## DUALITY AND COHOMOLOGY JUMP LOCI

## Alex Suciu

Northeastern University

Geometry & Topology Seminar
University of Western Ontario
May 21, 2018

## POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field k.
  - $A = \bigoplus_{i \ge 0} A^i$ , where  $A^i$  are k-vector spaces.
  - $\bullet : A^i \otimes A^j \to A^{i+j}$ .
  - $ab = (-1)^{ij}ba$  for all  $a \in A^i$ ,  $b \in B^j$ .
- We will assume that A is connected ( $A^0 = \mathbb{k} \cdot 1$ ), and locally finite (all the Betti numbers  $b_i(A) := \dim_{\mathbb{k}} A^i$  are finite).
- A is a Poincaré duality k-algebra of dimension n if there is a k-linear map  $\varepsilon \colon A^n \to k$  (called an *orientation*) such that all the bilinear forms  $A^i \otimes_k A^{n-i} \to k$ ,  $a \otimes b \mapsto \varepsilon(ab)$  are non-singular.
- Consequently,
  - $b_i(A) = b_{n-i}(A)$ , and  $A^i = 0$  for i > n.
  - $\varepsilon$  is an isomorphism.
  - The maps PD:  $A^i o (A^{n-i})^*$ , PD $(a)(b) = \varepsilon(ab)$  are isomorphisms.
  - Each  $a \in A^i$  has a *Poincaré dual*,  $a^{\vee} \in A^{n-i}$ , such that  $\varepsilon(aa^{\vee}) = 1$ .
  - The *orientation class* is defined as  $\omega_A = 1^{\vee}$ , so that  $\varepsilon(\omega_A) = 1$ .

#### THE ASSOCIATED ALTERNATING FORM

• Associated to a  $\mathbb{k}$ -PD<sub>n</sub> algebra there is an alternating *n*-form,

$$\mu_A: \bigwedge^n A^1 \to \mathbb{K}, \quad \mu_A(a_1 \wedge \cdots \wedge a_n) = \varepsilon(a_1 \cdots a_n).$$

- Assume now that n = 3, and set  $r = b_1(A)$ . Fix a basis  $\{e_1, \ldots, e_r\}$  for  $A^1$ , and let  $\{e_1^{\vee}, \ldots, e_r^{\vee}\}$  be the dual basis for  $A^2$ .
- The multiplication in A, then, is given on basis elements by

$$e_i e_j = \sum_{k=1}^r \mu_{ijk} e_k^{\vee}, \quad e_i e_j^{\vee} = \delta_{ij} \omega,$$

where  $\mu_{ijk} = \mu(e_i \wedge e_j \wedge e_k)$ .

• Alternatively, let  $A_i = (A^i)^*$ , and let  $e^i \in A_1$  be the (Kronecker) dual of  $e_i$ . We may then view  $\mu$  dually as a trivector,

$$\mu = \sum \mu_{ijk} e^i \wedge e^j \wedge e^k \in \bigwedge^3 A_1$$
,

which encodes the algebra structure of A.

### POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If M is a compact, connected, orientable, n-dimensional manifold, then the cohomology ring  $A = H^{\bullet}(M, \mathbb{k})$  is a PD<sub>n</sub> algebra over  $\mathbb{k}$ .
- Sullivan (1975): for every finite-dimensional O-vector space V and every alternating 3-form  $\mu \in \Lambda^3 V^*$ , there is a closed 3-manifold M with  $H^1(M, \mathbb{Q}) = V$  and cup-product form  $\mu_M = \mu$ .
- Such a 3-manifold can be constructed via "Borromean surgery."



 If M bounds an oriented 4-manifold W such that the cup-product pairing on  $H^2(W, M)$  is non-degenerate (e.g., if M is the link of an isolated surface singularity), then  $\mu_M = 0$ .

### DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978). Let X be a connected, finite-type CW-complex, and set  $\pi = \pi_1(X, x_0)$ .

- X is a duality space of dimension n if  $H^i(X, \mathbb{Z}\pi) = 0$  for  $i \neq n$  and  $H^n(X, \mathbb{Z}\pi) \neq 0$  and torsion-free.
- Let  $D = H^n(X, \mathbb{Z}\pi)$  be the dualizing  $\mathbb{Z}\pi$ -module. Given any  $\mathbb{Z}\pi$ -module A, we have  $H^i(X,A) \cong H_{n-i}(X,D\otimes A)$ .
- If  $D = \mathbb{Z}$ , with trivial  $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If  $X = K(\pi, 1)$  is a duality space, then  $\pi$  is a duality group.

### ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous notion, by replacing  $\pi \rightsquigarrow \pi_{ab}$ .

- X is an abelian duality space of dimension n if  $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for  $i \neq n$  and  $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$  and torsion-free.
- Let  $B = H^n(X, \mathbb{Z}\pi_{ab})$  be the dualizing  $\mathbb{Z}\pi_{ab}$ -module. Given any  $\mathbb{Z}\pi_{ab}$ -module A, we have  $H^i(X,A) \cong H_{n-i}(X,B\otimes A)$ .
- The two notions of duality are independent:

#### **EXAMPLE**

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let  $\pi = \mathbb{Z}^2 * G$ , where  $G = \langle x_1, \dots, x_4 \mid x_1^{-2} x_2 x_1 x_2^{-1}, \dots, x_4^{-2} x_1 x_4 x_1^{-1} \rangle$ is Higman's acyclic group. Then  $\pi$  is an abelian duality group (of dimension 2), but not a duality group.

### THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$ .
- $b_i(X) \neq 0$ , for  $0 \leq i \leq n$  and  $b_i(X) = 0$  for i > n.
- $(-1)^n \chi(X) \ge 0$ .

## THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- ① Components of  $Y \setminus U$  form an arrangement of hypersurfaces A;
- For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

# LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

## THEOREM (DS17)

Suppose that A is one of the following:

- ① An affine-linear arrangement in  $\mathbb{C}^n$ , or a hyperplane arrangement in  $\mathbb{CP}^n$ ;
- A non-empty elliptic arrangement in E<sup>n</sup>;
- **3** A toric arrangement in  $(\mathbb{C}^*)^n$ .

Then the complement M(A) is both a duality space and an abelian duality space of dimension n-r, n+r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Davis and Settepanella (2013), Esterov and Takeuchi (2014).

## COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let A = (A<sup>•</sup>, d) be a commutative, differential graded algebra over a field k of characteristic 0. That is:
  - $A = \bigoplus_{i \ge 0} A^i$ , where  $A^i$  are k-vector spaces.
  - The multiplication  $: A^i \otimes A^j \to A^{i+j}$  is graded-commutative, i.e.,  $ab = (-1)^{|a||b|}ba$  for all homogeneous a and b.
  - The differential d:  $A^i \to A^{i+1}$  satisfies the graded Leibnitz rule, i.e.,  $d(ab) = d(a)b + (-1)^{|a|}ad(b)$ .
- A CDGA *A* is of *finite-type* (or *q-finite*) if it is connected (i.e.,  $A^0 = \mathbb{k} \cdot 1$ ) and dim  $A^i < \infty$  for all  $i \leq q$ .
- $H^{\bullet}(A)$  inherits an algebra structure from A.
- A cdga morphism  $\varphi: A \to B$  is both an algebra map and a cochain map. Hence, it induces a morphism  $\varphi^*: H^{\bullet}(A) \to H^{\bullet}(B)$ .

- A map  $\varphi \colon A \to B$  is a *quasi-isomorphism* if  $\varphi^*$  is an isomorphism. Likewise,  $\varphi$  is a q-quasi-isomorphism (for some  $q \geqslant 1$ ) if  $\varphi^*$  is an isomorphism in degrees  $\leqslant q$  and is injective in degree q+1.
- Two cdgas, A and B, are (q-) equivalent  $(\simeq_q)$  if there is a zig-zag of (q-) quasi-isomorphisms connecting A to B.
- A cdga A is formal (or just q-formal) if it is (q-) equivalent to  $(H^{\bullet}(A), d=0)$ .
- A CDGA is *q-minimal* if it is of the form  $(\bigwedge V, d)$ , where the differential structure is the inductive limit of a sequence of Hirsch extensions of increasing degrees, and  $V^i = 0$  for i > q.
- Every CDGA A with  $H^0(A) = \mathbb{k}$  admits a q-minimal model,  $\mathcal{M}_q(A)$  (i.e., a q-equivalence  $\mathcal{M}_q(A) \to A$  with  $\mathcal{M}_q(A) = (\bigwedge V, d)$  a q-minimal cdga), unique up to iso.

