{Sym}_n(V(\lambda_1)),$$

for some $n \ge 0$. Moreover, dim $V_n = n + 1$ and $V_n^* = V_n$.

• The second exterior power of *V_n* decomposes into irreducibles, according to the Clebsch-Gordan rule:

$$V_n \wedge V_n = \bigoplus_{j \ge 0} V_{2n-2-4j}.$$

These summands occur with multiplicity 1, and V_{2n-2} is always one of those summands.

PROPOSITION

Let *K* be an $\mathfrak{sl}_2(\mathbb{C})$ -submodule of $V_n \wedge V_n$. TFAE:

- **1** The variety $\mathcal{R}(V_n, K)$ consists only of $0 \in V_n^*$.
- ② The \mathbb{C} -vector space $\mathcal{B}(V_n, K)$ is finite-dimensional.
- ③ The representation K contains V_{2n-2} as a direct summand.

The Sym(V_n)-modules $W(n) = \mathcal{B}(V_n, V_{2n-2})$ were studied by Weyman and Eisenbud (1990). We strengthen one of their results:

COROLLARY

For any $\mathfrak{sl}_2(\mathbb{C})$ -submodule $K \subset V_n \wedge V_n$, the Koszul module $\mathcal{B}(V_n, K)$ is finite-dimensional over \mathbb{C} if and only if $\mathcal{B}(V_n, K)$ is a quotient of W(n).

Open problem: compute Hilb(W(n)). The vanishing of $W_{n-2}(n)$, for all $n \ge 1$, would imply the generic Green Conjecture on free resolutions of canonical curves.

AUTOMORPHISM GROUPS OF FREE GROUPS

- Identify $(F_n)_{ab} = \mathbb{Z}^n$, and $\operatorname{Aut}(\mathbb{Z}^n) = \operatorname{GL}_n(\mathbb{Z})$. The morphism $\operatorname{Aut}(F_n) \to \operatorname{GL}_n(\mathbb{Z})$ is onto; thus, $\mathcal{A}(F_n) = \operatorname{GL}_n(\mathbb{Z})$.
- Denote the Torelli group by IA_n = T_{Fn}, and the Johnson–Andreadakis filtration by J^s_n = F^s(Aut(F_n)).
- Magnus [1934]: IA_n is generated by the automorphisms

$$\alpha_{ij}: \begin{cases} x_i \mapsto x_j x_i x_j^{-1} \\ x_\ell \mapsto x_\ell \end{cases} \qquad \alpha_{ijk}: \begin{cases} x_i \mapsto x_i \cdot (x_j, x_k) \\ x_\ell \mapsto x_\ell \end{cases}$$

with $1 \leq i \neq j \neq k \leq n$.

- Thus, $IA_1 = \{1\}$ and $IA_2 = Inn(F_2) \cong F_2$ are finitely presented.
- Krstić and McCool [1997]: IA₃ is not finitely presentable.
- It is not known whether IA_n admits a finite presentation for $n \ge 4$.

Nevertheless, IA_n has some interesting finitely presented subgroups:

- The McCool group of "pure symmetric" automorphisms, $P\Sigma_n$, generated by α_{ij} , $1 \le i \ne j \le n$.
- The "upper triangular" McCool group, PΣ⁺_n, generated by α_{ij}, i > j. Cohen, Pakianathan, Vershinin, and Wu [2008]:
 PΣ⁺_n = F_{n-1} ⋊ ··· ⋊ F₂ ⋊ F₁, with extensions by IA-automorphisms.
- The pure braid group, *P_n*, consisting of those automorphisms in PΣ_n that leave the word *x*₁ · · · *x_n* ∈ *F_n* invariant.
 P_n = *F_{n-1}* ⋊ · · · ⋊ *F*₂ ⋊ *F*₁, with extensions by pure braid automorphisms.

THE TORELLI GROUP OF F_n

Let $\mathcal{T}_{F_n} = J_n^1 = IA_n$ be the Torelli group of F_n . Recall we have an equivariant $GL_n(\mathbb{Z})$ -homomorphism,

 $J: \operatorname{gr}_F(\operatorname{IA}_n) \to \operatorname{Der}(\mathcal{L}_n),$

In degree 1, this can be written as

 $J: \operatorname{gr}^1_F(\operatorname{IA}_n) \to H^* \otimes (H \wedge H),$

where $H = (F_n)_{ab} = \mathbb{Z}^n$, viewed as a $GL_n(\mathbb{Z})$ -module via the defining representation. Composing with ι_F , we get a homomorphism

$$J \circ \iota_F \colon (\mathsf{IA}_n)_{\mathsf{ab}} \longrightarrow H^* \otimes (H \wedge H)$$
.

