Sigma-invariants and tropical geometry

Alex Suciu

Northeastern University

Geometry and Combinatorics Seminar
University of Western Ontario
September 28, 2020

Tropical varieties

- Let $\mathbb{K} = \mathbb{C}\{\{t\}\}$ be the field of Puiseux series over \mathbb{C} .
- A non-zero element of \mathbb{K} has the form $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, where $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a discrete valuation $v \colon \mathbb{K}^* \to \mathbb{Q}$, given by $v(c(t)) = a_1$.
- Let $v: (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the *n*-fold product of the valuation.
- The *tropicalization* of a variety $W \subset (\mathbb{K}^*)^n$, denoted Trop(W), is the closure of the set v(W) in \mathbb{R}^n .
- This is a rational polyhedral complex in \mathbb{R}^n . For instance, if W is a curve, then Trop(W) is a graph with rational edge directions.

- If T be an algebraic subtorus of $(\mathbb{K}^*)^n$, then $\mathsf{Trop}(T)$ is the linear subspace $\mathsf{Hom}(\mathbb{K}^*,T)\otimes\mathbb{R}\subset\mathsf{Hom}(\mathbb{K}^*,(\mathbb{K}^*)^n)\otimes\mathbb{R}=\mathbb{R}^n$.
- Moreover, if $z \in (\mathbb{K}^*)^n$, then $\mathsf{Trop}(z \cdot T) = \mathsf{Trop}(T) + v(z)$.
- For a variety $W \subset (\mathbb{C}^*)^n$, we may define its tropicalization by setting $\operatorname{Trop}(W) = \operatorname{Trop}(W \times_{\mathbb{C}} \mathbb{K})$.
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^n .
- If W = V(f) is a hypersurface, defined by a Laurent polynomial $f \in \mathbb{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$, then $\mathsf{Trop}(W)$ is the positive-codimensional skeleton of the inner normal fan to the Newton polytope of f.

Exponential tangent cones

- Let $\exp \colon \mathbb{C}^n \to (\mathbb{C}^*)^n$. Given a subvariety $W \subset (\mathbb{C}^*)^n$, put $\tau_1(W) = \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C}\}.$
- $\tau_1(W)$ depends only on $W_{(1)}$; it is non-empty iff $1 \in W$.
- If $T\cong (\mathbb{C}^*)^r$ is an algebraic subtorus, then $\tau_1(T)=T_1(T)\cong \mathbb{C}^r$
- (Dimca–Papadima–S. 2009) $\tau_1(W)$ is a finite union of rationally defined linear subspaces.
- Set $\tau_1^{\mathbb{k}}(W) = \tau_1(W) \cap \mathbb{k}^n$, for a subfield $\mathbb{k} \subset \mathbb{C}$.

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \mathsf{Trop}(W)$.

PROOF.

Every irreducible component of $\tau_1^{\mathbb{R}}(W)$ is of the form $L \otimes_{\mathbb{Q}} \mathbb{R}$, for some linear subspace $L \subset \mathbb{Q}^n$. The complex torus $T := \exp(L \otimes_{\mathbb{Q}} \mathbb{C})$ lies inside W. Thus, $\operatorname{Trop}(T) = L \otimes_{\mathbb{Q}} \mathbb{R}$ lies inside $\operatorname{Trop}(W)$.

Characteristic varieties

- Let $\mathbb{T}_G := \operatorname{Hom}(G, \mathbb{C}^*)$ be the character group of $G = \pi_1(X)$, also denoted by $\operatorname{Char}(X) := H^1(X, \mathbb{C}^*)$.
- The characteristic varieties of X are the sets

$$\mathcal{V}^{i}(X) = \{ \rho \in \mathbb{T}_{G} \mid H_{i}(X, \mathbb{C}_{\rho}) \neq 0 \}.$$

