# Ab-exact extensions and Milnor fibrations of arrangements

# Alex Suciu

Northeastern University

Graduate/Postdoc Topology and Singularities Seminar

University of Wisconsin–Madison

February 15, 2021

### Lower central series

- ▶ The *lower central series* of a group *G* is defined inductively by  $\gamma_1(G) = G$ ,  $\gamma_2(G) = G'$ , and  $\gamma_{k+1}(G) = [G, \gamma_k(G)]$ .
- ▶ It is an "N-series," i.e.,  $[\gamma_k(G), \gamma_\ell(G)] \subseteq \gamma_{k+\ell}(G), \forall k, \ell \ge 1.$
- ▶ The terms are fully invariant subgroups (i.e.,  $\varphi$ :  $G \to H$  morphism  $\Rightarrow \varphi(\gamma_k(G)) \subseteq \gamma_k(H)$ ), and thus, normal subgroups.
- The LCS quotients,  $gr_k(G) := \gamma_k(G)/\gamma_{k+1}(G)$ , are abelian.
- Associated graded Lie algebra: gr(G) = ⊕<sub>k≥1</sub> gr<sub>k</sub>(G), with Lie bracket [,]: gr<sub>k</sub> × gr<sub>ℓ</sub> → gr<sub>k+ℓ</sub> induced by the group commutator.
- ► The factor groups  $G/\gamma_{k+1}(G)$  are the maximal *k*-step nilpotent quotients of *G*.
- $G/\gamma_2(F) = G_{ab}$ , while  $G/\gamma_3(G)$  is determined by  $H^{\leq 2}(G, \mathbb{Z})$ .

### **Derived series and Alexander invariants**

- The *derived series* of *G* is defined inductively by  $G^{(0)} = G$ ,  $G^{(1)} = G'$ ,  $G^{(2)} = G''$ , and  $G^{(r)} = [G^{(r-1)}, G^{(r-1)}]$ .
- Its terms are fully invariant (thus, normal) subgroups.
- Successive quotients:  $G^{(r-1)}/G^{(r)} = (G^{(r-1)})_{ab}$ .
- $G/G^{(\ell)}$  is the maximal solvable quotient of G of length  $\ell$ .
- ► Alexander invariant: B(G) := G'/G'', viewed as a  $\mathbb{Z}G_{ab}$ -module via  $gG' \cdot xG'' = gxg^{-1}G''$  for  $g \in G$  and  $x \in G'$ .
- Assume now that G is finitely generated. Then T<sub>G</sub> := Hom(G, C\*) is an algebraic group. Clearly, T<sub>G</sub> = T<sub>G<sub>ab</sub>.</sub>
- ► Characteristic varieties:  $\mathcal{V}_k(G) := \{\rho \in \mathbb{T}_G \mid \dim H^1(G, \mathbb{C}_\rho) \ge k\}$ . For a space *X*, set  $\mathcal{V}_k(X) := \mathcal{V}_k(\pi_1(X))$ .
- $\mathcal{V}_1(G) = V(\operatorname{ann}(B(G) \otimes \mathbb{C}))$ , away from 1.

## The complement of a hyperplane arrangement

- Let A be a central arrangement of n hyperplanes in C<sup>d</sup>. For each H ∈ A let α<sub>H</sub> be a linear form with ker(α<sub>H</sub>) = H; set f = ∏<sub>H∈A</sub> α<sub>H</sub>.
- The complement, M(A) := C<sup>d</sup> \ U<sub>H∈A</sub> H, is a Stein manifold, and so has the homotopy type of a (connected) CW-complex of dim d.
- In fact, *M* has a minimal cell structure. Consequently, *H*<sub>∗</sub>(*M*, ℤ) is torsion-free (and finitely generated).
- ▶ In particular,  $H_1(M, \mathbb{Z}) = \mathbb{Z}^n$ , generated by the meridians  $\{x_H\}_{H \in \mathcal{A}}$ .
- ► The cohomology ring H\*(M, Z) is determined solely by the intersection lattice, L(A). [Orlik–Solomon]
- ► The quasi-projective variety *M* admits a *pure* mixed Hodge structure, and so *M* is Q-formal (albeit not Z<sub>p</sub>-formal, in general).