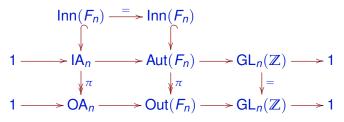
THEOREM (ANDREADAKIS, COHEN–PAKIANATHAN, FARB, KAWAZUMI)

For each $n \ge 3$, the map $J \circ \iota_F$ is a $GL_n(\mathbb{Z})$ -equivariant isomorphism.

25 / 32

Thus, $H_1(IA_n, \mathbb{Z})$ is free abelian, of rank $b_1(IA_n) = n^2(n-1)/2$.

We have a commuting diagram,



- Thus, $OA_n = \widetilde{\mathcal{T}}_{F_n}$.
- Write the induced Johnson filtration on $Out(F_n)$ as $\widetilde{J}_n^s = \pi(J_n^s)$.
- GL_n(ℤ) acts on (OA_n)_{ab}, and the outer Johnson homomorphism defines a GL_n(ℤ)-equivariant isomorphism

$$\widetilde{J} \circ \iota_{\widetilde{F}} \colon (\mathsf{OA}_n)_{\mathsf{ab}} \xrightarrow{\cong} H^* \otimes (H \wedge H) / H$$
.

• Moreover, $\widetilde{J}_n^2 = OA'_n$, and we have an exact sequence

$$1 \longrightarrow F'_n \xrightarrow{\operatorname{Ad}} \mathsf{IA}'_n \longrightarrow \mathsf{OA}'_n \longrightarrow 1 .$$

ALEX SUCIU (NORTHEASTERN)

HOMOLOGY IN THE JOHNSON FILTRATION

DEEPER INTO THE JOHNSON FILTRATION

CONJECTURE (F. COHEN, A. HEAP, A. PETTET 2010)

If $n \ge 3$, $s \ge 2$, and $1 \le i \le n-2$, the cohomology group $H^i(J_n^s, \mathbb{Z})$ is not finitely generated.

We disprove this conjecture, at least rationally, in the case when $n \ge 5$, s = 2, and i = 1.

THEOREM

If $n \ge 5$, then $\dim_{\mathbb{Q}} H^1(J_n^2, \mathbb{Q}) < \infty$.

To start with, note that $J_n^2 = IA'_n$. Thus, it remains to prove that $b_1(IA'_n) < \infty$, i.e., $(IA'_n/IA''_n) \otimes \mathbb{Q}$ is finite dimensional.

REPRESENTATIONS OF $\mathfrak{sl}_n(\mathbb{C})$

- \mathfrak{h} : the Cartan subalgebra of $\mathfrak{gl}_n(\mathbb{C})$, with coordinates t_1, \ldots, t_n .
- $\Delta = \{t_i t_{i+1} \mid 1 \leq i \leq n-1\}.$
- $\lambda_i = t_1 + \cdots + t_i$.
- V(λ): the irreducible, finite dimensional representation of sl_n(ℂ) with highest weight λ = ∑_{i < n} a_iλ_i, with a_i ∈ ℤ_{≥0}.

Set $H_{\mathbb{C}} = H_1(F_n, \mathbb{C}) = \mathbb{C}^n$, and

$$V^* := H^1(\mathsf{OA}_n, \mathbb{C}) = H_{\mathbb{C}} \otimes (H_{\mathbb{C}}^* \wedge H_{\mathbb{C}}^*) / H_{\mathbb{C}}^*.$$

$$K^{\perp} := \ker \big(\cup \colon V^* \wedge V^* \to H^2(\mathsf{OA}_n, \mathbb{C}) \big).$$

THEOREM (PETTET 2005)

Let $n \ge 4$. Set $\lambda = \lambda_2 + \lambda_{n-1}$ (so that $\lambda^* = \lambda_1 + \lambda_{n-2}$) and $\mu = \lambda_1 + \lambda_{n-2} + \lambda_{n-1}$. Then $V^* = V(\lambda^*)$ and $K^{\perp} = V(\mu)$, as $\mathfrak{sl}_n(\mathbb{C})$ -modules.

