HYPERPLANE ARRANGEMENTS AND MILNOR FIBRATIONS

Alex Suciu

Northeastern University, Boston, MA

Geometry and Topology Seminar Western University, London, ON June 1, 2015

ALEX SUCIU

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite set A of codimension-1 linear subspaces in C^ℓ.
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H.$
- The Boolean arrangement B_n
 - \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
 - $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
 - $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.
- The braid arrangement A_n (or, reflection arr. of type A_{n-1})
 - A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
 - $L(A_n)$: lattice of partitions of $[n] = \{1, ..., n\}$.
 - *M*(*A_n*): configuration space of *n* ordered points in C (a classifying space for *P_n*, the pure braid group on *n* strings).

FIGURE : A planar slice of the braid arrangement A_4

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $\mathcal{A} = \{H_1, \dots, H_n\}$, and choose linear forms $f_i : \mathbb{C}^{\ell} \to \mathbb{C}$ with ker $(f_i) = H_i$. Define an injective linear map

$$\iota: \mathbb{C}^{\ell} \to \mathbb{C}^{n}, \quad z \mapsto (f_{1}(z), \dots, f_{n}(z)).$$

- This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M(\mathcal{B}_n)$. Hence, $M(\mathcal{A}) = \iota(\mathbb{C}^{\ell}) \cap (\mathbb{C}^*)^n$, a "very affine" subvariety of $(\mathbb{C}^*)^n$, and thus, a Stein manifold.
- Therefore, M = M(A) has the homotopy type of a connected, finite cell complex of dimension ℓ .
- In fact, *M* has a minimal cell structure (Dimca–Papadima, Randell, Salvetti, Adiprasito,...). Consequently, *H*_∗(*M*, ℤ) is torsion-free.

The Betti numbers are given by

 $\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)},$

where $\mu: L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined recursively by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.

- Let $E = \bigwedge(\mathcal{A})$ be the exterior algebra on degree 1 classes e_H dual to the meridians, and set $e_B = \prod_{H \in \mathcal{B}} e_H$ for each $\mathcal{B} \subset \mathcal{A}$.
- Define a differential $\partial: E \to E$ of degree -1, starting from $\partial(e_H) = 1$, and extending to *E* by the graded Leibniz rule.
- The cohomology ring $H^*(M, \mathbb{Z})$ is isomorphic to the Orlik– Solomon algebra A = E/I, where *I* is the ideal generated by $\partial(\prod_{H \in \mathcal{B}} e_H)$, for all $\mathcal{B} \subset \mathcal{A}$ such that $\operatorname{codim}(\bigcap_{H \in \mathcal{B}} H) < |\mathcal{B}|$.
- The space *M* is formal: the de Rham algebra $(\Omega_{dR}^*(M), d)$ is quasi-isomorphic to $(A \otimes \mathbb{R}, d = 0)$.

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let k be an algebraically closed field, and let Hom(π, k*) be the affine algebraic group of k-valued, multiplicative characters on π.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^*) \mid \dim_{\Bbbk} H_{\boldsymbol{q}}(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

Here, \Bbbk_{ρ} is the local system defined by ρ , i.e, \Bbbk viewed as a $\Bbbk\pi$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \Bbbk_{\rho}) = H_i(C_*(\widetilde{X}, \Bbbk) \otimes_{\Bbbk\pi} \Bbbk_{\rho})$.

• These loci are Zariski closed subsets of the character group.

- Let $A = H^*(X, \mathbb{k})$. If char $\mathbb{k} = 2$, assume that $H_1(X, \mathbb{Z})$ has no 2-torsion. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- Thus, we get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

• The *resonance varieties* of *X* are the jump loci for the cohomology of these complexes,

$$\mathcal{R}^q_s(X,\Bbbk) = \{ a \in A^1 \mid \dim_{\Bbbk} H^q(A, \cdot a) \ge s \}.$$

- These loci are *homogeneous* subvarieties of the affine space $A^1 = H^1(X, \Bbbk)$.
- In particular, $a \in A^1$ belongs to $\mathcal{R}_1^1(X, \Bbbk)$ iff there is $b \in A^1$ not proportional to a, such that $a \cup b = 0$ in A^2 .

