COHOMOLOGY JUMP LOCI OF 3-DIMENSIONAL MANIFOLDS

Alex Suciu

Northeastern University

Topology Seminar

University of Michigan February 24, 2022

RESONANCE VARIETIES

- Let $A=(A^{\bullet},d)$ be a graded-commutative, differential graded algebra (cdga) over a field k. We assume A is connected ($A^0=k$) and of finite-type ($\dim_k A^i < \infty$, $\forall i$).
- Since $A^0 = \mathbb{k}$, we have $Z^1(A) \cong H^1(A)$. Set

$$Q(A) = \{ a \in Z^1(A) \mid a^2 = 0 \in A^2 \}.$$

• For each $a \in \mathcal{Q}(A)$, we then have a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d(u)$, for all $u \in A^i$.

• The resonance varieties of A (in degree $i \ge 0$ and depth $k \ge 0$):

$$\mathcal{R}_k^i(A) = \{ a \in \mathcal{Q}(A) \mid \dim_{\mathbb{K}} H^i(A^{\bullet}, \delta_a) \geqslant k \}.$$

• $TC_0(\mathcal{R}_k^i(A)) \subseteq \mathcal{R}_k^i(H^{\bullet}(A))$, but not = in general.

RESONANCE VARIETIES OF GRADED ALGEBRAS

- Now let A be a graded, graded-commutative k-algebra (cga). We will assume A is connected and of finite-type (with d=0), and char $k \neq 2$.
- For each $a \in A^1$ we have $a^2 = -a^2$, and so $a^2 = 0$. Thus, $Q(A) = A^1$, and the differentials in (A^{\bullet}, δ_a) are given by $\delta_a^i(u) = a \cdot u$.
- In this case, the resonance varieties $\mathcal{R}_k^i(A)$ are homogeneous subvarieties of the affine space A^1 .
- An element $a \in A^1$ belongs to $\mathcal{R}_k^i(A)$ if and only if there exist $u_1, \ldots, u_k \in A^i$ such that $au_1 = \cdots = au_k = 0$ in A^{i+1} , and the set $\{au, u_1, \ldots, u_k\}$ is linearly independent in A^i , for all $u \in A^{i-1}$.
- Set $b_j = b_j(A)$. For each $i \ge 0$, we have a descending filtration,

$$A^1=\mathcal{R}^i_0(A)\supseteq\mathcal{R}^i_1(A)\supseteq\cdots\supseteq\mathcal{R}^i_{b_i}(A)=\{0\}\supset\mathcal{R}^i_{b_{i+1}}(A)=\varnothing.$$

- A linear subspace $U \subset A^1$ is *isotropic* if the restriction of $A^1 \wedge A^1 \xrightarrow{\cdot} A^2$ to $U \wedge U$ is the zero map (i.e., ab = 0, $\forall a, b \in U$).
- If $U \subseteq A^1$ is an isotropic subspace of dimension k, then $U \subseteq \mathcal{R}^1_{k-1}(A)$.
- $\mathcal{R}^1_1(A)$ is the union of all isotropic planes in A^1 .
- If $\mathbb{k} \subset \mathbb{K}$ is a field extension, then the \mathbb{k} -points on $\mathcal{R}_k^i(A \otimes_{\mathbb{k}} \mathbb{K})$ coincide with $\mathcal{R}_k^i(A)$.
- Let $\varphi \colon A \to B$ be a morphism of cgas. If the map $\varphi^1 \colon A^1 \to B^1$ is injective, then $\varphi^1(\mathcal{R}^1_k(A)) \subseteq \mathcal{R}^1_k(B)$, for all k.

