COMPLEX GEOMETRY AND 3-DIMENSIONAL TOPOLOGY

Alex Suciu

Northeastern University

Workshop on Geometric Group Theory and Geometric Topology
 University of Virginia

October 17, 2015

FUNDAMENTAL GROUPS OF MANIFOLDS

- Every finitely presented group π can be realized as $\pi=\pi_{1}(M)$, for some smooth, compact, connected manifold M^{n} of $\operatorname{dim} n \geqslant 4$.
- M^{n} can be chosen to be orientable.
- If n even, $n \geqslant 4$, then M^{n} can be chosen to be symplectic (Gompf).
- If n even, $n \geqslant 6$, then M^{n} can be chosen to be complex (Taubes).
- Requiring that $n=3$ puts severe restrictions on the (closed) 3-manifold group $\pi=\pi_{1}\left(M^{3}\right)$.

KÄHLER GROUPS \& 3-MANIFOLD GROUPS

- A Kähler manifold is a compact, connected, complex manifold, with a Hermitian metric h such that $\omega=\operatorname{im}(h)$ is a closed 2 -form.
- Examples: smooth, complex projective varieties.
- If M is a Kähler manifold, $\pi=\pi_{1}(M)$ is called a Kähler group.
- This also puts strong restrictions on π, e.g.:
- $b_{1}(\pi)$ is even (Hodge theory)
- π is 1 -formal: Malcev Lie algebra $\mathfrak{m}(\pi)$ is quadratic (DGMS 1975)
- π cannot split non-trivially as a free product (Gromov 1989)
- π finite $\Rightarrow \pi$ projective group (Serre 1958).

QUESTION (DONALDSON-GOLDMAN 1989)
Which 3-manifold groups are Kähler groups?
Reznikov (2002) gave a partial solution.

Theorem (Dimca-S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a Kähler group $\Longleftrightarrow \pi$ is a finite subgroup of $\mathrm{O}(4)$, acting freely on S^{3}.

Alternative proofs have since been given by Kotschick (2012) and by Biswas, Mj and Seshadri (2012).

THEOREM (FRIEDL-S. 2013)
Let N be a 3-manifold with non-empty, toroidal boundary. If $\pi_{1}(N)$ is a Kähler group, then $N \cong S^{1} \times S^{1} \times I$.

Since then, Kotschick has generalized this result, by dropping the toroidal boundary assumption:

THEOREM (KOTsCHICK 2013)
If $\pi_{1}(N)$ is an infinite Kähler group, then $\pi_{1}(N)$ is a surface group.

QUASI-PROJECTIVE GROUPS \& 3-MANIFOLD GROUPS

- A group π is called a quasi-projective group if $\pi=\pi_{1}(M \backslash D)$, where M is a smooth, projective variety and D is a divisor.
- Qp groups are finitely presented. The class of qp groups is closed under direct products and passing to finite-index subgroups.
- For a qp group π,
- $b_{1}(\pi)$ can be arbitrary (e.g., the free groups F_{n}).
- π may be non-1-formal (e.g., the Heisenberg group).
- π can split as a non-trivial free product.
- Subclass: fundamental groups of complements of hypersurfaces in $\mathbb{C P}^{n}$, or, equivalently, fundamental groups of complements of plane algebraic curves.
- Such groups are 1-formal.

QUESTION (DIMCA-S. 2009)

Which 3-manifold groups are quasi-projective groups?

Theorem (Dimca-Papadima-S. 2011)
Let π be the fundamental group of a closed, orientable 3-manifold. Assume π is 1 -formal. Then the following are equivalent:
(1) $\mathfrak{m}(\pi) \cong \mathfrak{m}\left(\pi_{1}(X)\right)$, for some quasi-projective manifold X.
(2) $\mathfrak{m}(\pi) \cong \mathfrak{m}\left(\pi_{1}(N)\right)$, where N is either $S^{3}, \#^{n} S^{1} \times S^{2}$, or $S^{1} \times \Sigma_{g}$.

Joint work with Stefan Friedl (2013)

Abstract

Theorem Let N be a 3-mfd with empty or toroidal boundary. If $\pi_{1}(N)$ is a quasiprojective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with empty or toroidal boundary is never a qp-group.

