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HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

An arrangement of hyperplanes is a finite set A of codimension-1
linear subspaces in C`.

Intersection lattice L(A): poset of all intersections of A, ordered
by reverse inclusion, and ranked by codimension.

Complement: M(A) = C`z
Ť

HPA H.

The Boolean arrangement Bn
Bn: all coordinate hyperplanes zi = 0 in Cn.
L(Bn): Boolean lattice of subsets of t0,1un.
M(Bn): complex algebraic torus (C˚)n.

The braid arrangement An (or, reflection arr. of type An´1)
An: all diagonal hyperplanes zi ´ zj = 0 in Cn.
L(An): lattice of partitions of [n] = t1, . . . ,nu.
M(An): configuration space of n ordered points in C (a classifying
space for Pn, the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS

‚ ‚

‚

‚

x2 ´ x4 x1 ´ x2

x1 ´ x4

x2 ´ x3

x1 ´ x3 x3 ´ x4

FIGURE : A planar slice of the braid arrangement A4
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HYPERPLANE ARRANGEMENTS

We may assume that A is essential, i.e.,
Ş

HPA H = t0u.

Fix an ordering A = tH1, . . . ,Hnu, and choose linear forms
fi : C` Ñ C with ker(fi) = Hi . Define an injective linear map

ι : C` Ñ Cn, z ÞÑ (f1(z), . . . , fn(z)).

This map restricts to an inclusion ι : M(A) ãÑ M(Bn). Hence,
M(A) = ι(C`)X (C˚)n, a “very affine" subvariety of (C˚)n, and
thus, a Stein manifold.

Therefore, M = M(A) has the homotopy type of a connected,
finite cell complex of dimension `.

In fact, M has a minimal cell structure (Dimca–Papadima, Randell,
Salvetti, Adiprasito,. . . ). Consequently, H˚(M,Z) is torsion-free.
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HYPERPLANE ARRANGEMENTS

The Betti numbers are given by
ř`

q=0 bq(M)tq =
ř

XPL(A) µ(X )(´t)rank(X ),

where µ : L(A)Ñ Z is the Möbius function, defined recursively by
µ(C`) = 1 and µ(X ) = ´

ř

YĽX µ(Y ).

Let E =
Ź

(A) be the exterior algebra on degree 1 classes eH
dual to the meridians, and set eB =

ś

HPB eH for each B Ă A.

Define a differential B : E Ñ E of degree ´1, starting from
B(eH) = 1, and extending to E by the graded Leibniz rule.

The cohomology ring H˚(M,Z) is isomorphic to the Orlik–
Solomon algebra A = E/I, where I is the ideal generated by
B(
ś

HPB eH), for all B Ă A such that codim(
Ş

HPB H) ă |B|.

The space M is formal: the de Rham algebra (Ω˚
dR(M),d) is

quasi-isomorphic to (AbR,d = 0).
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

COHOMOLOGY JUMP LOCI

Let X be a connected, finite cell complex, and let π = π1(X , x0).

Let k be an algebraically closed field, and let Hom(π,k˚) be the
affine algebraic group of k-valued, multiplicative characters on π.

The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X :

Vq
s (X ,k) = tρ P Hom(π,k˚) | dimk Hq(X , kρ) ě su.

Here, kρ is the local system defined by ρ, i.e, k viewed as a kπ-module,
via g ¨ x = ρ(g)x , and Hi (X ,kρ) = Hi (C˚(rX ,k)bkπ kρ).

These loci are Zariski closed subsets of the character group.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

Let A = H˚(X ,k). If chark = 2, assume that H1(X ,Z) has no
2-torsion. Then: a P A1 ñ a2 = 0.

Thus, we get a cochain complex

(A, ¨a) : A0 a // A1 a // A2 // ¨ ¨ ¨ .

The resonance varieties of X are the jump loci for the cohomology
of these complexes,

Rq
s (X ,k) = ta P A1 | dimk Hq(A, ¨a) ě su.

These loci are homogeneous subvarieties of the affine space
A1 = H1(X ,k).

In particular, a P A1 belongs to R1
1(X ,k) iff there is b P A1 not

proportional to a, such that aY b = 0 in A2.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

JUMP LOCI OF ARRANGEMENTS

Let A = tH1, . . . ,Hnu be an arrangement in C3, and identify
H1(M(A), k) = kn, with basis dual to the meridians.

The resonance varieties R1
s(A, k) := R1

s(M(A), k) Ă kn lie in the
hyperplane tx P kn | x1 + ¨ ¨ ¨+ xn = 0u.

R1(A) = R1
1(A,C) is a union of linear subspaces in Cn.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

R1
s(A,C) is the union of those linear subspaces that have

dimension at least s + 1.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

2

2

2

Each flat X P L2(A) of multiplicity k ě 3 gives rise to a local
component of R1(A), of dimension k ´ 1.

More generally, every k-multinet on a sub-arrangement B Ď A
gives rise to a component of dimension k ´ 1, and all components
of R1(A) arise in this way.

