Cohomology jump Loci of 3-Dimensional MANIFOLDS

Alex Suciu

Northeastern University

Topology Seminar
University of Michigan

February 24, 2022

Resonance varieties

- Let $A=\left(A^{\bullet}, d\right)$ be a graded-commutative, differential graded algebra (cdga) over a field \mathbb{k}. We assume A is connected $\left(A^{0}=\mathbb{k}\right)$ and of finite-type ($\left.\operatorname{dim}_{\mathrm{k}} A^{i}<\infty, \forall i\right)$.
- Since $A^{0}=\mathbb{k}$, we have $Z^{1}(A) \cong H^{1}(A)$. Set

$$
\mathcal{Q}(A)=\left\{a \in Z^{1}(A) \mid a^{2}=0 \in A^{2}\right\} .
$$

- For each $a \in \mathcal{Q}(A)$, we then have a cochain complex,

$$
\left(A^{\bullet}, \delta_{a}\right): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}^{i}(u)=a \cdot u+d(u)$, for all $u \in A^{i}$.

- The resonance varieties of A (in degree $i \geqslant 0$ and depth $k \geqslant 0$):

$$
\mathcal{R}_{k}^{i}(A)=\left\{a \in \mathcal{Q}(A) \mid \operatorname{dim}_{\mathbb{k}} H^{i}\left(A^{\bullet}, \delta_{a}\right) \geqslant k\right\} .
$$

- $\mathrm{TC}_{0}\left(\mathcal{R}_{k}^{i}(A)\right) \subseteq \mathcal{R}_{k}^{i}\left(H^{\bullet}(A)\right)$, but not $=$ in general.

Resonance varieties of graded algebras

- Now let A be a graded, graded-commutative \mathbb{k}-algebra (cga). We will assume A is connected and of finite-type (with $d=0$), and char $\mathbb{k} \neq 2$.
- For each $a \in A^{1}$ we have $a^{2}=-a^{2}$, and so $a^{2}=0$. Thus, $\mathcal{Q}(A)=A^{1}$, and the differentials in $\left(A^{\bullet}, \delta_{a}\right)$ are given by $\delta_{a}^{i}(u)=a \cdot u$.
- In this case, the resonance varieties $\mathcal{R}_{k}^{i}(A)$ are homogeneous subvarieties of the affine space A^{1}.
- An element $a \in A^{1}$ belongs to $\mathcal{R}_{k}^{i}(A)$ if and only if there exist $u_{1}, \ldots, u_{k} \in A^{i}$ such that $a u_{1}=\cdots=a u_{k}=0$ in A^{i+1}, and the set $\left\{a u, u_{1}, \ldots, u_{k}\right\}$ is linearly independent in A^{i}, for all $u \in A^{i-1}$.
- Set $b_{j}=b_{j}(A)$. For each $i \geqslant 0$, we have a descending filtration,

$$
A^{1}=\mathcal{R}_{0}^{i}(A) \supseteq \mathcal{R}_{1}^{i}(A) \supseteq \cdots \supseteq \mathcal{R}_{b_{i}}^{i}(A)=\{0\} \supset \mathcal{R}_{b_{i+1}}^{i}(A)=\varnothing \text {. }
$$

- A linear subspace $U \subset A^{1}$ is isotropic if the restriction of $A^{1} \wedge A^{1} \rightarrow A^{2}$ to $U \wedge U$ is the zero map (i.e., $a b=0, \forall a, b \in U$).
- If $U \subseteq A^{1}$ is an isotropic subspace of dimension k, then $U \subseteq \mathcal{R}_{k-1}^{1}(A)$.
- $\mathcal{R}_{1}^{1}(A)$ is the union of all isotropic planes in A^{1}.
- If $\mathbb{k} \subset \mathbb{K}$ is a field extension, then the \mathbb{k}-points on $\mathcal{R}_{k}^{i}\left(A \otimes_{\mathbb{k}} \mathbb{K}\right)$ coincide with $\mathcal{R}_{k}^{i}(A)$.
- Let $\varphi: A \rightarrow B$ be a morphism of cgas. If the map $\varphi^{1}: A^{1} \rightarrow B^{1}$ is injective, then $\varphi^{1}\left(\mathcal{R}_{k}^{1}(A)\right) \subseteq \mathcal{R}_{k}^{1}(B)$, for all k.

The BGG correspondence

- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{*}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, the coordinate ring of the affine space A^{1}.
- The BGG correspondence yields a cochain complex of finitely generated, free S-modules, $\mathrm{L}(A):=\left(A^{\bullet} \otimes_{\mathfrak{k}} S, \delta\right)$,

$$
\cdots \longrightarrow A^{i} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{i}} A^{i+1} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{i+1}} A^{i+2} \otimes_{\mathbb{k}} S \longrightarrow \cdots,
$$

where $\quad \delta_{A}^{i}(u \otimes s)=\sum_{j=1}^{n} e_{j} u \otimes s x_{j}$.

