Hyperplane arrangements and Milnor FIBRATIONS

Alex Suciu

Northeastern University, Boston, MA

Geometry and Topology Seminar Western University, London, ON

June 1, 2015

Hyperplane arrangements

- An arrangement of hyperplanes is a finite set \mathcal{A} of codimension-1 linear subspaces in \mathbb{C}^{ℓ}.
- Intersection lattice $L(\mathcal{A})$: poset of all intersections of \mathcal{A}, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H$.
- The Boolean arrangement \mathcal{B}_{n}
- \mathcal{B}_{n} : all coordinate hyperplanes $z_{i}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{B}_{n}\right)$: Boolean lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$: complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$.
- The braid arrangement \mathcal{A}_{n} (or, reflection arr. of type A_{n-1})
- \mathcal{A}_{n} : all diagonal hyperplanes $z_{i}-z_{j}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{A}_{n}\right)$: lattice of partitions of $[n]=\{1, \ldots, n\}$.
- $M\left(\mathcal{A}_{n}\right)$: configuration space of n ordered points in \mathbb{C} (a classifying space for P_{n}, the pure braid group on n strings).

FIGURE : A planar slice of the braid arrangement \mathcal{A}_{4}

- We may assume that \mathcal{A} is essential, i.e., $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
- Fix an ordering $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$, and choose linear forms $f_{i}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ with $\operatorname{ker}\left(f_{i}\right)=H_{i}$. Define an injective linear map

$$
\iota: \mathbb{C}^{\ell} \rightarrow \mathbb{C}^{n}, \quad z \mapsto\left(f_{1}(z), \ldots, f_{n}(z)\right)
$$

- This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M\left(\mathcal{B}_{n}\right)$. Hence, $M(\mathcal{A})=\iota\left(\mathbb{C}^{\ell}\right) \cap\left(\mathbb{C}^{*}\right)^{n}$, a "very affine" subvariety of $\left(\mathbb{C}^{*}\right)^{n}$, and thus, a Stein manifold.
- Therefore, $M=M(\mathcal{A})$ has the homotopy type of a connected, finite cell complex of dimension ℓ.
- In fact, M has a minimal cell structure (Dimca-Papadima, Randell, Salvetti, Adiprasito,...). Consequently, $H_{*}(M, \mathbb{Z})$ is torsion-free.
- The Betti numbers are given by

$$
\sum_{q=0}^{\ell} b_{q}(M) t^{q}=\sum_{x \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}
$$

where $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is the Möbius function, defined recursively by $\mu\left(\mathbb{C}^{\ell}\right)=1$ and $\mu(X)=-\sum_{Y \ni X} \mu(Y)$.

- Let $E=\bigwedge(\mathcal{A})$ be the exterior algebra on degree 1 classes e_{H} dual to the meridians, and set $e_{\mathcal{B}}=\prod_{H \in \mathcal{B}} e_{H}$ for each $\mathcal{B} \subset \mathcal{A}$.
- Define a differential $\partial: E \rightarrow E$ of degree -1 , starting from $\partial\left(e_{H}\right)=1$, and extending to E by the graded Leibniz rule.
- The cohomology ring $H^{*}(M, \mathbb{Z})$ is isomorphic to the OrlikSolomon algebra $A=E / I$, where I is the ideal generated by $\partial\left(\prod_{H \in \mathcal{B}} e_{H}\right)$, for all $\mathcal{B} \subset \mathcal{A}$ such that $\operatorname{codim}\left(\bigcap_{H \in \mathcal{B}} H\right)<|\mathcal{B}|$.
- The space M is formal: the de Rham algebra $\left(\Omega_{\mathrm{dR}}^{*}(M), d\right)$ is quasi-isomorphic to $(A \otimes \mathbb{R}, d=0)$.