The resonance varieties R1(A, k) can be more complicated, e.g.,
they may have non-linear components.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

EXAMPLE (BRAID ARRANGEMENT A4)

‚ ‚

‚

‚

4
2 1 3 5 6

R1(A) Ă C6 has 4 components coming from the triple points, and one
component from the above 3-net:

L124 = tx1 + x2 + x4 = x3 = x5 = x6 = 0u,
L135 = tx1 + x3 + x5 = x2 = x4 = x6 = 0u,
L236 = tx2 + x3 + x6 = x1 = x4 = x5 = 0u,
L456 = tx4 + x5 + x6 = x1 = x2 = x3 = 0u,
L = tx1 + x2 + x3 = x1 ´ x6 = x2 ´ x5 = x3 ´ x4 = 0u.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

Let Hom(π1(M), k˚) = (k˚)n be the character torus.

The characteristic variety V1(A,k) := V1
1 (M(A),k) Ă (k˚)n lies in

the substorus tt P (k˚)n | t1 ¨ ¨ ¨ tn = 1u.

V1(A) = V1(A,C) is a finite union of torsion-translates of
algebraic subtori of (C˚)n.

If a linear subspace L Ă Cn is a component of R1(A), then the
algebraic torus T = exp(L) is a component of V1(A).

All components of V1(A) passing through the origin 1 P (C˚)n

arise in this way (and thus, are combinatorially determined).

In general, though, there are translated subtori in V1(A).
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COHOMOLOGY JUMP LOCI PROPAGATION OF JUMP LOCI

PROPAGATION OF JUMP LOCI

THEOREM (DENHAM, S., YUZVINSKY 2014)

Let A be a central, essential hyperplane arrangement in Cn with
complement M = M(A). Suppose A = Z[π] or A = Z[πab]. Then
Hp(M,A) = 0 for all p ‰ n, and Hn(M,A) is a free abelian group.

COROLLARY

1 M = M(A) is a duality space of dimension n (due to Davis,
Januszkiewicz, Okun 2011).

2 M is an abelian duality space of dimension n.
3 The characteristic and resonance varieties of A propagate:

V1
1 (M,C) Ď ¨ ¨ ¨ Ď Vn

1 (M,C)

R1
1(M,C) Ď ¨ ¨ ¨ Ď Rn

1(M,C)
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

MILNOR FIBRATIONS OF ARRANGEMENTS

For each H P A, let fH : C` Ñ C be a linear form with kernel H.

For each choice of multiplicities m = (mH)HPA with mH P N, let

Qm := Qm(A) =
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N =
ř

HPA mH .

The map Qm : C` Ñ C restricts to a map Qm : M(A)Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement (A,m),

Fm(A) // M(A)
Qm // C˚.
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

The typical fiber, Fm(A) = Q´1
m (1), is called the Milnor fiber of the

multi-arrangement.

Fm(A) has the homotopy type of a finite cell complex, with gcd(m)
connected components, and of dimension `´ 1.

The (geometric) monodromy is the diffeomorphism

h : Fm(A)Ñ Fm(A), z ÞÑ e2πi/Nz.

If all mH = 1, the polynomial Q = Qm(A) is the usual defining
polynomial, and F (A) = Fm(A) is the usual Milnor fiber of A.

In general, F (A) is not formal, and it does not admit a minimal cell
structure.
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

EXAMPLE

Let A be the single hyperplane t0u inside C. Then M(A) = C˚,
Qm(A) = zm, and Fm(A) = m-roots of 1.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F (A) is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F (A)

h

F (A)

More generally, if A is a pencil of n lines in C2, then F (A) is a
Riemann surface of genus (n´1

2 ), with n punctures.
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

Let Bn be the Boolean arrangement, with Qm(Bn) = zm1
1 ¨ ¨ ¨ zmn

n .
Then M(Bn) = (C˚)n and

Fm(Bn) = ker(Qm) – (C˚)n´1 ˆZgcd(m)

Let A = tH1, . . . ,Hnu be an essential arrangement. The inclusion
ι : M(A)Ñ M(Bn) restricts to a bundle map

Fm(A) //

��

M(A)
Qm(A) //

ι
��

C˚

Fm(Bn) // M(Bn)
Qm(Bn) // C˚

Thus,
Fm(A) = M(A)X Fm(Bn)
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THE MILNOR FIBRATION HOMOLOGY OF THE MILNOR FIBER

HOMOLOGY OF THE MILNOR FIBER

Assume gcd(m) = 1. Then Fm(A) is the regular ZN -cover of
U(A) = P(M(A)) defined by the homomorphism

δm : π1(U(A))� ZN , xH ÞÑ mH mod N

Let xδm : Hom(ZN , k˚)Ñ Hom(π1(U(A)), k˚). If char(k) - N, then

dimk Hq(Fm(A),k) =
ÿ

sě1

ˇ

ˇ

ˇ
Vq

s (U(A),k)X im(xδm)
ˇ

ˇ

ˇ
.