JUMP LOCI OF ARRANGEMENTS

- Let A = {H₁,..., H_n} be an arrangement in C³, and identify H¹(M(A), k) = kⁿ, with basis dual to the meridians.
- The resonance varieties $\mathcal{R}^1_s(\mathcal{A}, \Bbbk) := \mathcal{R}^1_s(\mathcal{M}(\mathcal{A}), \Bbbk) \subset \Bbbk^n$ lie in the hyperplane $\{x \in \Bbbk^n \mid x_1 + \dots + x_n = 0\}.$
- $\mathcal{R}^1(\mathcal{A}) = \mathcal{R}^1_1(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in \mathbb{C}^n .
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}^1_s(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least s + 1.

- Each flat X ∈ L₂(A) of multiplicity k ≥ 3 gives rise to a *local* component of R¹(A), of dimension k − 1.
- More generally, every *k*-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension k 1, and all components of $\mathcal{R}^1(\mathcal{A})$ arise in this way.
- The resonance varieties R¹(A, k) can be more complicated, e.g., they may have non-linear components.

EXAMPLE (BRAID ARRANGEMENT \mathcal{A}_4)

А

 $\mathcal{R}^1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 components coming from the triple points, and one component from the above 3-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$
EX SUCL. ARRANGEMENTS AND MUNOR FURBATIONS LONDON, ON, UNE 1, 2015 10/2

- Let Hom $(\pi_1(M), \mathbb{k}^*) = (\mathbb{k}^*)^n$ be the character torus.
- The characteristic variety V¹(A, k) := V¹₁(M(A), k) ⊂ (k*)ⁿ lies in the substorus {t ∈ (k*)ⁿ | t₁ ··· t_n = 1}.
- 𝒱¹(𝔅) = 𝒱¹(𝔅, 𝔅) is a finite union of torsion-translates of algebraic subtori of (𝔅*)ⁿ.
- If a linear subspace L ⊂ Cⁿ is a component of R¹(A), then the algebraic torus T = exp(L) is a component of V¹(A).
- All components of $\mathcal{V}^1(\mathcal{A})$ passing through the origin $1 \in (\mathbb{C}^*)^n$ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}^1(\mathcal{A})$.

PROPAGATION OF JUMP LOCI

THEOREM (DENHAM, S., YUZVINSKY 2014)

Let \mathcal{A} be a central, essential hyperplane arrangement in \mathbb{C}^n with complement $M = M(\mathcal{A})$. Suppose $A = \mathbb{Z}[\pi]$ or $A = \mathbb{Z}[\pi_{ab}]$. Then $H^p(M, A) = 0$ for all $p \neq n$, and $H^n(M, A)$ is a free abelian group.

COROLLARY

- ① M = M(A) is a duality space of dimension *n* (due to Davis, Januszkiewicz, Okun 2011).
- M is an abelian duality space of dimension n.
- 3 The characteristic and resonance varieties of A propagate:

 $\mathcal{V}_1^1(M,\mathbb{C}) \subseteq \cdots \subseteq \mathcal{V}_1^n(M,\mathbb{C})$

 $\mathcal{R}^1_1(M,\mathbb{C}) \subseteq \cdots \subseteq \mathcal{R}^n_1(M,\mathbb{C})$

MILNOR FIBRATIONS OF ARRANGEMENTS

- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let

$$Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H},$$

a homogeneous polynomial of degree $N = \sum_{H \in A} m_H$.

- The map $Q_m : \mathbb{C}^{\ell} \to \mathbb{C}$ restricts to a map $Q_m : M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- $F_m(\mathcal{A})$ has the homotopy type of a finite cell complex, with gcd(m) connected components, and of dimension $\ell 1$.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

- If all $m_H = 1$, the polynomial $Q = Q_m(A)$ is the usual defining polynomial, and $F(A) = F_m(A)$ is the usual Milnor fiber of A.
- In general, F(A) is not formal, and it does not admit a minimal cell structure.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

• Let $\mathcal{A} = \{H_1, \dots, H_n\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$

Homology of the Milnor Fiber

 Assume gcd(m) = 1. Then F_m(A) is the regular Z_N-cover of U(A) = ℙ(M(A)) defined by the homomorphism

 $\delta_m \colon \pi_1(U(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, \quad x_H \mapsto m_H \mod N$

• Let $\widehat{\delta_m}$: Hom $(\mathbb{Z}_N, \mathbb{k}^*) \to$ Hom $(\pi_1(U(\mathcal{A})), \mathbb{k}^*)$. If char $(\mathbb{k}) \nmid N$, then

$$\dim_{\Bbbk} H_q(F_m(\mathcal{A}), \Bbbk) = \sum_{s \ge 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), \Bbbk) \cap \operatorname{im}(\widehat{\delta_m}) \right|.$$

• This gives a formula for the characteristic polynomial

 $\Delta_q^{\Bbbk}(t) = \det(t \cdot \mathrm{id} - h_*)$

of the algebraic monodromy, $h_*: H_q(F(\mathcal{A}), \Bbbk) \to H_q(F(\mathcal{A}), \Bbbk)$, in terms of the characteristic varieties of $U(\mathcal{A})$ and multiplicities m.