- If X has finite q-skeleton, then $\mathcal{V}^{i}(X)$ is Zariski closed for all $i \leq q$.
- We may define similarly $\mathcal{V}^i(X, \mathbb{k}) \subset H^1(X, \mathbb{k}^*)$ for any field k.
- Let $X^{ab} \to X$ be the maximal abelian cover. View $H_*(X^{ab}, \mathbb{C})$ as a module over $\mathbb{C}[G_{ab}]$. Then

$$\bigcup_{i \leq q} \mathcal{V}^i(X) = \bigcup_{i \leq q} V(\mathsf{ann}\left(H_i(X^\mathsf{ab},\mathbb{C})\right)).$$

The Alexander polynomial

- Let $H = G_{ab}/tors(G_{ab})$ be the maximal torsion-free abelian quotient of $G = \pi_1(X)$.
- Z[H] is a commutative Noetherian ring and a unique factorization domain.
- Let $q: X^H \to X$ be the cover corresponding to the $G \twoheadrightarrow H$.
- Set $A_X := H_1(X^H, q^{-1}(x_0), \mathbb{Z})$, viewed as a $\mathbb{Z}[H]$ -module.
- Let $E_1(A_X) \subseteq \mathbb{Z}[H]$ be the ideal of codimension 1 minors in a presentation for A_X .
- $\Delta_X := \gcd(E_1(A_X)) \in \mathbb{Z}[H]$ is the Alexander polynomial of X. It only depends on G, so also write it as Δ_G .
- Suppose $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \ge 0$. Then

$$\mathcal{V}^1(X) \cap \mathbb{T}_G^0 = \{1\} \cup V(\Delta_G).$$

- Let $Newt(\Delta_G) \subset H_1(G, \mathbb{R})$ be the Newton polytope of Δ_G .
- Given $\phi \in H^1(G; \mathbb{Z}) \cong \operatorname{Hom}(H, \mathbb{Z})$, its *Alexander norm*, $\|\phi\|_A$, is the length of $\phi(\operatorname{Newt}(\Delta_G))$.
- This defines a semi-norm on $H^1(G,\mathbb{R})$, with unit ball

$$B_A = \{ \phi \in H^1(G; \mathbb{R}) \mid \|\phi\|_A \leq 1 \}.$$

• If Δ_G is symmetric (i.e., invariant under $t_i \mapsto t_i^{-1}$), then \mathcal{B}_A is, up to a scale factor of 1/2, the polar dual of the Newton polytope of Δ_G ,

$$2B_A = \text{Newt}(\Delta_G)^*$$
.

Resonance varieties

• Let $A = H^*(X, \mathbb{C})$. For each $a \in A^1$, we have that $a^2 = 0$. Thus, there is a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

The resonance varieties of X are the homogeneous algebraic sets

$$\mathcal{R}^{i}(X) = \{ a \in A^{1} \mid H^{i}(A, a) \neq 0 \}.$$

- Identify $A^1 = H^1(X, \mathbb{C})$ with \mathbb{C}^n , where $n = b_1(X)$. The map $\exp \colon H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$ has image $\mathbb{T}^0_G = (\mathbb{C}^*)^n$.
- (Dimca-Papadima-S. 2009)

$$\tau_1(\mathcal{V}^i(X)) \subseteq \mathcal{R}^i(X).$$

• (DPS-2009, DP-2014) If X is a q-formal space, then, for all $i \leq q$,

$$\tau_1(\mathcal{V}^i(X)) = \mathcal{R}^i(X).$$

The Bieri-Neumann-Strebel-Renz invariants

- Let G be a finitely generated group, $n = b_1(G) > 0$. Let $S(G) = S^{n-1}$ be the unit sphere in $\text{Hom}(G, \mathbb{R}) = \mathbb{R}^n$.
- (Bieri-Neumann-Strebel 1987)

$$\Sigma^1(G) = \{\chi \in \mathcal{S}(G) \mid \mathcal{C}_\chi(G) \text{ is connected}\},$$
 where $\mathcal{C}_\chi(G)$ is the induced subgraph of $\text{Cay}(G)$ on vertex set $G_\chi = \{g \in G \mid \chi(g) \geq 0\}.$