This gives a formula for the characteristic polynomial

∆k
q(t) = det(t ¨ id´h˚)

of the algebraic monodromy, h˚ : Hq(F (A),k)Ñ Hq(F (A), k), in
terms of the characteristic varieties of U(A) and multiplicities m.
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THE MILNOR FIBRATION HOMOLOGY OF THE MILNOR FIBER

Let ∆ = ∆C
1 , and write

∆(t) =
ź

d |n

Φd (t)ed (A), (‹)

where Φd (t) is the d-th cyclotomic polynomial, and ed (A) P Zě0.

Question: Is ∆(t) determined by Lď2(A)? Equivalently, are the
integers ed (A) determined by Lď2(A)?

Not all divisors of n appear in (‹). For instance, if d - |AX |, for
some X P L2(A), then ed (A) = 0.

In particular, if L2(A) has only flats of multiplicity 2 and 3, then
∆(t) = (t ´ 1)n´1(t2 + t + 1)e3 .

If multiplicity 4 appears, then also get factor of (t + 1)e2 ¨ (t2 + 1)e4 .
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THE MILNOR FIBRATION HOMOLOGY OF THE MILNOR FIBER

MODULAR RESONANCE

Let A = H˚(M(A),k), where char(k) = p ą 0.

Let σ =
ř

HPA eH P A1 be the “diagonal" vector, and define

βp(A) = dimk H1(A, ¨σ).

That is, βp(A) = maxts | σ P R1
s(A,k)u.

Clearly, βp(A) depends only on Lď2(A) and p. Moreover,
0 ď βp(A) ď |A| ´ 2.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

eps(A) ď βp(A), for all s ě 1.

THEOREM

If A admits a reduced k-multinet, then ek (A) ě k ´ 2.
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THE MILNOR FIBRATION COMBINATORIAL DETERMINATION OF b1(F (A))

COMBINATORIAL DETERMINATION OF b1(F (A))

THEOREM (PAPADIMA–S. 2014)

Suppose L2(A) has no flats of multiplicity 3r with r ą 1. Then:
1 β3(A) ‰ 0 ô A admits a 3-net ô A admits a reduced 3-multinet.
2 β3(A) ď 2.
3 e3(A) = β3(A).

COROLLARY (PS)

Suppose all flats X P L2(A) have multiplicity 2 or 3. Then

∆A(t) = (t ´ 1)|A|´1 ¨ (t2 + t + 1)β3(A).

In particular, b1(F (A)) is combinatorially determined.

Similarly, if A supports a 4-net and β2(A) ď 2, then

e2(A) = e4(A) = β2(A) = 2
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THE MILNOR FIBRATION COMBINATORIAL DETERMINATION OF b1(F (A))

CONJECTURE (PS)

Let A be an arrangement of rank at least 3. Then eps(A) = 0, for all
primes p and integers s ě 1, with two possible exceptions:

e2(A) = e4(A) = β2(A) and e3(A) = β3(A).

That is,

∆A(t) = (t ´ 1)|A|´1((t + 1)(t2 + 1))β2(A)(t2 + t + 1)β3(A).

This conjecture has been verified for several classes of arrangements.
including complex reflection arrangements and certain types of
complexified real arrangements.
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement (A,m) such that
H1(Fm(A),Z) has non-zero p-torsion.

1

2

1

1

2 2
3 3

Simplest example: the arrangement of 8 hyperplanes in C3 with

Qm(A) = x2y(x2 ´ y2)3(x2 ´ z2)2(y2 ´ z2)

Then H1(Fm(A),Z) = Z7 ‘Z2 ‘Z2.
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

These examples may be reinterpreted and generalized, as follows.

THEOREM (DENHAM–S. 2014)

Suppose A admits a ‘pointed’ multinet, with distinguished hyperplane
H and multiplicity m. Let p be a prime dividing mH .

There is then a choice of multiplicities m1 on the deletion A1 = AztHu
such that H1(Fm1(A1),Z) has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V1(A1, k)
varies with char(k).
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

To produce p-torsion in the homology of F (A), we use a ‘polarization’
construction: (A,m) A }m, an arrangement of N =

ř

HPA mH
hyperplanes, of rank equal to rankA+ |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 = AztHu
such that Hq(F (B),Z) has p-torsion, where B = A1}m1 and
q = 1 +

ˇ

ˇ

 

K P A1 : m1
K ě 3

(ˇ

ˇ.

Noite: The Milnor fiber F (B) does not admit a minimal cell structure.
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

COROLLARY (DS)
For every prime p ě 2, there is an arrangement A such that
Hq(F (A),Z) has non-zero p-torsion, for some q ą 1.

Simplest example: the arrangement of 27 hyperplanes in C8 with
Q(A) = xy(x2´ y2)(x2´ z2)(y2´ z2)w1w2w3w4w5(x2´w2

1 )(x
2´ 2w2

1 )(x
2´ 3w2

1 )(x ´ 4w1)¨

((x ´ y)2´w2
2 )((x + y)2´w2

3 )((x ´ z)2´w2
4 )((x ´ z)2´ 2w2

4 ) ¨ ((x + z)2´w2
5 )((x + z)2´ 2w2

5 ).

Then H6(F (A),Z) has 2-torsion (of rank 108).
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THE MILNOR FIBRATION TORSION IN HOMOLOGY
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