### Fundamental groups of arrangements

- For an arrangement A, the group G(A) = π₁(M(A)) admits a finite presentation, with generators {x<sub>H</sub>}<sub>H∈A</sub> and commutator-relators.
- $\mathcal{V}_k(M)$  is a finite union of torsion-translated subtori of  $\mathbb{T}_G = (\mathbb{C}^*)^n$ .
- $G/\gamma_2(G)$  and  $G/\gamma_3(G)$  are determined by  $L_{\leq 2}(\mathcal{A})$ .
- $G/\gamma_4(G)$ —and thus G—is not necessarily determined by  $L_{\leq 2}(\mathcal{A})$ .
- If A is decomposable, though, all nilpotent quotients are combinatorially determined [Porter–S.]
- ► Since M = M(A) is formal, G = G(A) is 1-formal, i.e., its pronilpotent completion, m(G), is quadratic.
- Hence,  $gr(G) \otimes \mathbb{Q} = gr(\mathfrak{m}(G))$  is determined by  $L_{\leq 2}(\mathcal{A})$ .
- Let h(G) = Lie(G<sub>ab</sub>)/im(H<sub>2</sub>(G, Z) → G<sub>ab</sub> ∧ G<sub>ab</sub>) be the quadratic (holonomy) Lie algebra associated to H<sup>≤2</sup>(G, Z).

- ▶ Then  $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$  (always), and  $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G) \otimes \mathbb{Q}$  (since *G* is 1-formal).
- U(𝔥(G) ⊗ 𝒫) = Ext<sup>1</sup><sub>A</sub>(𝒫, 𝒫) = A
  <sup>!</sup>, where A is the quadratic closure of A = H<sup>\*</sup>(M, 𝒫).
- An explicit combinatorial formula is lacking in general for the LCS ranks φ<sub>k</sub> := rank gr<sub>k</sub>(G), although such formulas are known when
   A is supersolvable ⇒ H<sup>\*</sup>(M, Q) is Koszul

◦  $\mathcal{A}$  is decomposable (gr<sub>3</sub>(G) is as predicted by  $\mu$ : L<sub>2</sub>( $\mathcal{A}$ ) →  $\mathbb{Z}$ )

 $\circ \mathcal{A}$  is a graphic arrangement

and in some more cases just for  $\phi_3$ .

- gr<sub>k</sub>(G) may have torsion (at least for k ≥ 4), but the torsion is not necessarily determined by L<sub>≤2</sub>(A).
- The map h<sub>3</sub>(G) → gr<sub>3</sub>(G) is an isomorphism [Porter–S.], but it is not known whether h<sub>3</sub>(G) is torsion-free.
- ► The Chen ranks θ<sub>k</sub>(G) := rank gr<sub>k</sub>(G/G") are also combinatorially determined.

ALEX SUCIU (NORTHEASTERN)

## **Milnor fibration**



- ▶ The map  $f: \mathbb{C}^d \to \mathbb{C}$  restricts to a smooth fibration,  $f: M \to \mathbb{C}^*$ , called the *Milnor fibration* of A.
- ► The *Milnor fiber* is  $F(A) := f^{-1}(1)$ . The monodromy,  $h: F \to F$ , is given by  $h(z) = e^{2\pi i/n}z$ , where n = |A|.
- ► F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension d - 1 (connected if d > 1).
- ► *F* is the regular,  $\mathbb{Z}_n$ -cover of  $U = \mathbb{P}(M)$ , classified by the projection  $\pi_1(U) \twoheadrightarrow \mathbb{Z}_n, x_H \mapsto 1$ .
- To understand  $\pi_1(F)$ , we may assume wlog that d = 3.

• Let  $\iota: F \hookrightarrow M$  be the inclusion. Induced maps on  $\pi_1$ :



- b<sub>1</sub>(F) ≥ n − 1, and may be computed from V<sup>1</sup><sub>k</sub>(U). Combinatorial formulas are known in some cases (e.g., if P(A) has only double or triple points [Papadima–S.]), but not in general.
- MHS on *F* may not be pure;  $\pi_1(F)$  may be non-1-formal [Zuber].
- $H_1(F,\mathbb{Z})$  may have torsion [Yoshinaga].

### Exact sequences and lower central series

A short exact sequence of groups,

$$1 \longrightarrow K \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1$$
 (\*)

yields

- A representation  $\varphi \colon \mathbf{Q} \to \mathsf{Out}(\mathbf{K})$ .
- A "monodromy" representation  $\bar{\varphi} \colon Q \to Aut(K_{ab})$ .
- ▶ If (\*) admits a splitting,  $\sigma: Q \to G$ , then  $G = K \rtimes_{\varphi} Q$ , where  $\varphi: Q \to Aut(K), x \mapsto conjugation by <math>\sigma(x)$ .
- (\*) is *ab-exact* if  $0 \longrightarrow K_{ab} \xrightarrow{\iota_{ab}} G_{ab} \xrightarrow{\pi_{ab}} Q_{ab} \longrightarrow 0$  is also exact; equivalently, Q acts trivially on  $K_{ab}$  and  $\iota_{ab}$  is injective.