Alexander polynomials

- Let H be a finitely generated, free abelian group.
- Let M be a finitely generated module over $\Lambda=\mathbb{Z}[H]$. Pick a presentation $\Lambda^{p} \xrightarrow{\alpha} \Lambda^{s} \longrightarrow M \longrightarrow 0$ with $p \geqslant s$.
- Let $E_{k}(M)$ be the ideal of minors of size $s-k$ of α, and set

$$
\operatorname{ord}^{k}(M):=\operatorname{gcd}\left(E_{k}(M)\right) \in \Lambda
$$

(well-defined up to units in Λ).

- $M=\Lambda^{r} \oplus \operatorname{Tors}(M)$ and set

$$
\Delta_{M}^{r}:=\operatorname{ord}^{0}(\text { Tors } M) .
$$

- Define the thickness of M as

$$
\operatorname{th}(M)=\operatorname{dim} \operatorname{Newt}\left(\Delta_{M}^{r}\right) .
$$

- Let X be a finite, conn. CW-complex. Write $H:=H_{1}(X ; \mathbb{Z}) /$ Tors.
- Alexander invariant: $A_{X}=H_{1}(X ; \mathbb{Z}[H])$.
- Alexander polynomials: $\Delta_{X}^{k}=\operatorname{ord}^{k}\left(A_{X}\right)$; usual one: $\Delta=\Delta^{0}$.
- Set th $(X):=\operatorname{th}\left(A_{X}\right)$. Note: $\operatorname{th}(X)=\operatorname{th}\left(\pi_{1}(X)\right)$.
- Let $\hat{H}=\operatorname{Hom}\left(H, \mathbb{C}^{*}\right)$ be the character torus. Define hypersurfaces

$$
V\left(\Delta_{X}^{k}\right)=\left\{\rho \in \hat{H} \mid \Delta_{X}^{k}(\rho)=0\right\}
$$

- If $X=S^{3} \backslash K$, then Δ_{X} is the classical Alexander polynomial of K, and $V\left(\Delta_{X}^{k}\right) \subset \mathbb{C}^{*}$ is the set of roots of Δ_{X}, of multiplicity at least k.
- Also define the (degree 1) characteristic varieties of X as

$$
\mathcal{V}_{k}(X)=\left\{\rho \in \hat{H} \mid \operatorname{dim} H_{1}\left(X, \mathbb{C}_{\rho}\right) \geqslant k\right\},
$$

where $\mathbb{C}_{\rho}=\mathbb{C}$, viewed as a module over $\mathbb{Z} H$, via $g \cdot x=\rho(g) x$.

- We then have: $\mathcal{V}_{k}(X) \backslash\{1\}=V\left(E_{k-1}\left(A_{X}\right)\right) \backslash\{1\}$.

Let $\check{\mathcal{V}}_{k}(X)$ be the union of all codim 1 irreducible components of $\mathcal{V}_{k}(X)$.

LEMMA (DPS08 FOR $k=0$, FS13 FOR $k>0$)

(1) $\Delta_{X}^{k-1}=0$ if and only if $\mathcal{V}_{k}(X)=\hat{H}$, in which case $\check{\mathcal{V}}_{k}(X)=\varnothing$.
(2) Suppose $b_{1}(X) \geqslant 1$ and $\Delta_{X}^{k-1} \neq 0$. Then at least away from 1 ,

$$
\check{\mathcal{V}}_{k}(X)=V\left(\Delta_{X}^{k-1}\right)
$$

Theorem (DPS, FS)

Suppose $b_{1}(X) \geqslant 2$. Then $\Delta_{X}^{k-1} \doteq$ const if and only if $\check{\mathcal{V}}_{k}(X)=\varnothing$. Otherwise, the following are equivalent:
(1) The Newton polytope of Δ_{X}^{k-1} is a line segment.
(2) All irreducible components of $\check{\mathcal{V}}_{k}(X)$ are parallel, codim 1 subtori of \hat{H}.

The next theorem is due to Arapura (1997), with improvements by DPS $(2008,2009)$ and Artal-Bartolo, Cogolludo, Matei (2010).

THEOREM

Let π be a quasi-projective group. Then, for each $k \geqslant 1$,

- The irreducible components of $\mathcal{V}_{k}(\pi)$ are (possibly torsion-translated) subtori of the character torus \hat{H}.
- Any two distinct components of $\mathcal{V}_{k}(\pi)$ meet in a finite set.