• Let $\Delta = \Delta_1^{\mathbb{C}}$, and write

$$\Delta(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},\tag{(\star)}$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- Question: Is Δ(t) determined by L_{≤2}(A)? Equivalently, are the integers e_d(A) determined by L_{≤2}(A)?
- Not all divisors of *n* appear in (★). For instance, if *d* ∤ |*A_X*|, for some *X* ∈ *L*₂(*A*), then *e_d*(*A*) = 0.
- In particular, if $L_2(\mathcal{A})$ has only flats of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

MODULAR RESONANCE

• Let $A = H^*(M(\mathcal{A}), \Bbbk)$, where $char(\Bbbk) = p > 0$.

• Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector, and define

 $\beta_{\mathcal{P}}(\mathcal{A}) = \dim_{\mathbb{K}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{\rho}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

• Clearly, $\beta_p(\mathcal{A})$ depends only on $L_{\leq 2}(\mathcal{A})$ and p. Moreover, $0 \leq \beta_p(\mathcal{A}) \leq |\mathcal{A}| - 2$.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{\rho^s}(\mathcal{A}) \leq \beta_{\rho}(\mathcal{A})$, for all $s \geq 1$.

Theorem

If \mathcal{A} admits a reduced *k*-multinet, then $e_k(\mathcal{A}) \ge k - 2$.

COMBINATORIAL DETERMINATION OF $b_1(F(\mathcal{A}))$

THEOREM (PAPADIMA-S. 2014)

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r with r > 1. Then:

COROLLARY (PS)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1} \cdot (t^2+t+1)^{\beta_3(\mathcal{A})}.$$

In particular, $b_1(F(A))$ is combinatorially determined.

Similarly, if \mathcal{A} supports a 4-net and $\beta_2(\mathcal{A}) \leq 2$, then

$$\textbf{e}_2(\mathcal{A}) = \textbf{e}_4(\mathcal{A}) = \beta_2(\mathcal{A}) = 2$$

CONJECTURE (PS)

Let \mathcal{A} be an arrangement of rank at least 3. Then $e_{p^s}(\mathcal{A}) = 0$, for all primes p and integers $s \ge 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A})$$
 and $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$.

That is,

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

This conjecture has been verified for several classes of arrangements. including complex reflection arrangements and certain types of complexified real arrangements.

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_1(F_m(\mathcal{A}), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

ALEX SUCIU

These examples may be reinterpreted and generalized, as follows.

THEOREM (DENHAM–S. 2014)

Suppose A admits a 'pointed' multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero *p*-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}^1(\mathcal{A}', \Bbbk)$ varies with char(\Bbbk).

To produce *p*-torsion in the homology of $F(\mathcal{A})$, we use a 'polarization' construction: $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' || m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$

Noite: The Milnor fiber F(B) does not admit a minimal cell structure.

COROLLARY (DS)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

 $Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2)(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1) + y(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1) + y(x^2 - 3w_1^2)(x - 3w_1^2)($

 $((x-y)^2 - w_2^2)((x+y)^2 - w_3^2)((x-z)^2 - w_4^2)((x-z)^2 - 2w_4^2) \cdot ((x+z)^2 - w_5^2)((x+z)^2 - 2w_5^2).$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

ALEX SUCIU

REFERENCES

- A. Suciu, *Hyperplane arrangements and Milnor fibrations*, Ann. Fac. Sci. Toulouse Math. **23** (2014), no. 2, 417–481.
- G. Denham, A. Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, Proc. London Math. Soc. **108** (2014), no. 6, 1435–1470.
- S. Papadima, A. Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, arxiv:1401.0868.
- G. Denham, A. Suciu, S. Yuzvinsky, *Combinatorial covers and vanishing cohomology*, arxiv:1411.7981.
- G. Denham, A. Suciu, S. Yuzvinsky, *Abelian duality and propagation of resonance*, preprint, 2014.