- The specialization of $\left(A \otimes_{\mathbb{k}} S, \delta\right)$ at $a \in A^{1}$ coincides with $\left(A, \delta_{a}\right)$, that is, $\left.\delta_{A}^{i}\right|_{x_{j}=a_{j}}=\delta_{a}^{i}$.
- By definition, an element $a \in A^{1}$ belongs to $\mathcal{R}_{k}^{i}(A)$ if and only if

$$
\operatorname{rank} \delta_{a}^{i-1}+\operatorname{rank} \delta_{a}^{i} \leqslant b_{i}(A)-k
$$

- Let $I_{r}(\psi)$ denote the ideal of $r \times r$ minors of a $p \times q$ matrix ψ with entries in S, where $I_{0}(\psi)=S$ and $I_{r}(\psi)=0$ if $r>\min (p, q)$. Then:

$$
\begin{aligned}
\mathcal{R}_{k}^{i}(A) & =V\left(I_{b_{i}(A)-k+1}\left(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\right)\right) \\
& =\bigcap_{s+t=b_{i}(A)-k+1}\left(V\left(I_{s}\left(\delta_{A}^{i-1}\right)\right) \cup V\left(I_{t}\left(\delta_{A}^{i}\right)\right)\right) .
\end{aligned}
$$

- In particular, $\mathcal{R}_{k}^{1}(A)=V\left(I_{n-k}\left(\delta_{A}^{1}\right)\right)(0 \leqslant k<n)$ and $\mathcal{R}_{n}^{1}(A)=\{0\}$.
- The (degree i, depth k) resonance scheme $\mathcal{R}_{k}^{i}(A)$ is defined by the ideal $I_{b_{i}(A)-k+1}\left(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\right)$; its underlying set is $\mathcal{R}_{k}^{i}(A)$.

Poincaré duality algebras

- Let A be a connected, finite-type \mathbb{k}-cga.
- A is a Poincaré duality \mathbb{k}-algebra of dimension m if there is a \mathbb{k}-linear $\operatorname{map} \varepsilon: A^{m} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathbb{k}} A^{m-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- We then have:
- $b_{i}(A)=b_{m-i}(A)$, and $A^{i}=0$ for $i>m$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{m-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isos.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{m-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is $\omega_{A}:=1^{\vee}$.
- We have $\varepsilon\left(\omega_{A}\right)=1$, and thus $a a^{\vee}=\omega_{A}$.

The Associated Alternating form

- Associated to a $\mathbb{k}-\mathrm{PD}_{m}$ algebra there is an alternating m-form,

$$
\mu_{A}: \bigwedge^{m} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\varepsilon\left(a_{1} \cdots a_{m}\right)
$$

- Assume now that $m=3$, and set $n=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{n}^{\vee}\right\}$ be the dual basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{r} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega
$$

where $\mu_{i j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Let $A_{i}=\left(A^{i}\right)^{*}$. We may view μ dually as a trivector,

$$
\mu=\sum \mu_{i j k} e^{i} \wedge e^{j} \wedge e^{k} \in \bigwedge^{3} A_{1}
$$

which encodes the algebra structure of A.

Classification of alternating forms

- Let V be a \mathbb{k}-vector space of dimension n. The group $G L(V)$ acts on $\wedge^{m}\left(V^{*}\right)$ by $(g \cdot \mu)\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\mu\left(g^{-1} a_{1} \wedge \cdots \wedge g^{-1} a_{m}\right)$.
- The orbits of this action are the equivalence classes of alternating m-forms on V. (We write $\mu \sim \mu^{\prime}$ if $\mu^{\prime}=g \cdot \mu$.)
- Over $\overline{\mathbb{k}}$, the closures of these orbits are affine algebraic varieties; there are finitely many orbits only if $m \leqslant 2$ or $m=3$ and $n \leqslant 8$.
- Each complex orbit has only finitely many real forms. When $m=3$, and $n=8$, there are 23 complex orbits, which split into either 1,2 , or 3 real orbits, for a total of 35 real orbits.
- There is a bijection between isomorphism classes of 3-dimensional Poincaré duality algebras and equivalence classes of alternating 3 -forms, given by $A \leadsto \leadsto \mu_{A}$.

Poincaré duality in orientable manifolds

- Let M be a compact, connected, orientable, m-dimensional manifold. Then the cohomology ring $A=H^{\bullet}(M, \mathbb{k})$ is a PD_{m} algebra over \mathbb{k}.
- Sullivan (1975): for every finite-dimensional \mathbb{Q}-vector space V and every alternating 3-form $\mu \in \bigwedge^{3} V^{*}$, there is a closed 3-manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."
- E.g., 0-surgery on the Borromean rings in S^{3} yields $M=T^{3}$, with $\mu_{M}=e^{1} e^{2} e^{3}$.
- If M is the link of an isolated surface singularity (e.g., if $M=\Sigma(p, q, r)$ is a Brieskorn manifold), then $\mu_{M}=0$.

Resonance varieties of PD-Algebras

- Let A be a PD_{m} algebra. For $0 \leqslant i \leqslant m$ and $a \in A^{1}$, the following diagram commutes up to a sign.

$$
\begin{array}{cc}
\left(A^{m-i}\right)^{*} \xrightarrow{\left(\delta_{-a}^{m-i-1}\right)^{*}}\left(A^{m-i-1}\right)^{*} \\
\mathrm{PD}^{\uparrow} \xlongequal{\cong} & \mathrm{PD} \uparrow \cong \\
A^{i} \xrightarrow{i} \quad \delta_{a}^{i} & A^{i+1}
\end{array}
$$

- Consequently, $\left(H^{i}\left(A, \delta_{a}\right)\right)^{*} \cong H^{m-i}\left(A, \delta_{-a}\right)$.
- Hence, $\mathcal{R}_{k}^{i}(A)=\mathcal{R}_{k}^{m-i}(A)$ for all i and k. In particular, $\mathcal{R}_{1}^{m}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$.