THE BGG CORRESPONDENCE

- Fix a k-basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{x_1, \ldots, x_n\}$ be the dual basis for $A_1 = (A^1)^*$.
- Identify $\operatorname{Sym}(A_1)$ with $S = \mathbb{k}[x_1, \dots, x_n]$, the coordinate ring of the affine space A^1 .
- The BGG correspondence yields a cochain complex of finitely generated, free *S*-modules, $L(A) := (A^{\bullet} \otimes_{\mathbb{k}} S, \delta)$,

$$\cdots \longrightarrow A^{i} \otimes_{\mathbb{k}} S \xrightarrow{\delta^{i}_{A}} A^{i+1} \otimes_{\mathbb{k}} S \xrightarrow{\delta^{i+1}_{A}} A^{i+2} \otimes_{\mathbb{k}} S \longrightarrow \cdots,$$

where $\delta_A^i(u \otimes s) = \sum_{j=1}^n e_j u \otimes sx_j$.

• The specialization of $(A \otimes_{\mathbb{k}} S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) , that is, $\delta_A^i|_{x_i=a_i} = \delta_a^i$.

• By definition, an element $a \in A^1$ belongs to $\mathcal{R}_k^i(A)$ if and only if

$$\operatorname{rank} \delta_a^{i-1} + \operatorname{rank} \delta_a^i \leqslant b_i(A) - k.$$

• Let $I_r(\psi)$ denote the ideal of $r \times r$ minors of a $p \times q$ matrix ψ with entries in S, where $I_0(\psi) = S$ and $I_r(\psi) = 0$ if $r > \min(p, q)$. Then:

$$\mathcal{R}_{k}^{i}(A) = V\left(I_{b_{i}(A)-k+1}\left(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\right)\right)$$

$$= \bigcap_{s+t=b_{i}(A)-k+1} \left(V\left(I_{s}\left(\delta_{A}^{i-1}\right)\right) \cup V\left(I_{t}\left(\delta_{A}^{i}\right)\right)\right).$$

- In particular, $\mathcal{R}_k^1(A) = V(I_{n-k}(\delta_A^1))$ ($0 \le k < n$) and $\mathcal{R}_n^1(A) = \{0\}$.
- The (degree i, depth k) resonance scheme $\mathcal{R}_k^i(A)$ is defined by the ideal $I_{b_i(A)-k+1}(\delta_A^{i-1} \oplus \delta_A^i)$; its underlying set is $\mathcal{R}_k^i(A)$.

Poincaré duality algebras

- Let A be a connected, finite-type k-cga.
- A is a Poincaré duality k-algebra of dimension m if there is a k-linear map $\varepsilon \colon A^m \to k$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_k A^{m-i} \to k$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- We then have:
 - $b_i(A) = b_{m-i}(A)$, and $A^i = 0$ for i > m.
 - \bullet ε is an isomorphism.
 - The maps PD: $A^i \to (A^{m-i})^*$, $PD(a)(b) = \varepsilon(ab)$ are isos.
- Each $a \in A^i$ has a Poincaré dual, $a^{\vee} \in A^{m-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
- The orientation class is $\omega_A := 1^{\vee}$.
- We have $\varepsilon(\omega_A)=1$, and thus $aa^\vee=\omega_A$.

THE ASSOCIATED ALTERNATING FORM

• Associated to a k-PD $_m$ algebra there is an alternating m-form,

$$\mu_A : \bigwedge^m A^1 \to \mathbb{k}, \quad \mu_A(a_1 \wedge \cdots \wedge a_m) = \varepsilon(a_1 \cdots a_m).$$

- Assume now that m=3, and set $n=b_1(A)$. Fix a basis $\{e_1,\ldots,e_n\}$ for A^1 , and let $\{e_1^{\vee},\ldots,e_n^{\vee}\}$ be the dual basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$e_i e_j = \sum_{k=1}^r \mu_{ijk} e_k^{\vee}, \quad e_i e_j^{\vee} = \delta_{ij} \omega,$$

where $\mu_{ijk} = \mu(e_i \wedge e_j \wedge e_k)$.

• Let $A_i = (A^i)^*$. We may view μ dually as a trivector,

$$\mu = \sum \mu_{ijk} e^i \wedge e^j \wedge e^k \in \bigwedge^3 A_1,$$

which encodes the algebra structure of A.