### THEOREM (FALK-RANDELL)

Let  $G = K \rtimes_{\varphi} Q$ . If Q acts trivially on  $K_{ab}$ , then

- $\gamma_k(G) = \gamma_k(K) \rtimes_{\varphi} \gamma_k(Q)$ , for all  $k \ge 1$ .
- $\operatorname{gr}(G) = \operatorname{gr}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}(Q).$

#### THEOREM

Let  $1 \to K \xrightarrow{\iota} G \to Q \to 1$  be a split-exact and ab-exact sequence. Assume Q is abelian. Then

- K' = G'.
- $B(\iota): B(K) \rightarrow B(G)$  is a  $\mathbb{Z}K_{ab}$ -linear isomorphism.
- $\iota^* : \mathbb{T}_G \twoheadrightarrow \mathbb{T}_K$  restricts to a surjection  $\iota^* : \mathcal{V}_1(G) \twoheadrightarrow \mathcal{V}_1(K)$ .
- $\operatorname{gr}'(\iota) \colon \operatorname{gr}'(K) \xrightarrow{\simeq} \operatorname{gr}'(G)$  and  $\operatorname{gr}'(\overline{\iota}) \colon \operatorname{gr}'(K/K'') \xrightarrow{\simeq} \operatorname{gr}'(G/G'').$

### COROLLARY

- If  $\iota_* : H_1(F, \mathbb{Z}) \to H_1(M, \mathbb{Z})$  is injective, then
  - $\iota^* : \mathbb{T}_M \twoheadrightarrow \mathbb{T}_F$  restricts to surjection  $\iota^* : \mathcal{V}_1(M) \twoheadrightarrow \mathcal{V}_1(F)$ .
  - $\phi_k(F) = \phi_k(M)$  for  $k \ge 2$ .
  - $\theta_k(F) = \theta_k(M)$  for  $k \ge 2$ .

### The rational lower central series

- ► The rational lower central series of *G* is defined by  $\gamma_1^{\mathbb{Q}}G = G$  and  $\gamma_{k+1}^{\mathbb{Q}}G = \sqrt{[G, \gamma_k^{\mathbb{Q}}G]}$ . [Stallings]
- Its terms are fully invariant subgroups.
- ► This is the fastest descending N-series whose successive quotients,  $\gamma_k^{\mathbb{Q}} G / \gamma_{k+1}^{\mathbb{Q}} G$ , are torsion-free abelian
- $G/\gamma_2^{\mathbb{Q}}G = G_{abf}$ , where  $G_{abf} = G_{ab}/\operatorname{Tors}(G_{ab})$  is the maximal torsion-free abelian quotient of G.
- Associated graded Lie algebra:  $\operatorname{gr}^{\mathbb{Q}}(G) = \bigoplus_{k \ge 1} \gamma_k^{\mathbb{Q}} G / \gamma_{k+1}^{\mathbb{Q}} G$ .

#### THEOREM

Let  $G = K \rtimes_{\varphi} Q$  be a split extension. If Q acts trivially on  $K_{abf}$ , then,

• 
$$\gamma_k^{\mathbb{Q}}(G) = \gamma_k^{\mathbb{Q}}(K) \rtimes_{\varphi} \gamma_k^{\mathbb{Q}}(Q)$$
, for all  $k \ge 1$ .

•  $\operatorname{gr}^{\mathbb{Q}}(G) = \operatorname{gr}^{\mathbb{Q}}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\mathbb{Q}}(Q).$ 

## The rational derived series

- The *rational derived series* of *G* is defined by  $G_Q^{(0)} = G$  and  $G_Q^{(r)} = \sqrt{[G_Q^{(r-1)}, G_Q^{(r-1)}]}$ . [Stallings, Harvey, Cochran]
- $G_{\mathbb{Q}}^{(r)}/G_{\mathbb{Q}}^{(r+1)} \cong (G_{\mathbb{Q}}^{(r)})_{\mathsf{abf}}$ . In particular,  $G/G_{\mathbb{Q}}' = G_{\mathsf{abf}}$ .
- $B_{\mathbb{Q}}(G) := G'_{\mathbb{Q}}/G''_{\mathbb{Q}}$ , viewed as a module over  $\mathbb{Z}G_{\mathsf{abf}}$ .
- $V(\operatorname{ann}(B_{\mathbb{Q}}(G)\otimes\mathbb{C})) = \mathcal{V}_1(G) \cap \mathbb{T}_G^0$  away from 1.