Corollary

Let A be a PD_{3} algebra with $b_{1}(A)=n$. Then $\mathcal{R}_{k}^{i}(A)=\varnothing$, except for:

- $\mathcal{R}_{0}^{i}(A)=A^{1}$ for all $i \geqslant 0$.
- $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$ and $\mathcal{R}_{n}^{2}(A)=\mathcal{R}_{n}^{1}(A)=\{0\}$.
- $\mathcal{R}_{k}^{2}(A)=\mathcal{R}_{k}^{1}(A)$ for $0<k<n$.
- A linear subspace $U \subset V$ is 2-singular with respect to a 3-form $\mu: \wedge^{3} V \rightarrow \mathbb{k}$ if $\mu(a \wedge b \wedge c)=0$ for all $a, b \in U$ and $c \in V$.
- The rank of $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$. The nullity of μ is the maximum dimension of a 2-singular subspace $U \subset V$.
- Clearly, V contains a singular plane if and only if $\operatorname{null}(\mu) \geqslant 2$.
- Let A be a PD_{3} algebra. A linear subspace $U \subset A^{1}$ is 2-singular (with respect to μ_{A}) if and only if U is isotropic.
- Using a result of A. Sikora [2005], we obtain:

Theorem

Let A be a PD_{3} algebra over an algebraically closed field \mathbb{k} with $\operatorname{char}(\mathbb{k}) \neq 2$, and let $\nu=\operatorname{null}\left(\mu_{A}\right)$. If $b_{1}(A) \geqslant 4$, then

$$
\operatorname{dim} \mathcal{R}_{\nu-1}^{1}(A) \geqslant \nu \geqslant 2
$$

In particular, $\operatorname{dim} \mathcal{R}_{1}^{1}(A) \geqslant \nu$.

Real forms and Resonance

- Sikora made the following conjecture: If $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is a 3-form with $\operatorname{dim} V \geqslant 4$ and if $\operatorname{char}(\mathbb{k}) \neq 2$, then null $(\mu) \geqslant 2$.
- Conjecture holds if $n:=\operatorname{dim} V$ is even or equal to 5 , or if $\mathbb{k}=\overline{\mathbb{k}}$.
- Work of J. Draisma and R. Shaw $[2010,2014]$ implies that the conjecture does not hold for $\mathbb{k}=\mathbb{R}$ and $n=7$. We obtain:

Theorem

Let A be a PD_{3} algebra over \mathbb{R}. Then $\mathcal{R}_{1}^{1}(A) \neq\{0\}$, except when

- $n=1, \mu_{A}=0$.
- $n=3, \mu_{A}=e^{1} e^{2} e^{3}$.
- $n=7, \mu_{A}=-e^{1} e^{3} e^{5}+e^{1} e^{4} e^{6}+e^{2} e^{3} e^{6}+e^{2} e^{4} e^{5}+e^{1} e^{2} e^{7}+e^{3} e^{4} e^{7}+e^{5} e^{6} e^{7}$.

Sketch: If $\mathcal{R}_{1}^{1}(A)=\{0\}$, then the formula $(x \times y) \cdot z=\mu_{A}(x, y, z)$ defines a cross-product on $A^{1}=\mathbb{R}^{n}$, and thus a division algebra structure on \mathbb{R}^{n+1}, forcing $n=1,3$ or 7 by Bott-Milnor/Kervaire [1958].

ExAmple

- Let A be the real $P D_{3}$ algebra corresponding to octonionic multiplication (the case $n=7$ above).
- Let A^{\prime} be the real PD_{3} algebra with $\mu_{A^{\prime}}=e^{1} e^{2} e^{3}+e^{4} e^{5} e^{6}+e^{1} e^{4} e^{7}+e^{2} e^{5} e^{7}+e^{3} e^{6} e^{7}$.
- Then $\mu_{A} \sim \mu_{A^{\prime}}$ over \mathbb{C}, and so $A \otimes_{\mathbb{R}} \mathbb{C} \cong A^{\prime} \otimes_{\mathbb{R}} \mathbb{C}$.
- On the other hand, $A \not \equiv A^{\prime}$ over \mathbb{R}, since $\mu_{A} \nsim \mu_{A^{\prime}}$ over \mathbb{R}, but also because $\mathcal{R}_{1}^{1}(A)=\{0\}$, yet $\mathcal{R}_{1}^{1}\left(A^{\prime}\right) \neq\{0\}$.
- Both $\mathcal{R}_{1}^{1}\left(A \otimes_{\mathbb{R}} \mathbb{C}\right)$ and $\mathcal{R}_{1}^{1}\left(A^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)$ are projectively smooth conics, and thus are projectively equivalent over \mathbb{C}, but

$$
\mathcal{R}_{1}^{1}\left(A \otimes_{\mathbb{R}} \mathbb{C}\right)=\left\{x \in \mathbb{C}^{7} \mid x_{1}^{2}+\cdots+x_{7}^{2}=0\right\}
$$

has only one real point $(x=0)$, whereas

$$
\mathcal{R}_{1}^{1}\left(A^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)=\left\{x \in \mathbb{C}^{7} \mid x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}
$$

contains the real (isotropic) subspace $\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$.