Using this theorem, we prove

$$
\text { THEOREM (DPS08 FOR } k=0, \text { FS13 FOR } k>0)
$$

Let π be a quasi-projective group, and assume $b_{1}(\pi) \neq 2$. Then, for each $k \geqslant 0$, the polynomial Δ_{π}^{k} is either zero, or the Newton polytope of Δ_{π}^{k} is a point or a line segment. In particular, $\operatorname{th}(\pi) \leqslant 1$.

Thurston norm and Alexander norm

- Let N be a 3-manifold with either empty or toroidal boundary.
- A class $\phi \in H^{1}(N ; \mathbb{Z})=\operatorname{Hom}\left(\pi_{1}(N), \mathbb{Z}\right)$ is fibered if there exists a fibration $p: N \rightarrow S^{1}$ such that $p_{*}: \pi_{1}(N) \rightarrow \mathbb{Z}$ coincides with ϕ.
- Given a surface Σ with connected components $\Sigma_{1}, \ldots, \Sigma_{s}$, put $\chi_{-}(\Sigma)=\sum_{i=1}^{S} \max \left\{-\chi\left(\Sigma_{i}\right), 0\right\}$.
- Thurston norm: $\|\phi\|_{T}=\min \left\{\chi_{-}(\Sigma)\right\}$, where Σ runs through all the properly embedded surfaces dual to ϕ.
- $\|-\|_{T}$ defines a (semi)norm on $H^{1}(N ; \mathbb{Z})$, which can be extended to a (semi)norm $\|-\|_{T}$ on $H^{1}(N ; Q)$.
- The unit norm ball, $B_{T}=\left\{\phi \in H^{1}(N ; Q) \mid\|\phi\|_{T} \leqslant 1\right\}$, is a rational polyhedron with finitely many sides, symmetric in the origin.
- The set of fibered classes form a cone on certain open, top-dimensional faces of B_{T}, called the fibered faces of B_{T}.
- Two faces F and G are equivalent if $F= \pm G$. Clearly, F is fibered if and only if $-F$ is fibered.

We say $\phi \in H^{1}(N ; \mathbb{Q})$ is quasi-fibered if it lies on the boundary of a fibered face of B_{T}. Results of Stallings (1962) and Gabai (1983) imply

COROLLARY (FS13)
Let $p: N^{\prime} \rightarrow N$ be a finite cover. Then:
(1) $\phi \in H^{1}(N ; \mathbb{Q})$ quasi-fibered $\Rightarrow p^{*}(\phi) \in H^{1}\left(N^{\prime} ; \mathbb{Q}\right)$ quasi-fibered.
(2) Pull-backs of inequivalent faces of the Thurston norm ball of N lie on inequivalent faces of the Thurston norm ball of N^{\prime}.

- Let $\Delta_{N}=\sum_{h \in H} a_{h} h \in \mathbb{Z}[H]$ be the Alexander polynomial of N.
- Define a (semi)norm $\|-\|_{A}$ on $H^{1}(N ; \mathbb{Q})$ by

$$
\|\phi\|_{A}:=\max \left\{\phi\left(a_{h}\right)-\phi\left(a_{g}\right) \mid g, h \in H \text { with } a_{g} \neq 0 \text { and } a_{h} \neq 0\right\} .
$$

THEOREM (MCMULLEN 2002)

Let N be a 3-manifold with empty or toroidal boundary and such that $b_{1}(N) \geqslant 2$. Then $\|\phi\|_{A} \leqslant\|\phi\|_{T}$, for any $\phi \in H^{1}(N ; \mathbb{Q})$. Furthermore, equality holds for any quasi-fibered class.

COROLLARY (FS13)
Let N be a 3-manifold with empty or toroidal boundary.

- If there is a fibration $F \rightarrow N \rightarrow S^{1}$ with $\chi(F)<0$, then $\operatorname{th}(N) \geqslant 1$.
- If N has at least two non-equivalent fibered faces, then $\operatorname{th}(N) \geqslant 2$.

The RFRS PROPERTY

Definition (Agol 2008)

A group π is called residually finite rationally solvable (RFRS) if there is a filtration $\pi=\pi_{0} \geqslant \pi_{1} \geqslant \pi_{2} \geqslant \cdots$ such that $\bigcap_{i} \pi_{i}=\{1\}$, and

- Each group π_{i} is a normal, finite-index subgroup of π.
- Each map $\pi_{i} \rightarrow \pi_{i} / \pi_{i+1}$ factors through $\pi_{i} \rightarrow H_{1}\left(\pi_{i} ; \mathbb{Z}\right) /$ Tors.
E.g., free groups and surface groups are RFRS.