CLASSIFICATION OF ALTERNATING FORMS

- Let V be a k-vector space of dimension n. The group GL(V) acts on $\bigwedge^m(V^*)$ by $(g \cdot \mu)(a_1 \wedge \cdots \wedge a_m) = \mu (g^{-1}a_1 \wedge \cdots \wedge g^{-1}a_m)$.
- The orbits of this action are the equivalence classes of alternating *m*-forms on *V*. (We write $\mu \sim \mu'$ if $\mu' = g \cdot \mu$.)
- Over $\overline{\mathbb{k}}$, the closures of these orbits are affine algebraic varieties; there are finitely many orbits only if $m \le 2$ or m = 3 and $n \le 8$.
- Each complex orbit has only finitely many real forms. When m=3, and n=8, there are 23 complex orbits, which split into either 1, 2, or 3 real orbits, for a total of 35 real orbits.
- There is a bijection between isomorphism classes of 3-dimensional Poincaré duality algebras and equivalence classes of alternating 3-forms, given by $A \longleftrightarrow \mu_A$.

Poincaré duality in orientable manifolds

- Let M be a compact, connected, orientable, m-dimensional manifold. Then the cohomology ring $A = H^{\bullet}(M, \mathbb{k})$ is a PD $_m$ algebra over \mathbb{k} .
- Sullivan (1975): for every finite-dimensional \mathbb{Q} -vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M,\mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."
- E.g., 0-surgery on the Borromean rings in S^3 yields $M=T^3$, with $\mu_M=e^1e^2e^3$.
- If M is the link of an isolated surface singularity (e.g., if $M = \Sigma(p, q, r)$ is a Brieskorn manifold), then $\mu_M = 0$.

RESONANCE VARIETIES OF PD-ALGEBRAS

• Let A be a PD_m algebra. For $0 \le i \le m$ and $a \in A^1$, the following diagram commutes up to a sign.

$$(A^{m-i})^* \xrightarrow{(\delta_{-a}^{m-i-1})^*} (A^{m-i-1})^*$$

$$PD \stackrel{\cong}{\longrightarrow} PD \stackrel{\cong}{\longrightarrow} A^{i+1}$$

- Consequently, $(H^i(A, \delta_a))^* \cong H^{m-i}(A, \delta_{-a})$.
- Hence, $\mathcal{R}_k^i(A) = \mathcal{R}_k^{m-i}(A)$ for all i and k. In particular, $\mathcal{R}_1^m(A) = \mathcal{R}_1^0(A) = \{0\}.$

COROLLARY

Let A be a PD₃ algebra with $b_1(A) = n$. Then $\mathcal{R}_k^i(A) = \emptyset$, except for:

- $\mathcal{R}_0^i(A) = A^1$ for all $i \ge 0$.
- $\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}$ and $\mathcal{R}_n^2(A) = \mathcal{R}_n^1(A) = \{0\}.$
- $\mathcal{R}_k^2(A) = \mathcal{R}_k^1(A)$ for 0 < k < n.

- A linear subspace $U \subset V$ is 2-singular with respect to a 3-form $\mu \colon \bigwedge^3 V \to \mathbb{R}$ if $\mu(a \land b \land c) = 0$ for all $a, b \in U$ and $c \in V$.
- The rank of $\mu: \bigwedge^3 V \to \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^3 W$. The *nullity* of μ is the maximum dimension of a 2-singular subspace $U \subset V$.
- Clearly, V contains a singular plane if and only if $\text{null}(\mu) \ge 2$.
- Let A be a PD₃ algebra. A linear subspace $U \subset A^1$ is 2-singular (with respect to μ_A) if and only if U is isotropic.
- Using a result of A. Sikora [2005], we obtain:

THEOREM

Let A be a PD₃ algebra over an algebraically closed field k with $char(\mathbb{k}) \neq 2$, and let $\nu = null(\mu_A)$. If $b_1(A) \geq 4$, then

$$\dim \mathcal{R}^1_{\nu-1}(A) \geqslant \nu \geqslant 2.$$

In particular, dim $\mathcal{R}_1^1(A) \geq \nu$.