Pfaffians and Resonance

Let A be a \mathbb{k} - PD_{3} algebra with $b_{1}(A)=n$. The cochain complex $\mathrm{L}(A)=\left(A \otimes_{\mathbb{k}} S, \delta_{A}\right)$ then looks like

$$
A^{0} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{0}} A^{1} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{1}} A^{2} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{2}} A^{3} \otimes_{\mathbb{k}} S,
$$

where $\delta_{A}^{0}=\left(x_{1} \cdots x_{n}\right)$ and $\delta_{A}^{2}=\left(\delta_{A}^{0}\right)^{\top}$, while δ_{A}^{1} is the skew- symmetric matrix whose are entries linear forms in S given by

$$
\delta_{A}^{1}\left(e_{i}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \mu_{j i k} e_{k}^{\vee} \otimes x_{j}
$$

Theorem

We have $\mathcal{R}_{2 k}^{1}(A)=\mathcal{R}_{2 k+1}^{1}(A)=V\left(\operatorname{Pf}_{n-2 k}\left(\delta_{A}^{1}\right)\right)$ if n is even and $\mathcal{R}_{2 k-1}^{1}(A)=\mathcal{R}_{2 k}^{1}(A)=V\left(\operatorname{Pf}_{n-2 k+1}\left(\delta_{A}^{1}\right)\right)$ if n is odd. Moreover, if μ_{A} has maximal rank $n \geqslant 3$, then

$$
\mathcal{R}_{n-2}^{1}(A)=\mathcal{R}_{n-1}^{1}(A)=\mathcal{R}_{n}^{1}(A)=\{0\} .
$$

Suppose $\operatorname{dim}_{\mathbb{k}} V=2 g+1>1$. We say $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is generic (in the sense of Berceanu-Papadima [1994]) if there is a $v \in V$ such that the 2 -form $\gamma_{v} \in V^{*} \wedge V^{*}$ given by $\gamma_{v}(a \wedge b)=\mu_{A}(a \wedge b \wedge v)$ for $a, b \in V$ has rank $2 g$, that is, $\gamma_{v}^{g} \neq 0$ in $\bigwedge^{2 g} V^{*}$.

Theorem

Let A be a PD_{3} algebra with $b_{1}(A)=n$. Then

$$
\mathcal{R}_{1}^{1}(A)= \begin{cases}\varnothing & \text { if } n=0 \\ \{0\} & \text { if } n=1 \text { or } n=3 \text { and } \mu \text { has rank } 3 \\ V\left(\operatorname{Pf}\left(\mu_{A}\right)\right) & \text { if } n \text { is odd, } n>3, \text { and } \mu_{A} \text { is } B P \text {-generic; } \\ A^{1} & \text { otherwise }\end{cases}
$$

where $\operatorname{Pf}\left(\mu_{A}\right)$ is the Pffafian of μ_{A}, as defined by Turaev [2002].

Example

Let $M=\Sigma_{g} \times S^{1}$, where $g \geqslant 2$. Then $\mu_{M}=\sum_{i=1}^{g} a_{i} b_{i} c$ is BP-generic, and $\operatorname{Pf}\left(\mu_{M}\right)=x_{2 g+1}^{g-1}$. Hence, $\mathcal{R}_{1}^{1}(M)=\left\{x_{2 g+1}=0\right\}$. In fact,

$$
\mathcal{R}_{1}^{1}=\cdots=\mathcal{R}_{2 g-2}^{1} \text { and } \mathcal{R}_{2 g-1}^{1}=\mathcal{R}_{2 g}^{1}=\mathcal{R}_{2 g+1}^{1}=\{0\} .
$$

As a corollary, we recover a closely related result, proved by Draisma and Shaw [2010] by very different methods.

Corollary

Let V be a \mathbb{k}-vector space of odd dimension $n \geqslant 5$ and let $\mu \in \bigwedge^{3} V^{*}$. Then the union of all singular planes is either all of V or a hypersurface defined by a homogeneous polynomial in $\mathbb{k}[V]$ of degree $(n-3) / 2$.

For $\mu \in \bigwedge^{3} V^{*}$, there is another genericity condition, due to P. De Poi, D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: $\operatorname{rank}\left(\gamma_{v}\right)>2$, for all non-zero $v \in V$. We may interpret some of their results, as follows.

Theorem (DFMR)

Let A be a PD_{3} algebra over \mathbb{C}, and suppose μ_{A} is generic. Then:

- If n is odd, then $\mathcal{R}_{1}^{1}(A)$ is a hypersurface of degree $(n-3) / 2$ which is smooth if $n \leqslant 7$, and singular in codimension 5 if $n \geqslant 9$.
- If n is even, then $\mathcal{R}_{2}^{1}(A)$ has codim 3 and degree $\frac{1}{4}\binom{n-2}{3}+1$; it is smooth if $n \leqslant 10$, and singular in codimension 7 if $n \geqslant 12$.

Characteristic varieties of spaces

- Let X be a connected, finite-type CW-complex. Then $G=\pi_{1}\left(X, x_{0}\right)$ is a finitely presented group, with $G_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- The ring $R=\mathbb{C}\left[G_{\mathrm{ab}}\right]$ is the coordinate ring of the character group, $\operatorname{Char}(X)=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n} \times \operatorname{Tors}\left(G_{\mathrm{ab}}\right)$, where $n=b_{1}(X)$.
- The characteristic varieties of X are the homology jump loci

$$
\mathcal{V}_{k}^{i}(X)=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geqslant k\right\} .
$$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_{k}^{1}(X)$ depending only on $G=\pi_{1}(X)$.
- Set $\mathcal{V}_{1}(G):=\mathcal{V}_{1}^{1}(K(G, 1))$; then $\mathcal{V}_{1}(G)=\mathcal{V}_{1}\left(G / G^{\prime \prime}\right)$.
- Let $f \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right], f(1)=0$. There is then a finitely presented group G with $G_{\mathrm{ab}}=\mathbb{Z}^{n}$ such that $\mathcal{V}_{1}(G)=V(f)$.