## ALGEBRAIC MODELS FOR SPACES

- Given any (path-connected) space X, there is an associated Sullivan  $\mathbb{Q}$ -cdga,  $A_{PL}(X)$ , such that  $H^{\bullet}(A_{PL}(X)) = H^{\bullet}(X, \mathbb{Q})$ .
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-) equivalent to  $A_{\rm PL}(X) \otimes_{\mathbb{Q}} k$ .
- If M is a smooth manifold, then  $\Omega_{dR}(M)$  is a model for M (over  $\mathbb{R}$ ).
- Examples of spaces having finite-type models include:
  - Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
  - Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

### RESONANCE VARIETIES OF A CDGA

- Let  $A = (A^{\bullet}, d)$  be a connected, finite-type CDGA over  $k = \mathbb{C}$ .
- For each  $a \in Z^1(A) \cong H^1(A)$ , we have a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials  $\delta_a^i(u) = a \cdot u + du$ , for all  $u \in A^i$ .

The resonance varieties of A are the affine varieties

$$\mathcal{R}_s^i(A) = \{ a \in H^1(A) \mid \dim H^i(A^{\bullet}, \delta_a) \geqslant s \}.$$

- If A is a CGA (that is, d = 0), the resonance varieties  $\mathcal{R}_s^i(A)$  are homogeneous subvarieties of  $A^1$ .
- If X is a connected, finite-type CW-complex, we set  $\mathcal{R}_s^i(X) := \mathcal{R}_s^i(H^{\bullet}(X,\mathbb{C})).$

- Fix a k-basis  $\{e_1, \ldots, e_r\}$  for  $A^1$ , and let  $\{x_1, \ldots, x_r\}$  be the dual basis for  $A_1 = (A^1)^*$ .
- Identify  $\operatorname{Sym}(A_1)$  with  $S = \mathbb{k}[x_1, \dots, x_r]$ , the coordinate ring of the affine space  $A^1$ .
- Define a cochain complex of free *S*-modules,  $L(A) := (A^{\bullet} \otimes S, \delta)$ ,

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots$$

where  $\delta^i(u \otimes f) = \sum_{j=1}^n e_j u \otimes f x_j + d u \otimes f$ .

- The specialization of  $(A \otimes S, \delta)$  at  $a \in A^1$  coincides with  $(A, \delta_a)$ .
- Hence,  $\mathcal{R}_s^i(A)$  is the zero-set of the ideal generated by all minors of size  $b_i s + 1$  of the block-matrix  $\delta^{i+1} \oplus \delta^i$ .
- In particular,  $\mathcal{R}_s^1(A) = V(I_{r-s}(\delta^1))$ , the zero-set of the ideal of codimension s minors of  $\delta^1$ .

## RESONANCE VARIETIES OF PD-ALGEBRAS

- Let A be a  $PD_n$  algebra.
- For all  $0 \le i \le n$  and all  $a \in A^1$ , the square

$$(A^{n-i})^* \xrightarrow{(\delta_a^{n-i-1})^*} (A^{n-i-1})^*$$

$$PD \stackrel{\cong}{\longrightarrow} PD \stackrel{\cong}{\longrightarrow} A^{i+1}$$

commutes up to a sign of  $(-1)^i$ .

Consequently,

$$(H^{i}(A, \delta_{a}))^{*} \cong H^{n-i}(A, \delta_{-a}).$$

Hence, for all i and s,

$$\mathcal{R}_s^i(A) = \mathcal{R}_s^{n-i}(A).$$

• In particular,  $\mathcal{R}_1^n(A) = \{0\}.$ 

# 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

- Let A be a PD<sub>3</sub>-algebra with  $b_1(A) = r > 0$ . Then
  - $\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}.$
  - $\mathcal{R}_s^2(A) = \mathcal{R}_s^1(A)$  for  $1 \leq s \leq r$ .
  - $\mathcal{R}_s^i(A) = \emptyset$ , otherwise.
- Write  $\mathcal{R}_s(A) = \mathcal{R}_s^1(A)$ . Then
  - $\mathcal{R}_{2k}(A) = \mathcal{R}_{2k+1}(A)$  if r is even.
  - $\mathcal{R}_{2k-1}(A) = \mathcal{R}_{2k}(A)$  if *r* is odd.
- If  $\mu_A$  has rank  $r \ge 3$ , then  $\mathcal{R}_{r-2}(A) = \mathcal{R}_{r-1}(A) = \mathcal{R}_r(A) = \{0\}$ .
- If  $r \geqslant 4$ , then dim  $\mathcal{R}_1(A) \geqslant \text{null}(\mu_A) \geqslant 2$ .
  - Here, the *rank* of a form  $\mu \colon \bigwedge^3 V \to \mathbb{k}$  is the minimum dimension of a linear subspace  $W \subset V$  such that  $\mu$  factors through  $\bigwedge^3 W$ .
  - The *nullity* of  $\mu$  is the maximum dimension of a subspace  $U \subset V$  such that  $\mu(a \land b \land c) = 0$  for all  $a, b \in U$  and  $c \in V$ .