Theorem (Agol 2008)
Let N be an irreducible 3-manifold such that $\pi_{1}(N)$ is virtually RFRS. Let $\phi \in H^{1}(N ; Q)$ be a non-fibered class. There exists then a finite cover $p: N^{\prime} \rightarrow N$ such that $p^{*}(\phi) \in H^{1}\left(N^{\prime} ; Q\right)$ is quasi-fibered.

Assume N is an irreducible 3-manifold with empty or toroidal boundary.
Theorem (Agol, Wise, Przytycki- Wise, . . .)
If N is not a closed graph manifold, then $\pi_{1}(N)$ is virtually RFRS.
Corollary
If N is not a closed graph manifold, then N is virtually fibered.
Theorem (Agol, Wise, ...)
Suppose N is neither $S^{1} \times D^{2}$, nor $T^{2} \times I$, nor finitely cover by a torus bundle. Then, $\forall k \in \mathbb{N}$, there is a finite cover $N^{\prime} \rightarrow N$ s.t. $b_{1}\left(N^{\prime}\right) \geqslant k$.

THEOREM

Suppose N is not a graph manifold. Given any $k \in \mathbb{N}$, there exists a finite cover $N^{\prime} \rightarrow N$ such that the Thurston norm ball of N^{\prime} has at least k non-equivalent fibered faces.

QUASI-PROJECTIVE 3-MANIFOLD GROUPS

Theorem (FS13)

Suppose N is not a graph manifold. There exists then a finite cover $N^{\prime} \rightarrow N$ with th $\left(N^{\prime}\right) \geqslant 2$ and $b_{1}\left(N^{\prime}\right) \geqslant 3$.

Proof.

- Since N is not a graph manifold, it admits finite covers with arbitrarily large first Betti numbers.
- We can thus assume that $b_{1}(N) \geqslant 3$.
- There exists a finite cover $N^{\prime} \rightarrow N$ such that the Thurston norm ball of N^{\prime} has at least 2 non-equivalent fibered faces.
- A transfer argument shows that $b_{1}\left(N^{\prime}\right) \geqslant b_{1}(N) \geqslant 3$.
- Hence, th $\left(N^{\prime}\right) \geqslant 2$.

We can now prove our theorem in the case when N is irreducible.

THEOREM (FS13)

Let N be an irreducible 3-manifold with empty or toroidal boundary. If N is not a graph manifold, then $\pi_{1}(N)$ is not a quasi-projective group.

Proof.

- Suppose $\pi_{1}(N)$ is a qp group.
- We know there is a finite cover $N^{\prime} \rightarrow N$ with $\operatorname{th}\left(N^{\prime}\right) \geqslant 2$ and $b_{1}\left(N^{\prime}\right) \geqslant 3$.
- On the other hand, $\pi_{1}\left(N^{\prime}\right)$ is also a qp group.
- Hence, either $b_{1}\left(N^{\prime}\right)=2$, or $\operatorname{th}\left(N^{\prime}\right) \leqslant 1$.
- This is a contradiction.

The case when N has several prime factors is more complicated, but can be handled with similar techniques.

Plane algebraic curves

- Let $\mathcal{C} \subset \mathbb{C P}^{2}$ be a plane algebraic curve, defined by a homogeneous polynomial $f \in \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]$.
- Zariski commissioned Van Kampen to find a presentation for the fundamental group of the complement, $U(\mathcal{C})=\mathbb{C P}^{2} \backslash \mathcal{C}$.
- Zariski noticed that $\pi=\pi_{1}(U)$ is not fully determined by the combinatorics of \mathcal{C}, but depends on the position of its singularities.
- He asked whether π is residually finite, i.e., whether the map to its profinite completion, $\pi \rightarrow \hat{\pi}=: \pi^{\text {alg }}$, is injective.

LINE ARRANGEMENTS

- Let \mathcal{A} be an arrangement of lines in CP^{2}, defined by a polynomial $f=\prod_{L \in \mathcal{A}} f_{L}$, with f_{L} linear forms so that $L=\mathbb{P}\left(\operatorname{ker}\left(f_{L}\right)\right)$.
- The combinatorics of \mathcal{A} is encoded in the intersection poset, $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}_{1}(\mathcal{A})=\{$ lines $\}$ and $\mathcal{L}_{2}(\mathcal{A})=\{$ intersection points $\}$.