TANgEnt cones

- Let exp: $H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right)$ be the coefficient homomorphism induced by $\mathbb{C} \rightarrow \mathbb{C}^{*}, z \mapsto e^{z}$.
- Let $W=V(I)$, a Zariski closed subset of $\operatorname{Char}(G)=H^{1}\left(X, \mathbb{C}^{*}\right)$.
- The tangent cone at 1 to W is $\mathrm{TC}_{1}(W)=V(\mathrm{in}(I))$.
- The exponential tangent cone at 1 to W :

$$
\tau_{1}(W)=\left\{z \in H^{1}(X, \mathbb{C}) \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\} .
$$

- Both tangent cones are homogeneous subvarieties of $H^{1}(X, \mathbb{C})$; are non-empty iff $1 \in W$; depend only on the analytic germ of W at 1 ; commute with finite unions and arbitrary intersections.
- $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$, with $=$ if all irred components of W are subtori, but \neq in general.
- $\tau_{1}(W)$ is a finite union of rationally defined subspaces.

The tangent cone Theorem

- A \mathbb{k}-cdga A is a model for a space X is A may be connected through a zig-zag of quasi-isomorphisms to Sullivan's algebra of piecewise polynomial forms $A_{\text {PL }}(X) \otimes_{\mathbb{Q}} \mathbb{k}$.
- If the maps in the zig-zag are only isomorphisms in $H^{\leqslant q}$ and injective in degree $q+1$, we say A is a q-model.
- A is formal (or just q-formal) if it is $\left(q\right.$-) equivalent to $\left(H^{\bullet}(A), 0\right)$.

Theorem

Let X be a connected CW-complex with finite q-skeleton, and suppose X admits a q-finite q-model A. Then, for all $i \leqslant q$ and all $k \geqslant 0$:

- (DPS 2009, Dimca-Papadima 2014) $\mathcal{V}_{k}^{i}(X)_{(1)} \cong \mathcal{R}_{k}^{i}(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_{k}^{i}(X)_{(1)} \cong \mathcal{R}_{k}^{i}(X)_{(0)}$.
- (Budur-Wang 2020) All the irreducible components of $\mathcal{V}_{k}^{i}(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently, $\tau_{1}\left(\mathcal{V}_{k}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{k}^{i}(X)\right)=\mathcal{R}_{k}^{i}(A)$.

ALEXANDER POLYNOMIALS OF 3-MANIFOLDS

- Let $H=H_{1}(X, \mathbb{Z}) /$ Tors. Let $X^{H} \rightarrow X$ be the maximal torsion-free abelian cover of X, with cellular chain complex $C_{0}\left(X^{H}, \partial^{H}\right)$.
- The Alexander polynomial $\Delta_{X} \in \mathbb{Z}[H]$ is the gcd of the codimension 1 minors of the Alexander matrix ∂_{1}^{H}.

PROPOSITION

Let λ be a Laurent polynomial in $n \leqslant 3$ variables such that $\bar{\lambda} \doteq \lambda$ and $\lambda(1) \neq 0$. Then λ can be realized as the Alexander polynomial Δ_{M} of a closed, orientable 3-manifold M with $b_{1}(M)=n$.

Set $\mathcal{W}_{1}^{1}(M)=\mathcal{V}_{1}^{1}(M) \cap \operatorname{Char}^{0}(M)$.

Proposition

Let M be a closed, orientable, 3-dimensional manifold. Then $\mathcal{W}_{1}^{1}(M)=V\left(\Delta_{M}\right) \cup\{1\}$. If, moreover, $b_{1}(M) \geqslant 4$, then $\Delta_{M}(1)=0$, and so $\mathcal{W}_{1}^{1}(M)=V\left(\Delta_{M}\right)$.

A TAngent Cone theorem for 3-manifolds

Let M be a closed, orientable, 3 -manifold, and set $n=b_{1}(M)$.

Theorem

(1) If either $n \leqslant 1$, or n is odd, $n \geqslant 3$, and μ_{M} is BP-generic, then

$$
\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)
$$

(2) If n is even, $n \geqslant 2$, then $\mathcal{R}^{1}(M)=H^{1}(M, \mathbb{C})$. Moreover,

$$
\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M) \Longleftrightarrow \Delta_{M}=0
$$

REMARK

In case (2), the equality $\mathcal{R}^{1}(M)=H^{1}(M, \mathbb{C})$ was first proved in [Dimca-S, 2009], where it was used to show that the only 3-manifold groups which are also Kähler groups are the finite subgroups of $O(4)$.

Theorem

(1) If $n \leqslant 1$, then M is formal, and has the rational homotopy type of S^{3} or $S^{1} \times S^{2}$.
(2) If n is even, $n \geqslant 2$, and $\Delta_{M} \neq 0$, then M is not 1-formal.
(3) If $\Delta_{M} \neq 0$, yet $\Delta_{M}(1)=0$ and $\mathrm{TC}_{1}\left(V\left(\Delta_{M}\right)\right)$ is not a finite union of \mathbb{Q}-linear subspaces, then M admits no 1-finite 1-model.