- If r is even, then  $\mathcal{R}_1(A) = \mathcal{R}_0(A) = A^1$ .
- If 2g + 1 > 1, then  $\mathcal{R}_1(A) \neq A^1$  if and only if  $\mu_A$  is "generic," that is, there is a  $c \in A^1$  such that the 2-form  $\gamma_c \in \bigwedge^2 A_1$ ,

$$\gamma_{c}(a \wedge b) = \mu_{A}(a \wedge b \wedge c)$$

has maximal rank, i.e.,  $\gamma_c^g \neq 0$  in  $\bigwedge^{2g} A_1$ .

• In that case, the principal minors of the skew-symmetric  $r \times r$  matrix  $\delta^1$  satisfy  $\operatorname{pf}(\delta^1(i;i)) = (-1)^{i+1} x_i \operatorname{Pf}(\mu_A)$ , and so

$$\mathcal{R}_1(A) = \{ \mathsf{Pf}(\mu_A) = \mathbf{0} \}.$$

#### EXAMPLE

Let  $M = \Sigma_g \times S^1$ , where  $g \geqslant 2$ . Then  $\mu_M = \sum_{i=1}^g a_i b_i c$  is generic, and  $\text{Pf}(\mu_M) = x_{2g+1}^{g-1}$ . Hence,  $\mathcal{R}_1 = \dots = \mathcal{R}_{2g-2} = \{x_{2g+1} = 0\}$  and  $\mathcal{R}_{2g-1} = \mathcal{R}_{2g} = \mathcal{R}_{2g+1} = \{0\}$ .

# RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

| n | μ   | $\mathcal{R}_1$ | n | μ       | $\mathcal{R}_1 = \mathcal{R}_2$ | $\mathcal{R}_3$ |
|---|-----|-----------------|---|---------|---------------------------------|-----------------|
| 3 | 123 | 0               | 5 | 125+345 | $\{x_5=0\}$                     | 0               |

| n | μ           | $\mathcal{R}_1$ | $\mathcal{R}_2 = \mathcal{R}_3$                        | $\mathcal{R}_4$ |
|---|-------------|-----------------|--------------------------------------------------------|-----------------|
| 6 | 123+456     | C <sub>6</sub>  | $\{x_1 = x_2 = x_3 = 0\} \cup \{x_4 = x_5 = x_6 = 0\}$ | 0               |
|   | 123+236+456 | C <sub>6</sub>  | $\{x_3 = x_5 = x_6 = 0\}$                              | 0               |

| n | μ                   | $\mathcal{R}_1 = \mathcal{R}_2$        | $\mathcal{R}_3=\mathcal{R}_4$                                      | $\mathcal{R}_5$ |
|---|---------------------|----------------------------------------|--------------------------------------------------------------------|-----------------|
| 7 | 147+257+367         | $\{x_7 = 0\}$                          | $\{x_7 = 0\}$                                                      | 0               |
|   | 456+147+257+367     | $\{x_7 = 0\}$                          | $\{x_4 = x_5 = x_6 = x_7 = 0\}$                                    | 0               |
|   | 123+456+147         | $\{x_1=0\} \cup \{x_4=0\}$             | $\{x_1 = x_2 = x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$ | 0               |
|   | 123+456+147+257     | $\{x_1x_4 + x_2x_5 = 0\}$              | $\{x_1 = x_2 = x_4 = x_5 = x_7^2 - x_3x_6 = 0\}$                   | 0               |
|   | 123+456+147+257+367 | $\{x_1x_4 + x_2x_5 + x_3x_6 = x_7^2\}$ | 0                                                                  | 0               |