- The group $\pi=\pi_{1}(U(\mathcal{A}))$ has a finite presentation with
- Meridional generators x_{1}, \ldots, x_{n}, where $n=|\mathcal{A}|$, and $\prod x_{i}=1$.
- Commutator relators $x_{i} \alpha_{j}\left(x_{i}\right)^{-1}$, where $\alpha_{1}, \ldots \alpha_{s} \in P_{n} \subset \operatorname{Aut}\left(F_{n}\right)$, and $s=\left|\mathcal{L}_{2}(\mathcal{A})\right|$.
- Let $\pi / \gamma_{k}(\pi)$ be the $(k-1)^{\text {th }}$ nilpotent quotient of π. Then:
- $\pi_{\mathrm{ab}}=\pi / \gamma_{2}$ equals \mathbb{Z}^{n-1}.
- π / γ_{3} is determined by $L(\mathcal{A})$.
- π / γ_{4} (and thus, π) is not determined by $L(\mathcal{A})$. (Rybnikov).

THEOREM (S. 2011)

Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, with group $\pi=\pi_{1}(U(\mathcal{A}))$. The following are equivalent:
(1) π is a Kähler group.
(2) π is a free abelian group of even rank.
(3) \mathcal{A} consists of an odd number of lines in general position.

THEOREM (DPS 2009)

Let Γ be a finite simple graph, and A_{Γ} the corresponding RAAG. Then:
(1) A_{Γ} is a quasi-projective group if and only if Γ is a complete multipartite graph $K_{n_{1}, \ldots, n_{r}}=\bar{K}_{n_{1}} * \ldots * \bar{K}_{n_{r}}$, in which case $A_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$.
(2) A_{Γ} is a Kähler group if and only if Γ is a complete graph $K_{2 m}$, in which case $G_{\Gamma}=\mathbb{Z}^{2 m}$.

THEOREM (S. 2011)
Let $\pi=\pi_{1}(U(\mathcal{A}))$. The following are equivalent:
(1) π is a RAAG.
(2) π is a finite direct product of finitely generated free groups.
(3) $\mathcal{G}(\mathcal{A})$ is a forest.

Here $\mathcal{G}(\mathcal{A})$ is the 'multiplicity' graph, with

- vertices: points $P \in \mathcal{L}_{2}(\mathcal{A})$ with multiplicity at least 3;
- edges: $\{P, Q\}$ if $P, Q \in L$, for some $L \in \mathcal{A}$.

THE RFRp PROPERTY

Joint work with Thomas Koberda (in progress)
Let G be a finitely generated group and let p be a prime.
We say that G is residually finite rationally p if there exists a sequence of subgroups $G=G_{0}>\cdots>G_{i}>G_{i+1}>\cdots$ such that
(1) $G_{i+1} \triangleleft G_{i}$.
(2) $\bigcap_{i \geqslant 0} G_{i}=\{1\}$.
(3) G_{i} / G_{i+1} is an elementary abelian p-group.
(4) $\operatorname{ker}\left(G_{i} \rightarrow H_{1}\left(G_{i}, Q\right)\right)<G_{i+1}$.

Remarks:

- May assume each $G_{i} \triangleleft G$.
- Compare with Agol's RFRS property, where G_{i} / G_{i+1} only finite.
- G RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite and residually nilpotent.
- G RFRp \Rightarrow RFRS \Rightarrow torsion-free.
- The class of RFRp groups is closed under the following operations:
- Taking subgroups.
- Finite direct products.
- Finite free products.
- The following groups are RFRp, for all p :
- Finitely generated free groups.
- Closed, orientable surface groups.
- Right-angled Artin groups.

BOUNDARY MANIFOLDS

- Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, and let N be a regular neighborhood of $\bigcup_{L \in \mathcal{A}} L$.
- The boundary manifold of \mathcal{A} is $M=\partial N$, a compact, orientable, smooth manifold of dimension 3 .