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite cell complex, and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
- Let \mathbb{k} be an algebraically closed field, and let Hom (π, \mathbb{k}^{*}) be the affine algebraic group of \mathbb{k}-valued, multiplicative characters on π.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X :

$$
\mathcal{V}_{s}^{q}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right) \mid \operatorname{dim}_{\mathbb{k}} H_{q}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

Here, \mathbb{k}_{ρ} is the local system defined by ρ, i.e, \mathbb{k} viewed as a $\mathbb{k} \pi$-module, via $g \cdot x=\rho(g) x$, and $H_{i}\left(X, \mathbb{k}_{\rho}\right)=H_{i}\left(C_{*}(\widetilde{X}, \mathbb{k}) \otimes_{\mathbb{k} \pi} \mathbb{k}_{\rho}\right)$.

- These loci are Zariski closed subsets of the character group.
- Let $A=H^{*}(X, \mathbb{k})$. If char $\mathbb{k}=2$, assume that $H_{1}(X, \mathbb{Z})$ has no 2-torsion. Then: $a \in A^{1} \Rightarrow a^{2}=0$.
- Thus, we get a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2}
$$

- The resonance varieties of X are the jump loci for the cohomology of these complexes,

$$
\mathcal{R}_{s}^{q}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{q}(A, \cdot a) \geqslant s\right\} .
$$

- These loci are homogeneous subvarieties of the affine space $A^{1}=H^{1}(X, \mathbb{k})$.
- In particular, $a \in A^{1}$ belongs to $\mathcal{R}_{1}^{1}(X, \mathbb{k})$ iff there is $b \in A^{1}$ not proportional to a, such that $a \cup b=0$ in A^{2}.

JUMP LOCI OF ARRANGEMENTS

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an arrangement in \mathbb{C}^{3}, and identify $H^{1}(M(\mathcal{A}), \mathbb{k})=\mathbb{k}^{n}$, with basis dual to the meridians.
- The resonance varieties $\mathcal{R}_{s}^{1}(\mathcal{A}, \mathbb{k}):=\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{k}) \subset \mathbb{k}^{n}$ lie in the hyperplane $\left\{x \in \mathbb{k}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$.
- $\mathcal{R}^{1}(\mathcal{A})=\mathcal{R}_{1}^{1}(\mathcal{A}, \mathrm{C})$ is a union of linear subspaces in \mathbb{C}^{n}.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}^{1}(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least $s+1$.

- Each flat $X \in L_{2}(\mathcal{A})$ of multiplicity $k \geqslant 3$ gives rise to a local component of $\mathcal{R}^{1}(\mathcal{A})$, of dimension $k-1$.
- More generally, every k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension $k-1$, and all components of $\mathcal{R}^{1}(\mathcal{A})$ arise in this way.
- The resonance varieties $\mathcal{R}^{1}(\mathcal{A}, \mathbb{k})$ can be more complicated, e.g., they may have non-linear components.

Example (BRAID ARRANGEMENT \mathcal{A}_{4})

$\mathcal{R}^{1}(\mathcal{A}) \subset \mathbb{C}^{6}$ has 4 components coming from the triple points, and one component from the above 3-net:

$$
\begin{aligned}
& L_{124}=\left\{x_{1}+x_{2}+x_{4}=x_{3}=x_{5}=x_{6}=0\right\} \\
& L_{135}=\left\{x_{1}+x_{3}+x_{5}=x_{2}=x_{4}=x_{6}=0\right\}, \\
& L_{236}=\left\{x_{2}+x_{3}+x_{6}=x_{1}=x_{4}=x_{5}=0\right\}, \\
& L_{456}=\left\{x_{4}+x_{5}+x_{6}=x_{1}=x_{2}=x_{3}=0\right\}, \\
& L=\left\{x_{1}+x_{2}+x_{3}=x_{1}-x_{6}=x_{2}-x_{5}=x_{3}-x_{4}=0\right\} .
\end{aligned}
$$

- Let $\operatorname{Hom}\left(\pi_{1}(M), \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$ be the character torus.
- The characteristic variety $\mathcal{V}^{1}(\mathcal{A}, \mathbb{k}):=\mathcal{V}_{1}^{1}(M(\mathcal{A}), \mathbb{k}) \subset\left(\mathbb{k}^{*}\right)^{n}$ lies in the substorus $\left\{t \in\left(\mathbb{k}^{*}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\}$.
- $\mathcal{V}^{1}(\mathcal{A})=\mathcal{V}^{1}(\mathcal{A}, \mathbb{C})$ is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{*}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}^{1}(\mathcal{A})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}^{1}(\mathcal{A})$.
- All components of $\mathcal{V}^{1}(\mathcal{A})$ passing through the origin $1 \in\left(\mathbb{C}^{*}\right)^{n}$ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}^{1}(\mathcal{A})$.