| n | μ                           | $\mathcal{R}_1$ | $\mathcal{R}_2=\mathcal{R}_3$                | $\mathcal{R}_4=\mathcal{R}_5$                                            |
|---|-----------------------------|-----------------|----------------------------------------------|--------------------------------------------------------------------------|
| 8 | 147+257+367+358             | C <sub>8</sub>  | $\{x_7=0\}$                                  | $\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_7 = 0\}$ |
|   | 456+147+257+367+358         | C <sub>8</sub>  | $\{x_5 = x_7 = 0\}$                          | $\{x_3 = x_4 = x_5 = x_7 = x_1x_8 + x_6^2 = 0\}$                         |
|   | 123+456+147+358             | C <sub>8</sub>  | $\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = 0\}$   | $\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = 0\}$                        |
|   | 123+456+147+257+358         | C <sub>8</sub>  | ${x_1 = x_5 = 0} \cup {x_3 = x_4 = x_5 = 0}$ | $\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$                              |
|   | 123+456+147+257+367+358     | C <sub>8</sub>  | $\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$         | $\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = 0\}$                        |
|   | 147+268+358                 | C <sub>8</sub>  | $\{x_1 = x_4 = x_7 = 0\} \cup \{x_8 = 0\}$   | $\{x_1 = x_4 = x_7 = x_8 = 0\} \cup \{x_2 = x_3 = x_5 = x_6 = x_8 = 0\}$ |
|   | 147+257+268+358             | C <sub>8</sub>  | $L_1 \cup L_2 \cup L_3$                      | $L_1 \cup L_2$                                                           |
|   | 456+147+257+268+358         | C <sub>8</sub>  | $C_1 \cup C_2$                               | $L_1 \cup L_2$                                                           |
|   | 147+257+367+268+358         | C <sub>8</sub>  | $L_1 \cup L_2 \cup L_3 \cup L_4$             | $L_1' \cup L_2' \cup L_3'$                                               |
|   | 456+147+257+367+268+358     | C <sub>8</sub>  | $C_1 \cup C_2 \cup C_3$                      | $L_1 \cup L_2 \cup L_3$                                                  |
|   | 123+456+147+268+358         | C <sub>8</sub>  | $C_1 \cup C_2$                               | L                                                                        |
|   | 123+456+147+257+268+358     | C <sub>8</sub>  | $\{f_1 = \cdots = f_{20} = 0\}$              | 0                                                                        |
|   | 123+456+147+257+367+268+358 | C <sub>8</sub>  | $\{g_1 = \cdots = g_{20} = 0\}$              | 0                                                                        |

### PROPAGATION OF RESONANCE

- We say that the resonance varieties of a graded algebra  $A = \bigoplus_{i=0}^{n} A^{i}$  propagate if  $\mathcal{R}_{1}^{1}(A) \subseteq \cdots \subseteq \mathcal{R}_{1}^{n}(A)$ .
- (Eisenbud–Popescu–Yuzvinsky 2003) If X is the complement of a hyperplane arrangement, then its resonance varieties propagate.

### THEOREM (DSY 2016/17)

- Suppose the k-dual of A has a linear free resolution over  $E = \bigwedge A^1$ . Then the resonance varieties of A propagate.
- Let X be a formal, abelian duality space. Then the resonance varieties of X propagate.
- Let M be a closed, orientable 3-manifold. If  $b_1(M)$  is even and non-zero, then the resonance varieties of M do not propagate.

## CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then  $\pi = \pi_1(X, x_0)$  is a finitely presented group, with  $\pi_{ab} \cong H_1(X, \mathbb{Z})$ .
- The ring  $R = \mathbb{C}[\pi_{ab}]$  is the coordinate ring of the character group,  $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^r \times \operatorname{Tors}(\pi_{ab})$ , where  $r = b_1(X)$ .
- The characteristic varieties of X are the homology jump loci

$$\mathcal{V}_{s}^{i}(X) = \{ \rho \in \mathsf{Char}(X) \mid \dim H_{i}(X, \mathbb{C}_{\rho}) \geqslant s \}.$$

- These varieties are homotopy-type invariants of X, with  $\mathcal{V}_s^1(X)$  depending only on  $\pi = \pi_1(X)$ .
- Set  $V_1(\pi) := V_1^1(K(\pi, 1))$ ; then  $V_1(\pi) = V_1(\pi/\pi'')$ .

#### **EXAMPLE**

Let  $f \in \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$  be a Laurent polynomial, f(1) = 0. There is then a finitely presented group  $\pi$  with  $\pi_{ab} = \mathbb{Z}^n$  such that  $\mathcal{V}_1(\pi) = \mathbf{V}(f)$ .