REAL FORMS AND RESONANCE

- Sikora made the following conjecture: If $\mu \colon \bigwedge^3 V \to \mathbb{k}$ is a 3-form with dim $V \geqslant 4$ and if $\operatorname{char}(\mathbb{k}) \neq 2$, then $\operatorname{null}(\mu) \geqslant 2$.
- Conjecture holds if $n := \dim V$ is even or equal to 5, or if $k = \overline{k}$.
- Work of J. Draisma and R. Shaw [2010, 2014] implies that the conjecture does not hold for $k = \mathbb{R}$ and n = 7. We obtain:

THEOREM

Let A be a PD₃ algebra over \mathbb{R} . Then $\mathcal{R}_1^1(A) \neq \{0\}$, except when

- n = 1, $\mu_A = 0$.
- n = 3, $\mu_A = e^1 e^2 e^3$.
- $\bullet \ \ n=7, \ \mu_A=-e^1e^3e^5+e^1e^4e^6+e^2e^3e^6+e^2e^4e^5+e^1e^2e^7+e^3e^4e^7+e^5e^6e^7.$

Sketch: If $\mathcal{R}_1^1(A) = \{0\}$, then the formula $(x \times y) \cdot z = \mu_A(x, y, z)$ defines a cross-product on $A^1 = \mathbb{R}^n$, and thus a division algebra structure on \mathbb{R}^{n+1} , forcing n = 1, 3 or 7 by Bott–Milnor/Kervaire [1958].

EXAMPLE

- Let A be the real PD₃ algebra corresponding to octonionic multiplication (the case n = 7 above).
- Let A' be the real PD₃ algebra with $\mu_{A'} = e^1 e^2 e^3 + e^4 e^5 e^6 + e^1 e^4 e^7 + e^2 e^5 e^7 + e^3 e^6 e^7$.
- Then $\mu_A \sim \mu_{A'}$ over \mathbb{C} , and so $A \otimes_{\mathbb{R}} \mathbb{C} \cong A' \otimes_{\mathbb{R}} \mathbb{C}$.
- On the other hand, $A \ncong A'$ over \mathbb{R} , since $\mu_A \nsim \mu_{A'}$ over \mathbb{R} , but also because $\mathcal{R}^1_1(A) = \{0\}$, yet $\mathcal{R}^1_1(A') \neq \{0\}$.
- Both $\mathcal{R}^1_1(A \otimes_{\mathbb{R}} \mathbb{C})$ and $\mathcal{R}^1_1(A' \otimes_{\mathbb{R}} \mathbb{C})$ are projectively smooth conics, and thus are projectively equivalent over \mathbb{C} , but

$$\mathcal{R}_1^1(A \otimes_{\mathbb{R}} \mathbb{C}) = \{ x \in \mathbb{C}^7 \mid x_1^2 + \dots + x_7^2 = 0 \}$$

has only one real point (x = 0), whereas

$$\mathcal{R}_{1}^{1}(A' \otimes_{\mathbb{R}} \mathbb{C}) = \{ x \in \mathbb{C}^{7} \mid x_{1}x_{4} + x_{2}x_{5} + x_{3}x_{6} = x_{7}^{2} \}$$

contains the real (isotropic) subspace $\{x_4 = x_5 = x_6 = x_7 = 0\}$.