• (Bieri-Renz 1988)

$$\Sigma^q(G,\mathbb{Z}) = \{\chi \in S(G) \mid \text{the monoid } G_\chi \text{ is of type } \mathsf{FP}_q \},$$
 i.e., there is a projective $\mathbb{Z}G_\chi$ -resolution $P_\bullet \to \mathbb{Z}$, with P_i finitely generated for all $i \leq q$. Moreover, $\Sigma^1(G,\mathbb{Z}) = -\Sigma^1(G)$.

• The BNSR-invariants of form a descending chain of open subsets,

$$S(G) \supseteq \Sigma^1(G,\mathbb{Z}) \supseteq \Sigma^2(G,\mathbb{Z}) \supseteq \cdots$$
.

• The Σ -invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G/N is free abelian:

$$N$$
 is of type $\operatorname{FP}_q \Longleftrightarrow S(G,N) \subseteq \Sigma^q(G,\mathbb{Z})$

where
$$S(G, N) = \{ \chi \in S(G) \mid \chi(N) = 0 \}.$$

- In particular: $\ker(\chi \colon G \to \mathbb{Z})$ is f.g. $\iff \{\pm \chi\} \subseteq \Sigma^1(G)$.
- More generally, let X be a connected CW-complex with finite q-skeleton, for some $q \ge 1$.
- Let $G = \pi_1(X, x_0)$. For each $\chi \in S(X) := S(G)$, let

$$\widehat{\mathbb{Z}G}_{\chi} = \left\{\lambda \in \mathbb{Z}^{G} \mid \{g \in \operatorname{supp} \lambda \mid \chi(g) \geq c\} \text{ is finite, } \forall c \in \mathbb{R} \right\}$$

be the Novikov–Sikorav completion of $\mathbb{Z}G$.

• (Farber-Geoghegan-Schütz 2010)

$$\Sigma^{q}(X,\mathbb{Z}) = \{ \chi \in S(X) \mid H_{i}(X,\widehat{\mathbb{Z}G}_{-\gamma}) = 0, \ \forall i \leq q \}.$$

• (Bieri 2007) If G is FP_k , then $\Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

Novikov-Betti numbers

- Let $\chi \in S(X)$, and set $\Gamma = \operatorname{im}(\chi)$; then $\Gamma \cong \mathbb{Z}^r$, for some $r \geq 1$.
- A Laurent polynomial $p = \sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z}\Gamma$ is χ -monic if the greatest element in $\chi(\text{supp}(p))$ is 0, and $n_0 = 1$.
- Let $\mathcal{R}\Gamma_{\chi}$ be the Novikov ring, i.e., the localization of $\mathbb{Z}\Gamma$ at the multiplicative subset of all χ -monic polynomials ($\mathcal{R}\Gamma_{\chi}$ is a PID).
- Let $b_i(X, \chi) = \operatorname{rank}_{R\Gamma_X} H_i(X, R\Gamma_\chi)$ be the Novikov–Betti numbers.

Bounding the Σ -invariants

THEOREM (PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite q-skeleton, and let $\chi \colon \pi_1(X) \to \mathbb{R}$ be a non-zero character. Then,

- $\bullet \ -\chi \in \Sigma^q(X,\mathbb{Z}) \implies b_i(X,\chi) = 0, \ \forall i \leq q.$
- $\bullet \ \chi \notin \tau_1^{\mathbb{R}} (\mathcal{V}^{\leq q}(X)) \Longleftrightarrow b_i(X,\chi) = 0, \ \forall i \leq q.$

COROLLARY

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}\left(au_1^\mathbb{R}\Big(\ \mathcal{V}^{\leq q}(X)\Big)
ight)^{\mathrm{c}}$$

Thus, $\Sigma^q(X,\mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.