ExAMPLE

Let $M=S^{1} \times S^{2} \# S^{1} \times S^{2}$; then $\Delta_{M}=0$, and so
$\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$. In fact, M is formal.

Example

- Let M be the Heisenberg 3-d nilmanifold; then $\Delta_{M}=1$ and $\mu_{M}=0$, and so $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\{0\}$, whereas $\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- M admits a finite model, namely, $A=\bigwedge(a, b, c)$ with $d a=d b=0$ and $d c=a b$, but M is not 1-formal.

ExAmple

Let M be a 3-manifold with $\Delta_{M}=\left(t_{1}+t_{2}\right)\left(t_{1} t_{2}+1\right)-4 t_{1} t_{2}$. Then

$$
\{0\}=\tau_{1}\left(\mathcal{V}_{1}^{1}(M)\right) \varsubsetneqq \mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\left\{x_{1}^{2}+x_{2}^{2}=0\right\} .
$$

The latter variety decomposes as the union of two lines defined over \mathbb{C}, but not over \mathbb{Q}. Hence, M admits no 1-finite 1-model.

The 3d Tangent Cone theorem does not hold in higher depth.

ExAMPLE

Let M be a 3-manifold with $b_{1}(M)=10$ and intersection 3-form

$$
\mu_{M}=e_{1} e_{2} e_{5}+e_{1} e_{3} e_{6}+e_{2} e_{3} e_{7}+e_{1} e_{4} e_{8}+e_{2} e_{4} e_{9}+e_{3} e_{4} e_{10}
$$

- $\mathcal{R}_{7}^{1}(M) \cong\left\{z \in \mathbb{C}^{6} \mid z_{1} z_{6}-z_{2} z_{5}+z_{3} z_{4}=0\right\}$, an irreducible quadric with an isolated singular point at 0 .
- $\mathcal{V}_{k}^{1}(M) \subseteq\{1\}$, for all $k \geqslant 1$.
- Thus, $\mathrm{TC}_{1}\left(\mathcal{V}_{7}^{1}(M)\right) \neq \mathcal{R} \frac{1}{7}(M)$, and so M is not 1-formal.

The Bieri-Neumann-Strebel-Renz invariants

- Let G be a finitely generated group, $n=b_{1}(G)>0$. Let $S(G)=S^{n-1}$ be the unit sphere in $\operatorname{Hom}(G, \mathbb{R})=\mathbb{R}^{n}$.
- (BNS 1987) $\Sigma^{1}(G)=\left\{\chi \in S(G) \mid\right.$ Cay $_{\chi}(G)$ is connected $\}$, where $\mathrm{Cay}_{\chi}(G)$ is the induced subgraph of the Cayley graph of G on vertex set the monoid $G_{\chi}=\{g \in G \mid \chi(g) \geqslant 0\}$.
- (Bieri-Renz 1988) $\Sigma^{q}(G, \mathbb{Z})=\left\{\chi \in S(G) \mid G_{\chi}\right.$ is of type $\left.\mathrm{FP}_{q}\right\}$, i.e., there is a projective $\mathbb{Z} G_{\chi}$-resolution $P_{\bullet} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leqslant q$. Moreover, $\Sigma^{1}(G, \mathbb{Z})=-\Sigma^{1}(G)$.
- The BNSR-invariants of form a descending chain of open subsets, $S(G) \supseteq \Sigma^{1}(G, \mathbb{Z}) \supseteq \Sigma^{2}(G, \mathbb{Z}) \supseteq \cdots$.
- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G / N is free abelian:

$$
N \text { is of type } \mathrm{FP}_{q} \Longleftrightarrow\{\chi \in S(G) \mid \chi(N)=0\} \subseteq \Sigma^{q}(G, \mathbb{Z})
$$

- In particular: $\operatorname{ker}(\chi: G \rightarrow \mathbb{Z})$ is f.g. $\Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G)$.

Novikov-Sikorav homology

- The Novikov-Sikorav completion of $\mathbb{Z} G$ at $\chi \in S(G)$ is

$$
\widehat{\mathbb{Z} G}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g) \geqslant c\} \text { is finite, } \forall c \in \mathbb{R}\right\} .
$$

- Alternatively, is U_{m} the additive subgroup of $\mathbb{Z} G$ (freely) generated by $\{g \in G \mid \chi(g) \geqslant m\}$, then $\widehat{\mathbb{Z} G}-\chi=\lim _{m} \mathbb{Z} G / U_{m}$.
- Example: Let $G=\mathbb{Z}=\langle t\rangle$ and $\chi(t)=1$. Then

$$
\widehat{\mathbb{Z} G}_{\chi}=\left\{\sum_{i \leqslant k} n_{i} t^{i} \mid n_{i} \in \mathbb{Z}, \text { for some } k \in \mathbb{Z}\right\} .
$$

- Now let X be a connected CW-complex with finite q-skeleton. Write $S(X):=S(G)$ and define (Farber-Geoghegan-Schütz 2010):

$$
\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in S(X) \mid H_{i}(X, \widehat{\mathbb{Z} G}-\chi)=0, \forall i \leqslant q\right\} .
$$

- (Bieri 2007) If G is FP_{k}, then $\Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leqslant k$.
- In particular, if G is f.g., the BNS set $\Sigma^{1}(G)=-\Sigma^{1}(G, \mathbb{Z})$ consists of those $\chi \in S(G)$ for which both $H_{0}\left(G, \widehat{\mathbb{Z}}_{\chi}\right)$ and $H_{1}\left(G, \widehat{\mathbb{Z}}_{\chi}\right)$ vanish.