PFAFFIANS AND RESONANCE

Let A be a k-PD₃ algebra with $b_1(A) = n$. The cochain complex $\mathbf{L}(A) = (A \otimes_k S, \delta_A)$ then looks like

$$A^0 \otimes_{\Bbbk} S \xrightarrow{\delta_A^0} A^1 \otimes_{\Bbbk} S \xrightarrow{\delta_A^1} A^2 \otimes_{\Bbbk} S \xrightarrow{\delta_A^2} A^3 \otimes_{\Bbbk} S ,$$

where $\delta_A^0 = (x_1 \cdots x_n)$ and $\delta_A^2 = (\delta_A^0)^\top$, while δ_A^1 is the skew-symmetric matrix whose are entries linear forms in S given by

$$\delta_{\mathcal{A}}^{1}(e_{i}) = \sum_{j=1}^{n} \sum_{k=1}^{n} \mu_{jik} e_{k}^{\vee} \otimes x_{j}.$$

THEOREM

We have $\mathcal{R}^1_{2k}(A)=\mathcal{R}^1_{2k+1}(A)=V(\operatorname{Pf}_{n-2k}(\delta^1_A))$ if n is even and $\mathcal{R}^1_{2k-1}(A)=\mathcal{R}^1_{2k}(A)=V(\operatorname{Pf}_{n-2k+1}(\delta^1_A))$ if n is odd. Moreover, if μ_A has maximal rank $n\geqslant 3$, then

$$\mathcal{R}_{n-2}^1(A) = \mathcal{R}_{n-1}^1(A) = \mathcal{R}_n^1(A) = \{0\}.$$

Suppose $\dim_{\Bbbk}V=2g+1>1$. We say $\mu\colon \bigwedge^3V\to \Bbbk$ is generic (in the sense of Berceanu–Papadima [1994]) if there is a $v\in V$ such that the 2-form $\gamma_v\in V^*\wedge V^*$ given by $\gamma_v(a\wedge b)=\mu_A(a\wedge b\wedge v)$ for $a,b\in V$ has rank 2g, that is, $\gamma_v^g\neq 0$ in $\bigwedge^{2g}V^*$.

THEOREM

Let A be a PD₃ algebra with $b_1(A) = n$. Then

$$\mathcal{R}_1^1(A) = \begin{cases} \varnothing & \text{if } n = 0; \\ \{0\} & \text{if } n = 1 \text{ or } n = 3 \text{ and } \mu \text{ has rank } 3; \\ V(\mathsf{Pf}(\mu_A)) & \text{if } n \text{ is odd, } n > 3, \text{ and } \mu_A \text{ is BP-generic;} \\ A^1 & \text{otherwise,} \end{cases}$$

where $Pf(\mu_A)$ is the Pffafian of μ_A , as defined by Turaev [2002].

EXAMPLE

Let $M = \Sigma_g \times S^1$, where $g \geqslant 2$. Then $\mu_M = \sum_{i=1}^g a_i b_i c$ is BP-generic, and $\operatorname{Pf}(\mu_M) = x_{2g+1}^{g-1}$. Hence, $\mathcal{R}_1^1(M) = \{x_{2g+1} = 0\}$. In fact,

$$\mathcal{R}_1^1 = \dots = \mathcal{R}_{2g-2}^1 \text{ and } \mathcal{R}_{2g-1}^1 = \mathcal{R}_{2g}^1 = \mathcal{R}_{2g+1}^1 = \{0\}.$$

As a corollary, we recover a closely related result, proved by Draisma and Shaw [2010] by very different methods.

COROLLARY

Let V be a k-vector space of odd dimension $n \ge 5$ and let $\mu \in \bigwedge^3 V^*$. Then the union of all singular planes is either all of V or a hypersurface defined by a homogeneous polynomial in $\mathbb{k}[V]$ of degree (n-3)/2.

For $\mu \in \Lambda^3 V^*$, there is another genericity condition, due to P. De Poi, D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: rank $(\gamma_V) > 2$, for all non-zero $v \in V$. We may interpret some of their results, as follows.