PROPAGATION OF JUMP LOCI

THEOREM (DENHAM, S., YUZVINSKY 2014)
Let \mathcal{A} be a central, essential hyperplane arrangement in \mathbb{C}^{n} with complement $M=M(\mathcal{A})$. Suppose $A=\mathbb{Z}[\pi]$ or $A=\mathbb{Z}\left[\pi_{\mathrm{ab}}\right]$. Then $H^{p}(M, A)=0$ for all $p \neq n$, and $H^{n}(M, A)$ is a free abelian group.

Corollary

(1) $M=M(\mathcal{A})$ is a duality space of dimension n (due to Davis, Januszkiewicz, Okun 2011).
(2) M is an abelian duality space of dimension n.
(3) The characteristic and resonance varieties of \mathcal{A} propagate:

$$
\begin{aligned}
& \mathcal{V}_{1}^{1}(M, \mathbb{C}) \subseteq \cdots \subseteq \mathcal{V}_{1}^{n}(M, \mathbb{C}) \\
& \mathcal{R}_{1}^{1}(M, \mathbb{C}) \subseteq \cdots \subseteq \mathcal{R}_{1}^{n}(M, \mathbb{C})
\end{aligned}
$$

Milnor fibrations of arrangements

- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m=\left(m_{H}\right)_{H \in \mathcal{A}}$ with $m_{H} \in \mathbb{N}$, let

$$
Q_{m}:=Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}},
$$

a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.

- The map $Q_{m}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the multi-arrangement (\mathcal{A}, m),

$$
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}} \mathbb{C}^{*} .
$$

- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, and of dimension $\ell-1$.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi \mathrm{i} / N_{z}}
$$

- If all $m_{H}=1$, the polynomial $Q=Q_{m}(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})=F_{m}(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.
- In general, $F(\mathcal{A})$ is not formal, and it does not admit a minimal cell structure.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A})=\mathbb{C}^{*}$, $Q_{m}(\mathcal{A})=z^{m}$, and $F_{m}(\mathcal{A})=m$-roots of 1 .

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

- Let \mathcal{B}_{n} be the Boolean arrangement, with $Q_{m}\left(\mathcal{B}_{n}\right)=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and

$$
F_{m}\left(\mathcal{B}_{n}\right)=\operatorname{ker}\left(\mathbb{Q}_{m}\right) \cong\left(\mathbb{C}^{*}\right)^{n-1} \times \mathbb{Z}_{\operatorname{gcd}(m)}
$$

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \rightarrow M\left(\mathcal{B}_{n}\right)$ restricts to a bundle map

$$
\begin{gathered}
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}(\mathcal{A})} \mathbb{C}^{*} \\
\downarrow \\
F_{m}\left(\mathcal{B}_{n}\right) \longrightarrow M\left(\mathcal{B}_{n}\right) \xrightarrow{Q_{m}\left(\mathcal{B}_{n}\right)} \|^{*}
\end{gathered}
$$

- Thus,

$$
F_{m}(\mathcal{A})=M(\mathcal{A}) \cap F_{m}\left(\mathcal{B}_{n}\right)
$$

Homology of the Milnor fiber

- Assume $\operatorname{gcd}(m)=1$. Then $F_{m}(\mathcal{A})$ is the regular \mathbb{Z}_{N}-cover of $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$ defined by the homomorphism

$$
\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, \quad x_{H} \mapsto m_{H} \bmod N
$$

- Let $\widehat{\delta_{m}}: \operatorname{Hom}\left(\mathbb{Z}_{N}, \mathbb{k}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U(\mathcal{A})), \mathbb{k}^{*}\right)$. If char $(\mathbb{k}) \nmid N$, then

$$
\operatorname{dim}_{\mathbb{k}} H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}^{q}(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}\left(\widehat{\delta_{m}}\right)\right| .
$$

- This gives a formula for the characteristic polynomial

$$
\Delta_{q}^{\mathbb{k}}(t)=\operatorname{det}\left(t \cdot \mathrm{id}-h_{*}\right)
$$

of the algebraic monodromy, $h_{*}: H_{q}(F(\mathcal{A}), \mathbb{k}) \rightarrow H_{q}(F(\mathcal{A}), \mathbb{k})$, in terms of the characteristic varieties of $U(\mathcal{A})$ and multiplicities m.