Tropical varieties

- Let $\mathbb{K}=\mathbb{C}\{\{t\}\}=\bigcup_{n \geqslant 1} \mathbb{C}\left(\left(t^{1 / n}\right)\right)$ be the field of Puiseux series $/ \mathbb{C}$.
- A non-zero element of \mathbb{K} has the form $c(t)=c_{1} t^{a_{1}}+c_{2} t^{a_{2}}+\cdots$, where $c_{i} \in \mathbb{C}^{*}$ and $a_{1}<a_{2}<\cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a valuation $v: \mathbb{K}^{*} \rightarrow \mathbb{Q}$, $v(c(t))=a_{1}$. Let $v:\left(\mathbb{K}^{*}\right)^{n} \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be its n-fold product.
- The tropicalization of a subvariety $W \subset\left(\mathbb{K}^{*}\right)^{n}$, denoted $\operatorname{Trop}(W)$, is the closure (in the Euclidean topology) of $v(W)$ in \mathbb{R}^{n}.
- This is a rational polyhedral complex in \mathbb{R}^{n}. For instance, if W is a curve, then $\operatorname{Trop}(W)$ is a graph with rational edge directions.
- If T be an algebraic subtorus of $\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(T)$ is the linear subspace $\operatorname{Hom}\left(\mathbb{K}^{*}, T\right) \otimes \mathbb{R} \subset \operatorname{Hom}\left(\mathbb{K}^{*},\left(\mathbb{K}^{*}\right)^{n}\right) \otimes \mathbb{R}=\mathbb{R}^{n}$. Moreover, if $z \in\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(z \cdot T)=\operatorname{Trop}(T)+v(z)$.
- For a variety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, we may define its tropicalization by setting $\operatorname{Trop}(W)=\operatorname{Trop}\left(W \times_{\mathbb{C}} \mathbb{K}\right)$. This is a polyhedral fan in \mathbb{R}^{n}.
- For a polytope P, with (polar) dual P^{*}, let
- $\mathcal{F}(P)$ face fan (the set of cones spanned by the faces of P).
- $\mathcal{N}(P)$ (inner) normal fan.

If $0 \in \operatorname{int}(P)$, then $\mathcal{N}(P)=\mathcal{F}\left(P^{*}\right)$.

- If $W=V(f)$ is a hypersurface defined by $f=\sum_{\mathbf{u} \in A} a_{\mathbf{u}} \mathbf{t}^{\mathbf{u}} \in \mathbb{C}\left[\mathbf{t}^{ \pm 1}\right]$, and $\operatorname{Newt}(f)=\operatorname{conv}\left\{\mathbf{u} \mid a_{\mathbf{u}} \neq 0\right\} \subset \mathbb{R}^{n}$, then

$$
\operatorname{Trop}(V(f))=\mathcal{N}(\operatorname{Newt}(f))^{\operatorname{codim}>0}
$$

Example

Let $f=t_{1}+t_{2}+1$. Then $\operatorname{Newt}(f)=\operatorname{conv}\{(1,0),(0,1),(0,0)\}$ is a triangle, and so $\operatorname{Trop}(V(f))$ is a tripod.

Tropicalizing the characteristic varieties

- Recall $\mathbb{K}=\mathbb{C}\{\{t\}\}$ comes with a valuation map, $v: \mathbb{K}^{*} \rightarrow \mathbb{Q}$.
- Let $\nu_{X}: \operatorname{Char}_{\mathbb{K}}(X) \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be the composite

$$
H^{1}\left(X, \mathbb{K}^{*}\right) \xrightarrow{v_{*}} H^{1}(X, \mathbb{Q}) \longrightarrow H^{1}(X, \mathbb{R})
$$

- Given an algebraic subvariety $W \subset H^{1}\left(X, \mathbb{C}^{*}\right)$ we define its tropicalization as the closure in $H^{1}(X, \mathbb{R}) \cong \mathbb{R}^{n}$ of the image of $W \times_{\mathbb{C}} \mathbb{K} \subset H^{1}\left(X, \mathbb{K}^{*}\right)$ under ν_{X},

$$
\operatorname{Trop}(W):=\overline{\nu_{X}\left(W \times_{\mathbb{C}} \mathbb{K}\right)}
$$

- Applying this to the characteristic varieties $\mathcal{V}^{i}(X):=\mathcal{V}_{1}^{i}(X)$, and recalling that $\mathcal{V}^{i}(X, \mathbb{K})=\mathcal{V}^{i}(X) \times_{\mathbb{C}} \mathbb{K}$, we have that

$$
\operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)=\overline{\nu_{X}\left(\mathcal{V}^{i}(X, \mathbb{K})\right)}
$$

LEMMA

Let $W \subset\left(\mathbb{C}^{*}\right)^{n}$ be an algebraic variety. Then $\tau_{1}^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.
Sketch of proof.

- Every irreducible component of $\tau_{1}^{\mathbb{R}}(W)$ is of the form $L \otimes_{\mathbb{Q}} \mathbb{R}$, for some linear subspace $L \subset \mathbb{Q}^{n}$.
- The complex torus $T:=\exp \left(L \otimes_{\mathbb{Q}} \mathbb{C}\right)$ lies inside W.
- Thus, $\operatorname{Trop}(T)=L \otimes \mathbb{Q} \mathbb{R}$ lies inside $\operatorname{Trop}(W)$.