THEOREM

For each $n \ge 4$, the resonance variety $\mathcal{R}(OA_n)$ vanishes.

PROOF. $2\lambda^* - \mu = t_1 - t_{n-1}$ is not a simple root. Thus, $\mathcal{R}(V, K) = 0$.

Remark

When n = 3, the proof breaks down, since $t_1 - t_2$ is a simple root. In fact, $K^{\perp} = V^* \wedge V^*$ in this case, and so $\mathcal{R}(V, K) = V^*$.

COROLLARY

For each $n \ge 4$, let $V = V(\lambda_2 + \lambda_{n-1})$ and let $K^{\perp} = V(\lambda_1 + \lambda_{n-2} + \lambda_{n-1}) \subset V^* \land V^*$ be the Pettet summand. Then dim $\mathcal{B}(V, K) < \infty$ and dim $\operatorname{gr}_q \mathcal{B}(OA_n) \le \dim \mathcal{B}_q(V, K)$, for all $q \ge 0$. Using now a result of Dimca–Papadima (2013) on the "geometric irreducibility" of representations of arithmetic groups, we obtain:

THEOREM

If $n \ge 4$, then $\mathcal{V}(OA_n)$ is finite, and so $b_1(OA'_n) < \infty$.

Finally,

THEOREM

```
If n \ge 5, then b_1(IA'_n) < \infty.
```

PROOF.

The spectral sequence of the extension $1 \rightarrow F'_n \rightarrow IA'_n \rightarrow OA'_n \rightarrow 1$ gives rise to the exact sequence

 $H_1(F'_n,\mathbb{C})_{\mathsf{IA}'_n} \longrightarrow H_1(\mathsf{IA}'_n,\mathbb{C}) \longrightarrow H_1(\mathsf{OA}'_n,\mathbb{C}) \longrightarrow 0 \;.$

The last term is finite-dimensional for all $n \ge 4$, by previous theorem. The first term is finite-dimensional for all $n \ge 5$, by nilpotency of the action of $|A'_n$ on F'_n/F''_n .

TORELLI GROUPS OF SURFACES

- Let Σ_g be a Riemann surface of genus g, and let $\mathcal{T}_g = \mathcal{T}_{\pi_1(\Sigma_g)}$.
- T_1 is trivial, T_2 is not finitely generated.
- So assume $g \ge 3$, in which case \mathcal{T}_g is finitely generated.
- $\operatorname{Out}^+(\pi_1(\Sigma_g)) \to \operatorname{Sp}_{2g}(\mathbb{Z})$ is surjective; thus, there is a natural $\operatorname{Sp}_{2g}(\mathbb{Z})$ -action on $V = H_1(\mathcal{T}_g, \mathbb{C})$. This action extends to a rational irrep of $\operatorname{Sp}_{2g}(\mathbb{C})$, and thus, of $\mathfrak{sp}_{2g}(\mathbb{C})$.
- Dominant weights: $\lambda_i = t_1 + \cdots + t_i$, for $1 \le i \le g$.
- Let $V^* = H^1(\mathcal{T}_g, \mathbb{C})$, and let $K^{\perp} = \ker(\cup) \subset V^* \land V^*$.
- Hain (1997): V* = V(λ₃) and K[⊥] = V(2λ₂) ⊕ V(0). Moreover, the decomposition of V* ∧ V* into irreps is multiplicity-free.

THEOREM

 $\mathcal{R}(\mathcal{T}_g) = 0$, for each $g \ge 4$.

PROOF.

- Simple roots: $\Delta = \{t_1 t_2, t_2 t_3, \dots, t_{g-1} t_g, 2t_g\}.$
- The only $\beta \in \Delta$ for which $(\lambda_3, \beta) \neq 0$ is $\beta = t_3 t_4$.
- Clearly, $2\lambda_3 \beta = \lambda_2 + \lambda_4$ is not a dominant weight for K^{\perp} .
- Hence, $\mathcal{R}(V, K) = 0$.

Let $K_g \subset T_g$ be the "Johnson kernel", i.e., the subgroup generated by Dehn twists about separating curves on Σ_g . The above result (and some more work) implies the following:

THEOREM (DIMCA–PAPADIMA 2013)

 $H_1(K_g, \mathbb{C})$ is finite-dimensional, for each $g \ge 4$.