- Let $\Delta=\Delta_{1}^{\mathrm{C}}$, and write

$$
\Delta(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Question: Is $\Delta(t)$ determined by $L_{\leqslant 2}(\mathcal{A})$? Equivalently, are the integers $e_{d}(\mathcal{A})$ determined by $L_{\leqslant 2}(\mathcal{A})$?
- Not all divisors of n appear in (\star). For instance, if $d \nmid\left|\mathcal{A}_{X}\right|$, for some $X \in L_{2}(\mathcal{A})$, then $e_{d}(\mathcal{A})=0$.
- In particular, if $L_{2}(\mathcal{A})$ has only flats of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.

Modular Resonance

- Let $A=H^{*}(M(\mathcal{A}), \mathbb{k})$, where $\operatorname{char}(\mathbb{k})=p>0$.
- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma)
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

- Clearly, $\beta_{p}(\mathcal{A})$ depends only on $L_{\leqslant 2}(\mathcal{A})$ and p. Moreover, $0 \leqslant \beta_{p}(\mathcal{A}) \leqslant|\mathcal{A}|-2$.

Theorem (COHEN-ORLIK 2000, PAPADIMA-S. 2010) $e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.

THEOREM

If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

COMBINATORIAL DETERMINATION OF $b_{1}(F(\mathcal{A}))$

THEOREM (PAPADIMA-S. 2014)
Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$ with $r>1$. Then:
(1) $\beta_{3}(\mathcal{A}) \neq 0 \Leftrightarrow \mathcal{A}$ admits a 3-net $\Leftrightarrow \mathcal{A}$ admits a reduced 3-multinet.
(2) $\beta_{3}(\mathcal{A}) \leqslant 2$.
(3) $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$.

COROLLARY (PS)
Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3 . Then

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1} \cdot\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

In particular, $b_{1}(F(\mathcal{A}))$ is combinatorially determined.
Similarly, if \mathcal{A} supports a 4-net and $\beta_{2}(\mathcal{A}) \leqslant 2$, then

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A})=2
$$

CONJECTURE (PS)

Let \mathcal{A} be an arrangement of rank at least 3 . Then $e_{p^{s}}(\mathcal{A})=0$, for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})
$$

That is,

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

This conjecture has been verified for several classes of arrangements. including complex reflection arrangements and certain types of complexified real arrangements.

Torsion in homology

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^{3} with

$$
Q_{m}(\mathcal{A})=x^{2} y\left(x^{2}-y^{2}\right)^{3}\left(x^{2}-z^{2}\right)^{2}\left(y^{2}-z^{2}\right)
$$

Then $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)=\mathbb{Z}^{7} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

These examples may be reinterpreted and generalized, as follows.

THEOREM (DENHAM-S. 2014)
Suppose \mathcal{A} admits a 'pointed' multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.

There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}^{1}\left(\mathcal{A}^{\prime}, \mathbb{k}\right)$ varies with char(k).

To produce p-torsion in the homology of $F(\mathcal{A})$, we use a 'polarization' construction: $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to rank $\mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

Noite: The Milnor fiber $F(\mathcal{B})$ does not admit a minimal cell structure.

COROLLARY (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
Q(\mathcal{A}) & =x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) \\
& \left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

REFERENCES

A. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417-481.

睩 G. Denham, A. Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. 108 (2014), no. 6, 1435-1470.
S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.
G. Denham, A. Suciu, S. Yuzvinsky, Combinatorial covers and vanishing cohomology, arxiv:1411.7981.
(1. G. Denham, A. Suciu, S. Yuzvinsky, Abelian duality and propagation of resonance, preprint, 2014.