THEOREM (DFMR)

Let A be a PD₃ algebra over \mathbb{C} , and suppose μ_A is generic. Then:

- If n is odd, then $\mathcal{R}_1^1(A)$ is a hypersurface of degree (n-3)/2 which is smooth if $n \le 7$, and singular in codimension 5 if $n \ge 9$.
- If n is even, then $\mathcal{R}^1_2(A)$ has codim 3 and degree $\frac{1}{4}\binom{n-2}{3}+1$; it is smooth if $n \le 10$, and singular in codimension 7 if $n \ge 12$.

CHARACTERISTIC VARIETIES OF SPACES

- Let X be a connected, finite-type CW-complex. Then $G = \pi_1(X, x_0)$ is a finitely presented group, with $G_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[G_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(G, \mathbb{C}^*) \cong (\mathbb{C}^*)^n \times \operatorname{Tors}(G_{ab})$, where $n = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

$$\mathcal{V}_k^i(X) = \{ \rho \in \mathsf{Char}(X) \mid \dim H_i(X, \mathbb{C}_\rho) \geqslant k \}.$$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_k^1(X)$ depending only on $G = \pi_1(X)$.
- Set $\mathcal{V}_1(G) := \mathcal{V}_1^1(\mathcal{K}(G,1))$; then $\mathcal{V}_1(G) = \mathcal{V}_1(G/G'')$.
- Let $f \in \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$, f(1) = 0. There is then a finitely presented group G with $G_{ab} = \mathbb{Z}^n$ such that $\mathcal{V}_1(G) = V(f)$.

Tangent cones

- Let exp: $H^1(X,\mathbb{C}) \to H^1(X,\mathbb{C}^*)$ be the coefficient homomorphism induced by $\mathbb{C} \to \mathbb{C}^*$, $z \mapsto e^z$.
- Let W = V(I), a Zariski closed subset of $\operatorname{Char}(G) = H^1(X, \mathbb{C}^*)$.
- The tangent cone at 1 to W is $TC_1(W) = V(in(I))$.
- The exponential tangent cone at 1 to W:

$$\tau_1(W) = \{z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C}\}.$$

- Both tangent cones are homogeneous subvarieties of $H^1(X,\mathbb{C})$; are non-empty iff $1 \in W$; depend only on the analytic germ of W at 1; commute with finite unions and arbitrary intersections.
- $\tau_1(W) \subseteq \mathsf{TC}_1(W)$, with = if all irred components of W are subtori, but \neq in general.
- $\tau_1(W)$ is a finite union of rationally defined subspaces.

THE TANGENT CONE THEOREM

- A k-cdga A is a *model* for a space X is A may be connected through a zig-zag of quasi-isomorphisms to Sullivan's algebra of piecewise polynomial forms $A_{\rm PL}(X) \otimes_{\mathbb{Q}} k$.
- If the maps in the zig-zag are only isomorphisms in $H^{\leqslant q}$ and injective in degree q+1, we say A is a q-model.
- A is formal (or just q-formal) if it is (q-) equivalent to $(H^{\bullet}(A), 0)$.

THEOREM

Let X be a connected CW-complex with finite q-skeleton, and suppose X admits a q-finite q-model A. Then, for all $i \le q$ and all $k \ge 0$:

- (DPS 2009, Dimca–Papadima 2014) $\mathcal{V}_k^i(X)_{(1)} \cong \mathcal{R}_k^i(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_k^i(X)_{(1)} \cong \mathcal{R}_k^i(X)_{(0)}$.
- (Budur–Wang 2020) All the irreducible components of $\mathcal{V}_k^i(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently, $\tau_1(\mathcal{V}_k^i(X)) = \mathsf{TC}_1(\mathcal{V}_k^i(X)) = \mathcal{R}_k^i(A)$.

ALEXANDER POLYNOMIALS OF 3-MANIFOLDS

- Let $H = H_1(X, \mathbb{Z})/\text{Tors}$. Let $X^H \to X$ be the maximal torsion-free abelian cover of X, with cellular chain complex $C_{\bullet}(X^H, \partial^H)$.
- The Alexander polynomial $\Delta_X \in \mathbb{Z}[H]$ is the gcd of the codimension 1 minors of the Alexander matrix ∂_1^H .