Proposition

- $\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{i}(X)\right) \subseteq \operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)$, for all $i \leqslant q$.
- If there is a subtorus $T \subset \operatorname{Char}^{0}(X)$ such that $T \notin \mathcal{V}^{i}(X)$, yet $\rho T \subset \mathcal{V}^{i}(X)$ for some $\rho \in \operatorname{Char}(X)$, then $\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{i}(X)\right) \varsubsetneqq \operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)$.

A tropical bound for the \sum-invariants

Theorem (PS-2010, S-2021)
Let $\rho: \pi_{1}(X) \rightarrow \mathbb{k}^{*}$ be a character such that $\rho \in \mathcal{V} \leqslant q(X, \mathbb{k})$. Let $v: \mathbb{k}^{*} \rightarrow \mathbb{R}$ be a valuation on \mathbb{k}, and set $\chi=v \circ \rho$. If $\chi: \pi_{1}(X) \rightarrow \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^{q}(X, \mathbb{Z})$.

Theorem (S-2021)

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S\left(\operatorname{Trop}\left(\mathcal{V}^{\leqslant q}(X)\right)\right)^{c}
$$

Corollary

$$
\begin{aligned}
& \Sigma^{q}(X, \mathbb{Z}) \subseteq S\left(\operatorname{Trop}\left(\mathcal{V}^{\leqslant q}(X)\right)\right)^{\mathrm{c}} \subseteq S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{\leqslant q}(X)\right)\right)^{\mathrm{c}} . \\
& \Sigma^{1}(G) \subseteq-S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(G)\right)\right)^{\mathrm{c}} \subseteq S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{1}(G)\right)\right)^{\mathrm{c}} .
\end{aligned}
$$

Corollary

If $\mathcal{V} \leqslant q(X)$ contains a component of Char (X), then $\Sigma^{q}(X, \mathbb{Z})=\varnothing$.

BNS invariants of 3-manifolds

- Let M be a compact, connected, orientable 3-manifold with $b_{1}(M)>0$.
- The Thurston norm $\|\phi\|_{T}$ of a class $\phi \in H^{1}(M ; \mathbb{Z})$ is the infimum of $-\chi(\hat{S})$, where S runs though all the properly embedded, oriented surfaces in M dual to ϕ, and \hat{S} denotes the result of discarding all components of S which are disks or spheres.
- Thurston showed that $\|-\|_{T}$ defines a seminorm on $H^{1}(M ; \mathbb{Z})$, which can be extended to a continuous seminorm on $H^{1}(M ; \mathbb{R})$.
- The unit norm ball, $B_{T}=\left\{\phi \in H^{1}(M ; \mathbb{R}) \mid\|\phi\|_{T} \leqslant 1\right\}$, is a rational polyhedron with finitely many sides and symmetric in the origin.
- Alexander norm: $\|\phi\|_{A}=\operatorname{length}\left(\phi\left(\operatorname{Newt}\left(\Delta_{M}\right)\right)\right)$, where $\operatorname{Newt}\left(\Delta_{M}\right) \subset H_{1}(M, \mathbb{R})$ is the Newton polytope of Δ_{M}.
- This defines a semi-norm on $H^{1}(M, \mathbb{R})$, with unit ball $B_{A}=\left\{\phi \in H^{1}(M ; \mathbb{R}) \mid\|\phi\|_{A} \leqslant 1\right\}$.
- A non-zero class $\phi \in H^{1}(M ; \mathbb{Z})=\operatorname{Hom}\left(\pi_{1}(M), \mathbb{Z}\right)$ is fibered if there is a fibration $p: M \rightarrow S^{1}$ such that $\phi=p_{*}: \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right)=\mathbb{Z}$.
- There are facets of B_{T}, called the fibered faces (coming in antipodal pairs), so that a class $\phi \in H^{1}(M ; \mathbb{Z})$ fibers if and only if it lies in the cone over the interior of a fibered face.
- BNS: If $G=\pi_{1}(M)$, then $\Sigma^{1}(G)$ is the projection onto $S(G)$ of the open fibered faces of B_{T}; in particular, $\Sigma^{1}(G)=-\Sigma^{1}(G)$.
- Under some mild assumptions, McMullen showed that $\|\phi\|_{A} \leqslant\|\phi\|_{T}$; thus, $B_{T} \subset B_{A}$, leading to an upper bound for $\Sigma_{1}(G)$ in terms of B_{A}.

Theorem

Let M be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G=\pi_{1}(M)$ and assume $b_{1}(M) \geqslant 2$. Then
(1) $\operatorname{Trop}\left(\mathcal{V}^{1}(G) \cap \mathbb{T}_{G}^{0}\right)$ is the positive-codimension skeleton of $\mathcal{F}\left(B_{A}\right)$, the face fan of the unit ball in the Alexander norm.
(2) (Partly recovers McMullen's theorem) $\Sigma^{1}(G)$ is contained in the union of the open cones on the facets of B_{A}.

References

A.I. Suciu, Poincaré duality and resonance varieties, Proc. Roy. Soc. Edinburgh Sect. A. 150 (2020), nr. 6, 3001-3027. doi:10.1017/prm.2019.55
A.I. Suciu, Sigma-invariants and tropical varieties, Math. Annalen 380 (2021), 1427-1463. doi:10.1007/s00208-021-02172-z
A.I. Suciu, Cohomology jump loci of 3-manifolds, Manuscripta Math. 67 (2022), no. 1-2, 89-123. doi:10.1007/s00229-020-01264-5