#### THEOREM

Let  $1 \to K \xrightarrow{\iota} G \to Q \to 1$  be a split-exact and abf-exact sequence. Assume Q is abelian. Then

- $K'_{\mathbb{Q}} = G'_{\mathbb{Q}}$ .
- $B_{\mathbb{Q}}(\iota) : B_{\mathbb{Q}}(K) \to B_{\mathbb{Q}}(G)$  is a  $\mathbb{Z}K_{\mathsf{abf}}$ -linear isomorphism.
- $\iota^* : \mathbb{T}^0_G \twoheadrightarrow \mathbb{T}^0_K$  restricts to surjection  $\iota^* : \mathcal{V}_1(G) \cap \mathbb{T}^0_G \twoheadrightarrow \mathcal{V}_1(K) \cap \mathbb{T}^0_K$ .

 $\bullet \ \mathrm{gr}'(\iota) \colon \ \mathrm{gr}'_{\mathbb{Q}}(K) \overset{\simeq}{\longrightarrow} \mathrm{gr}'_{\mathbb{Q}}(G) \quad \textit{and} \quad \mathrm{gr}'(\overline{\iota}) \colon \ \mathrm{gr}'_{\mathbb{Q}}(K/K''_{\mathbb{Q}}) \overset{\simeq}{\longrightarrow} \mathrm{gr}'_{\mathbb{Q}}(G/G''_{\mathbb{Q}}).$ 

### The *p*-lower central series

- ► The *p*-lower central series of *G* is defined by  $\gamma_1^p G = G$  and  $\gamma_{k+1}^p G = (\gamma_k^p G)^p [G, \gamma_k^p G]$ . [Stallings]
- ► Fastest descending N-series whose successive quotients,  $\gamma_k^p G / \gamma_{k+1}^p G$ , are  $\mathbb{Z}_p$ -vector spaces.
- Its terms are fully invariant subgroups, and  $G/\gamma_2^p G = H_1(G, \mathbb{Z}_p)$ .
- Associated graded Lie algebra:  $\operatorname{gr}^{p}(G) = \bigoplus_{k \ge 1} \gamma_{k}^{p} G / \gamma_{k+1}^{p} G$ .

#### THEOREM (BELLINGERI–GERVAIS)

Let  $G = K \rtimes_{\varphi} Q$ . If Q acts trivially on  $H_1(K, \mathbb{Z}_p)$ , then,

• 
$$\gamma_k^p(G) = \gamma_k^p(K) \rtimes_{\varphi} \gamma_k^p(Q)$$
, for all  $k \ge 1$ .

•  $\operatorname{gr}^{p}(G) = \operatorname{gr}^{p}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}^{p}(Q).$ 

## The derived *p*-series

- Derived p-series:  $G_{\rho}^{(0)} = G$  and  $G_{\rho}^{(r)} = (G_{\rho}^{(r-1)})^{\rho} [G_{\rho}^{(r-1)}, G_{\rho}^{(r-1)}].$ [Stallings, Cochran–Harvey, Lackenby]
- $G_{\rho}^{(r-1)}/G_{\rho}^{(r)} \cong H_1(G_{\rho}^{(r-1)}, \mathbb{Z}_{\rho})$ . In particular,  $G/G_{\rho}' = H_1(G, \mathbb{Z}_{\rho})$ .
- If G is finitely generated, then  $G/G_p^{(r)}$  is a finite p-group, with all elements having order dividing  $p^r$ .
- $\mathbb{Z}_{p}$ -Alexander invariant:  $B_{p}(G) := G'_{p}/G''_{p}$ , as  $\mathbb{Z}[H_{1}(G, \mathbb{Z}_{p})]$ -module.

#### THEOREM

Let  $1 \to K \xrightarrow{\iota} G \to Q \to 1$  be a split-exact and *p*-exact sequence. Assume Q is abelian and has no *p*-torsion. Then,

- $K'_p = G'_p$ .
- $B_{\rho}(\iota) \colon B_{\rho}(K) \to B_{\rho}(G)$  is a  $\mathbb{Z}[H_1(K, \mathbb{Z}_{\rho})]$ -linear isomorphism.
- $\operatorname{gr}'(\iota) \colon \operatorname{gr}'_{\rho}(K) \xrightarrow{\simeq} \operatorname{gr}'_{\rho}(G) \text{ and } \operatorname{gr}'(\overline{\iota}) \colon \operatorname{gr}'_{\rho}(K/K''_{\rho}) \xrightarrow{\simeq} \operatorname{gr}'_{\rho}(G/G''_{\rho}).$