ExAMPLE

Let \mathcal{A} be a pencil of n lines in CP^{2}, defined by $f=z_{1}^{n}-z_{2}^{n}$. If $n=1$, then $M=S^{3}$. If $n>1$, then $M=\sharp^{n-1} S^{1} \times S^{2}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n lines in CP^{2}, defined by $f=z_{1}\left(z_{2}^{n-1}-z_{3}^{n-1}\right)$. Then $M=S^{1} \times \Sigma_{n-2}$, where $\Sigma_{g}=\sharp^{9} S^{1} \times S^{1}$.

- $M=M_{\Gamma}$ is a graph-manifold.
- The graph Γ is the incidence graph of \mathcal{A}, with vertex set $V(\Gamma)=L_{1}(\mathcal{A}) \cup L_{2}(\mathcal{A})$ and edge set $E(\Gamma)=\{(L, P) \mid P \in L\}$.
- For each $v \in V(\Gamma)$, there is a vertex manifold $M_{v}=S^{1} \times S_{v}$, with $S_{V}=S^{2} \backslash \bigcup_{\{V, w\} \in E(\Gamma)} D_{V, w}^{2}$.
- For each $e \in E(\Gamma)$, there is an edge manifold $M_{e}=S^{1} \times S^{1}$.
- Vertex manifolds are glued along edge manifolds via flips.

Theorem (Thomas Koberda-A.S. 2015)
The group $\pi_{1}\left(M_{\Gamma}\right)$ is RFRp, for all primes p.

Conjecture (K.-S.)

Arrangement groups are RFRp, for all primes p.

Milnor fibration

- Let $f \in \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]$ be a homogeneous polynomial of degree n.
- The map $f: \mathbb{C}^{3} \backslash\{f=0\} \rightarrow \mathbb{C}^{*}$ is a smooth fibration (Milnor), with fiber $F=f^{-1}(1)$, and monodromy $h: F \rightarrow F, z \mapsto e^{2 \pi i / n} z$.
- The Milnor fiber F is a regular, \mathbb{Z}_{n}-cover of $U=\mathbb{C P}^{2} \backslash\{f=0\}$.
- Let $\Delta(t)=\operatorname{det}\left(t l-h_{*}\right)$ be the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{1}(F, \mathbb{C}) \rightarrow H_{1}(F, C)$.

Example

If $f=z_{1}^{n}-z_{2}^{n}$, then F is a surface of genus $\binom{n-1}{2}$ with n punctures, and $\Delta(t)=(t-1)\left(t^{n}-1\right)^{n-2}$.

Problem

If f is the defining poly of an arrangement \mathcal{A}, is $\Delta=\Delta_{\mathcal{A}}$ determined by $L(\mathcal{A})$? In particular, is $b_{1}(F)$ combinatorially determined?

Joint work with Stefan Papadima (2014)

Theorem
Suppose \mathcal{A} has only double and triple points. Then

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1} \cdot\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})}
$$

where $\beta_{3}(\mathcal{A})$ is an integer between 0 and 2 depending only on $L(\mathcal{A})$.

CONJECTURE

Let \mathcal{A} be an arrangement which is not a pencil. Then

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})}
$$

where $\beta_{2}(\mathcal{A})$ and $\beta_{3}(\mathcal{A})$ are integers between 0 and 2 depending only on $L(\mathcal{A})$.

References

A．Dimca，S．Papadima，A．Suciu，Alexander polynomials：Essential variables and multiplicities，Int．Math．Res．Notices 2008，no．3，Art．ID rnm119， 36 pp．
A．Dimca，S．Papadima，A．Suciu，Topology and geometry of cohomology jump loci，Duke Math．Journal 148 （2009），no．3，405－457．
A．Dimca，S．Papadima，A．Suciu，Quasi－Kähler groups，3－manifold groups，and formality，Math．Zeit． 268 （2011），no．1－2，169－186．

A．Dimca，A．Suciu，Which 3－manifold groups are Kähler groups？，J．European Math．Soc． 11 （2009），no．3，521－528．

S．Friedl，A．Suciu，Kähler groups，quasi－projective groups，and 3－manifold groups，J．London Math．Soc． 89 （2014），no．1，151－168．

T．Koberda，A．Suciu，Residually finite rationally p groups，in preparation．
S．Papadima，A．Suciu，The Milnor fibration of a hyperplane arrangement：from modular resonance to algebraic monodromy，arXiv：1401．0868．

A．Suciu，Fundamental groups，Alexander invariants，and cohomology jumping loci，179－223，Contemp．Math．，vol．538，Amer．Math．Soc．，Providence，RI， 2011.