### THEOREM (DSY)

Let X be an abelian duality space of dimension n. If  $\rho \colon \pi_1(X) \to \mathbb{C}^*$  satisfies  $H^j(X, \mathbb{C}_\rho) \neq 0$ , then  $H^j(X, \mathbb{C}_\rho) \neq 0$ , for all  $i \leqslant j \leqslant n$ .

#### **COROLLARY**

Let X be an abelian duality space of dimension n. Then The characteristic varieties propagate, i.e.,  $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$ .

# Infinitesimal finiteness obstructions

#### QUESTION

Let X be a connected CW-complex with finite q-skeleton. Does X admit a q-finite q-model A?

#### **THEOREM**

If X is as above, then, for all  $i \leq q$  and all s:

- (Dimca–Papadima 2014)  $\mathcal{V}_s^i(X)_{(1)} \cong \mathcal{R}_s^i(A)_{(0)}$ . In particular, if X is q-formal, then  $\mathcal{V}_s^i(X)_{(1)} \cong \mathcal{R}_s^i(X)_{(0)}$ .
- (Macinic, Papadima, Popescu, S. 2017)  $\mathsf{TC}_0(\mathcal{R}^i_{\mathfrak{s}}(A)) \subseteq \mathcal{R}^i_{\mathfrak{s}}(X)$ .
- (Budur–Wang 2017) All the irreducible components of  $\mathcal{V}^i(X)$  passing through the origin of  $H^1(X, \mathbb{C}^*)$  are algebraic subtori.

#### **EXAMPLE**

Let  $\pi$  be a finitely presented group with  $\pi_{ab} = \mathbb{Z}^n$  and  $\mathcal{V}_1(\pi) = \{t \in (\mathbb{C}^*)^n \mid \sum_{i=1}^n t_i = n\}$ . Then  $\pi$  admits no 1-finite 1-model.

#### THEOREM (PAPADIMA-S. 2017)

Suppose X is (q+1) finite, or X admits a q-finite q-model. Then  $b_i(\mathcal{M}_q(X)) < \infty$ , for all  $i \leqslant q+1$ .

#### **COROLLARY**

Let  $\pi$  be a finitely generated group. Assume that either  $\pi$  is finitely presented, or  $\pi$  has a 1-finite 1-model. Then  $b_2(\mathcal{M}_1(\pi)) < \infty$ .

#### **EXAMPLE**

- Consider the free metabelian group  $\pi = F_n / F_n''$  with  $n \ge 2$ .
- We have  $\mathcal{V}_1(\pi) = \mathcal{V}_1(\mathsf{F}_n) = (\mathbb{C}^*)^n$ , and so  $\pi$  passes the Budur–Wang test.
- But  $b_2(\mathcal{M}_1(\pi)) = \infty$ , and so  $\pi$  admits no 1-finite 1-model (and is not finitely presented).

## A TANGENT CONE THEOREM FOR 3-MANIFOLDS

#### **THEOREM**

Let M be a closed, orientable, 3-dimensional manifold. Suppose  $b_1(M)$  is odd and  $\mu_M$  is generic. Then  $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$ .

- If  $b_1(M)$  is even, the conclusion may or may not hold:
  - Let  $M = S^1 \times S^2 \# S^1 \times S^2$ ; then  $\mathcal{V}_1^1(M) = \operatorname{Char}(M) = (\mathbb{C}^*)^2$ , and so  $\operatorname{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) = \mathbb{C}^2$ .
  - Let M be the Heisenberg nilmanifold; then  $TC_1(\mathcal{V}_1^1(M)) = \{0\}$ , whereas  $\mathcal{R}_1^1(M) = \mathbb{C}^2$ .
- Let M be a closed, orientable 3-manifold with  $b_1=7$  and  $\mu=e_1e_3e_5+e_1e_4e_7+e_2e_5e_7+e_3e_6e_7+e_4e_5e_6$ . Then  $\mu$  is generic and  $Pf(\mu)=(x_5^2+x_7^2)^2$ . Hence,  $\mathcal{R}_1^1(M)=\{x_5^2+x_7^2=0\}$  splits as a union of two hyperplanes over  $\mathbb{C}$ , but not over  $\mathbb{Q}$ .

#### REFERENCES

- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- G. Denham, A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum of Mathematics, Sigma (2018), doi:10.1017/fms.2018.5.
- S. Papadima, A.I. Suciu, *Infinitesimal finiteness obstructions*, arxiv:1711.07085.
- A.I. Suciu, Poincaré duality and resonance varieties, preprint 2018
- A.I. Suciu, Cohomology jump loci of 3-manifolds, preprint 2018.