# **Formality properties**

- ▶ Let  $Y \rightarrow X$  be a finite, regular cover, with deck group  $\Gamma$ . If Y is 1-formal, then X is 1-formal, but the converse is not true.
- (Dimca–Papadima) If Γ acts trivially on H<sub>1</sub>(Y, Q), then the converse holds.
- Applying to  $\mathbb{Z}_n$ -cover  $F(\mathcal{A}) \to U(\mathcal{A})$ : if the Milnor fibration of  $\mathcal{A}$  has trivial  $\mathbb{Q}$ -monodromy, then F is 1-formal.
- (S.-He Wang) Let 1 → K → G → Q → 1 be an exact sequence. If G is 1-formal and retracts onto K, then K is also 1-formal.
- (Papadima–S.) Let 1 → K → G → Z → 1 be an exact sequence. Assume G is 1-formal and b<sub>1</sub>(K) < ∞. Then the eigenvalue 1 of the monodromy action on H<sub>1</sub>(K, C) has only 1 × 1 Jordan blocks.

#### THEOREM

Let  $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$  be a split-exact and abf-exact sequence. If G is 1-formal and K is finitely generated, then K is 1-formal.

ALEX SUCIU (NORTHEASTERN)

15/18

# Falk's pair of arrangements



▶ Both  $\mathcal{A}$  and  $\mathcal{A}'$  have 2 triple points and 9 double points, yet  $L(\mathcal{A}) \cong L(\mathcal{A}')$ . Nevertheless,  $M(\mathcal{A}) \simeq M(\mathcal{A}')$ .

- *V*<sub>1</sub>(*M*) and *V*<sub>1</sub>(*M'*) consist of two 2-dimensional subtori of (ℂ\*)<sup>6</sup>, corresponding to the triple points; *V*<sub>2</sub>(*M*) = *V*<sub>2</sub>(*M'*) = {1}.
- ▶ Both Milnor fibrations have trivial Z-monodromy.
- On the other hand,  $\mathcal{V}_2(F) \cong \mathbb{Z}_3$ , yet  $\mathcal{V}_2(F') = \{1\}$ .
- Thus,  $\pi_1(F) \ncong \pi_1(F')$ .

# Yoshinaga's icosidodecahedral arrangement



- ► The icosidodecahedron is a quasiregular polyhedron in  $\mathbb{R}^3$ , with 20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices, given by the even permutations of  $(0, 0, \pm 1)$  and  $\frac{1}{2}(\pm 1, \pm \phi, \pm \phi^2)$ , where  $\phi = (1 + \sqrt{5})/2$ .
- One can choose 10 edges to form a decagon; there are 6 ways to choose these decagons, thereby giving 6 planes.
- Each pentagonal face has five diagonals; there are 60 such diagonals in all, and they partition in 10 disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals.

ALEX SUCIU (NORTHEASTERN)

MILNOR FIBRATIONS OF ARRANGEMENTS UW-MADISON, FEB 15, 2021 17 / 18

- ► These 16 planes form a arrangement A<sub>R</sub> in R<sup>3</sup>, whose complexification is the icosidodecahedral arrangement A in C<sup>3</sup>.
- The complement *M* is a  $K(\pi, 1)$ . Moreover,  $P_U(t) = 1 + 15t + 60t^2$ ; thus,  $\chi(U) = 36$  and  $\chi(F) = 576$ .
- In fact, H<sub>1</sub>(F, Z) = Z<sup>15</sup> ⊕ Z<sub>2</sub>. Thus, the algebraic monodromy of the Milnor fibration is trivial over Q and Z<sub>p</sub> (p > 2), but not over Z.
- ► Hence, by the preceding results,  $gr(\pi_1(F)) \cong gr(\pi_1(U))$ , away from the prime 2.
- Computer computation:
  - $\circ \ \operatorname{gr}_1(\pi_1(F)) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$
  - $\circ \ \operatorname{gr}_2(\pi_1(\boldsymbol{F})) = \mathbb{Z}^{45} \oplus \mathbb{Z}_2^7$
  - $\circ \ \operatorname{gr}_{3}(\pi_{1}(F)) = \mathbb{Z}^{250} \oplus \mathbb{Z}_{2}^{43}$
  - $\circ \ \operatorname{gr}_4(\pi_1(\boldsymbol{F})) = \mathbb{Z}^{1405} \oplus \mathbb{Z}_2^?$