Tropicalizing the characteristic varieties

- Recall $\mathbb{K} = \mathbb{C}\{\{t\}\}$ comes with a valuation map, $v \colon \mathbb{K}^* \to \mathbb{Q}$.
- Let ν_X : Char $_{\mathbb{K}}(X) \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the composite

$$H^1(X, \mathbb{K}^*) \xrightarrow{v_*} H^1(X, \mathbb{Q}) \longrightarrow H^1(X, \mathbb{R}).$$

- I.e., if $\rho \colon \pi_1(X) \to \mathbb{K}^*$ is a \mathbb{K} -valued character, then the morphism $v \circ \rho \colon \pi_1(X) \to \mathbb{Q}$ defines $\nu_X(\rho) \in H^1(X,\mathbb{Q}) = \mathbb{Q}^n \subset \mathbb{R}^n$.
- Given an algebraic subvariety $W \subset H^1(X, \mathbb{C}^*)$ we define its *tropicalization* as the closure in $H^1(X, \mathbb{R}) \cong \mathbb{R}^n$ of the image of $W \times_{\mathbb{C}} \mathbb{K} \subset H^1(X, \mathbb{K}^*)$ under ν_X ,

$$\mathsf{Trop}(W) := \overline{\nu_X(W \times_{\mathbb{C}} \mathbb{K})}.$$

• Applying this definition to the characteristic varieties $\mathcal{V}^i(X)$, and noting that $\mathcal{V}^i(X,\mathbb{K}) = \mathcal{V}^i(X) \times_{\mathbb{C}} \mathbb{K}$, we have that

$$\mathsf{Trop}(\mathcal{V}^i(X)) = \overline{\nu_X(\mathcal{V}^i(X,\mathbb{K}))}.$$

PROPOSITION

- $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subseteq \text{Trop}(\mathcal{V}^i(X))$, for all $i \leq q$.
- If there is a subtorus $T \subset \operatorname{Char}^0(X)$ such that $T \not\subset \mathcal{V}^i(X)$, yet $\rho T \subset \mathcal{V}^i(X)$ for some $\rho \in \operatorname{Char}(X)$, then $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subsetneq \operatorname{Trop}(\mathcal{V}^i(X))$.

PROPOSITION

Suppose Δ_G is symmetric and $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \ge 0$. Then $\mathsf{Trop} \ (\mathcal{V}^1(G) \cap \mathbb{T}_G^0)$ coincides with the positive-codimension skeleton of $\mathcal{F}(B_A)$, the face fan of the unit ball in the Alexander norm.

THEOREM (PS-2010)

Let $\rho \colon \pi_1(X) \to \mathbb{k}^*$ be a character such that $\rho \in \mathcal{V}^{\leq q}(X, \mathbb{k})$. Let $v \colon \mathbb{k}^* \to \mathbb{R}$ be the homomorphism defined by a valuation on \mathbb{k} , and write $\chi = v \circ \rho$. If the homomorphism $\chi \colon \pi_1(X) \to \mathbb{R}$ is non-zero, then $\chi \not\in \Sigma^q(X, \mathbb{Z})$.

A tropical bound for the Σ -invariants

THEOREM

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}(\mathsf{Trop}(\mathcal{V}^{\leq q}(X)))^c\subseteq \mathcal{S}(\tau_1^\mathbb{R}(\mathcal{V}^{\leq q}(X)))^c.$$

COROLLARY

If $\mathcal{V}^{\leq q}(X)$ contains one of the connected components of $\mathsf{Char}(X)$, then $\Sigma^q(X,\mathbb{Z})=\emptyset.$

COROLLARY

$$\Sigma^1(G) \subseteq -S(\mathsf{Trop}(\mathcal{V}^1(G)))^{\mathrm{c}} \subseteq S(au_1^\mathbb{R}(\mathcal{V}^1(G)))^{\mathrm{c}}.$$

PROPOSITION

If Δ_G is symmetric and $I_H^p \cdot (\Delta_G) \subseteq E_1(A_G)$, for some $p \ge 0$, then

$$\Sigma^1(G) \subseteq \bigcup S(F).$$

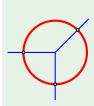
F an open facet of B_A

15 / 23

Two-generator, one-relator groups

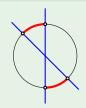
• Let $G = \langle x, y \mid r \rangle$, with $b_1(G) = 2$. K. Brown gave a combinatorial algorithm for computing $\Sigma^1(G)$.

EXAMPLE



- Let $G = \langle a, b \mid b^2 (ab^{-1})^2 a^{-2} \rangle$.
- Then $\Sigma^1(G) = S^1 \setminus \{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (0, -1), (-1, 0)\}.$
- On the other hand, $\Delta_G = 1 + a + b$.
- Thus, $\Sigma^1(G) = -S(\operatorname{Trop}(V(\Delta_G)))^c$, though $\tau_1 \mathcal{V}^1(G) = \{0\}$.

EXAMPLE



- Let $G = \langle a, b \mid a^2ba^{-1}ba^2ba^{-1}b^{-3}a^{-1}ba^2ba^{-1}ba$ $b^{-1}a^{-2}b^{-1}ab^{-1}a^{-2}b^{-1}ab^3ab^{-1}a^{-2}b^{-1}ab^{-1}a^{-1}b\rangle$.
- Then $\Delta_G = (a-1)(ab-1)$, and so $S(\text{Trop}(V(\Delta_G)))$ consists of two pairs of points.
- Yet $\Sigma^1(G)$ consists of two open arcs joining those points.

Compact 3-manifolds

- Let M be a compact, connected, orientable 3-manifold with $b_1(M) > 0$.
- A non-zero class $\phi \in H^1(M; \mathbb{Z}) = \operatorname{Hom}(\pi_1(M), \mathbb{Z})$ is a *fibered* if there exists a fibration $p \colon M \to S^1$ such that the induced map $p_* \colon \pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$ coincides with ϕ .
- The Thurston norm $\|\phi\|_{\mathcal{T}}$ of a class $\phi \in H^1(M; \mathbb{Z})$ is the infimum of $-\chi(\hat{S})$, where S runs though all the properly embedded, oriented surfaces in M dual to ϕ , and \hat{S} denotes the result of discarding all components of S which are disks or spheres.
- Thurston showed that $\|-\|_T$ defines a seminorm on $H^1(M; \mathbb{Z})$, which can be extended to a continuous seminorm on $H^1(M; \mathbb{R})$.
- The unit norm ball, $B_T = \{ \phi \in H^1(M; \mathbb{R}) \mid ||\phi||_T \le 1 \}$, is a rational polyhedron with finitely many sides and symmetric in the origin.

- There are facets of B_T , called the *fibered faces* (coming in antipodal pairs), so that a class $\phi \in H^1(M; \mathbb{Z})$ fibers if and only if it lies in the cone over the interior of a fibered face.
- Bieri, Neumann, and Strebel showed that the BNS invariant of $G = \pi_1(M)$ is the projection onto S(G) of the open fibered faces of the Thurston norm ball B_T ; in particular, $\Sigma^1(G) = -\Sigma^1(G)$.

PROPOSITION

Let M be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G = \pi_1(M)$ and assume $b_1(M) \geq 2$. Then

- **1** Trop $(\mathcal{V}^1(G) \cap \mathbb{T}_G^0)$ is the positive-codimension skeleton of $\mathcal{F}(B_A)$, the face fan of the unit ball in the Alexander norm.
- ② $\Sigma^1(G)$ is contained in the union of the open cones on the facets of B_A .

Part (2) is inspired by, and partly recovers a theorem of C. McMullen.

Kähler manifolds

- Let M be a compact Kähler manifold.
- (Deligne–Griffiths–Morgan–Sullivan) M is formal.
- (Beauville, Catanese, Green–Lazarsfeld, Simpson, Arapura, B. Wang) $\mathcal{V}^i(M)$ are finite unions of torsion translates of algebraic subtori of $H^1(M, \mathbb{C}^*)$.

THEOREM (DELZANT 2010)

$$\Sigma^{1}(M) = S(M) \setminus \bigcup_{\alpha} S(f_{\alpha}^{*}(H^{1}(C_{\alpha}, \mathbb{R}))),$$

where the union is taken over those orbifold fibrations $f_{\alpha} \colon M \to C_{\alpha}$ with the property that either $\chi(C_{\alpha}) < 0$, or $\chi(C_{\alpha}) = 0$ and f_{α} has some multiple fiber.

COROLLARY

$$\Sigma^{1}(M) = S(\operatorname{Trop}(\mathcal{V}^{1}(M))^{c}.$$

Hyperplane arrangements

- Let $A = \{H_1, \dots, H_n\}$ be an (essential, central) arrangement of hyperplanes in \mathbb{C}^d .
- Its complement, M(A) ⊂ (C*)^d, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, d-dimensional CW-complex.
- $H^*(M(A), \mathbb{Z})$ is the Orlik–Solomon algebra of L(A).
- (Arapura) The characteristic varieties $\mathcal{V}^i(\mathcal{A}) := \mathcal{V}^i(M(\mathcal{A})) \subset (\mathbb{C}^*)^n$. are unions of translated subtori.
- Consequently, $\operatorname{Trop}(\mathcal{V}^i(\mathcal{A})) = -\operatorname{Trop}(\mathcal{V}^i(\mathcal{A}))$.
- (DSY 2016/17) M(A) is an "abelian duality space," and hence its characteristic varieties propagate: $\mathcal{V}^1(A) \subseteq \mathcal{V}^2(A) \subseteq \cdots \subseteq \mathcal{V}^d(A)$.
- (Arnol'd, Brieskorn) M(A) is formal. Thus, $\tau_1(\mathcal{V}^i(A)) = \mathcal{R}^i(A)$.

THEOREM

$$\Sigma^q(extit{M}(\mathcal{A}), \mathbb{Z}) \subseteq extit{S}\left(\left(\mathsf{Trop}(\mathcal{V}^q(\mathcal{A}))
ight)
ight)^c, \quad orall q \leq extit{d}.$$

QUESTION (MFO MINIWORKSHOP 2007)

Given an arrangement A, do we have

$$\Sigma^{1}(M(\mathcal{A})) = S(\mathcal{R}^{1}(\mathcal{A}, \mathbb{R}))^{c}? \tag{*}$$

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^n , defined by $\prod_{1 \leq i < j \leq n} (z_i z_j) = 0. \text{ Then } M(\mathcal{A}) = \text{Conf}(n, \mathbb{C}) \simeq K(P_n, 1).$
- Answer to (\star) is yes: $\Sigma^1(M(\mathcal{A}))$ is the complement of the union of $\binom{n}{3} + \binom{n}{4}$ planes in $\mathbb{C}^{\binom{n}{2}}$, intersected with the unit sphere.

EXAMPLE

- Let \mathcal{A} be the "deleted B₃" arrangement, defined by $z_1 z_2 (z_1^2 z_2^2) (z_1^2 z_2^2) (z_2^2 z_3^2) = 0$.
- (S. 2002) $V^1(A)$ contains a (1-dimensional) translated torus $\rho \cdot T$.
- Thus, $\operatorname{Trop}(\rho \cdot T) = \operatorname{Trop}(T)$ is a line in \mathbb{C}^8 which is *not* contained in $\mathcal{R}^1(\mathcal{A}, \mathbb{R})$. Hence, the answer to (\star) is no.

QUESTION (REVISED)

$$\Sigma^{1}(M(\mathcal{A})) = S(\operatorname{Trop}(\mathcal{V}^{1}(\mathcal{A}))^{c}? \tag{**}$$

REFERENCE

Alexander I. Suciu, *Sigma-invariants and tropical varieties*, arXiv:2010.07499.