PROPOSITION

Let λ be a Laurent polynomial in $n \leqslant 3$ variables such that $\bar{\lambda} \doteq \lambda$ and $\lambda(1) \neq 0$. Then λ can be realized as the Alexander polynomial Δ_M of a closed, orientable 3-manifold M with $b_1(M) = n$.

Set
$$\mathcal{W}_1^1(M) = \mathcal{V}_1^1(M) \cap \mathsf{Char}^0(M)$$
.

PROPOSITION

Let M be a closed, orientable, 3-dimensional manifold. Then $\mathcal{W}_1^1(M)=V(\Delta_M)\cup\{1\}$. If, moreover, $b_1(M)\geqslant 4$, then $\Delta_M(1)=0$, and so $\mathcal{W}_1^1(M)=V(\Delta_M)$.

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

Let M be a closed, orientable, 3-manifold, and set $n = b_1(M)$.

THEOREM

- (1) If either $n \le 1$, or n is odd, $n \ge 3$, and μ_M is BP-generic, then
 - $\mathsf{TC}_1(\mathcal{V}^1_1(M)) = \mathcal{R}^1_1(M).$
- (2) If n is even, $n \ge 2$, then $\mathcal{R}^1(M) = H^1(M, \mathbb{C})$. Moreover, $\mathsf{TC}_1(\mathcal{V}^1_1(M)) = \mathcal{R}^1_1(M) \Longleftrightarrow \Delta_M = 0.$

Remark

In case (2), the equality $\mathcal{R}^1(M) = H^1(M,\mathbb{C})$ was first proved in [Dimca–S, 2009], where it was used to show that the only 3-manifold groups which are also Kähler groups are the finite subgroups of O(4).

THEOREM

- (1) If $n \leq 1$, then M is formal, and has the rational homotopy type of S^3 or $S^1 \times S^2$
- (2) If n is even, $n \ge 2$, and $\Delta_M \ne 0$, then M is not 1-formal.
- (3) If $\Delta_M \neq 0$, yet $\Delta_M(1) = 0$ and $TC_1(V(\Delta_M))$ is not a finite union of Q-linear subspaces, then M admits no 1-finite 1-model.

EXAMPLE

Let
$$M = S^1 \times S^2 \# S^1 \times S^2$$
; then $\Delta_M = 0$, and so $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) = \mathbb{C}^2$. In fact, M is formal.

EXAMPLE

- Let M be the Heisenberg 3-d nilmanifold; then $\Delta_M = 1$ and $\mu_M = 0$, and so $TC_1(\mathcal{V}_1^1(M)) = \{0\}$, whereas $\mathcal{R}_1^1(M) = \mathbb{C}^2$.
- M admits a finite model, namely, $A = \bigwedge (a, b, c)$ with da = db = 0and dc = ab, but M is not 1-formal.

EXAMPLE

Let M be a 3-manifold with $\Delta_M=(t_1+t_2)(t_1t_2+1)-4t_1t_2$. Then

$$\{0\} = \tau_1(\mathcal{V}_1^1(M)) \subsetneq \mathsf{TC}_1(\mathcal{V}_1^1(M)) = \{x_1^2 + x_2^2 = 0\}.$$

The latter variety decomposes as the union of two lines defined over \mathbb{C} , but not over \mathbb{Q} . Hence, M admits no 1-finite 1-model.

The 3d Tangent Cone theorem does not hold in higher depth.

EXAMPLE

Let M be a 3-manifold with $b_1(M) = 10$ and intersection 3-form

$$\mu_{M} = e_{1}e_{2}e_{5} + e_{1}e_{3}e_{6} + e_{2}e_{3}e_{7} + e_{1}e_{4}e_{8} + e_{2}e_{4}e_{9} + e_{3}e_{4}e_{10}.$$

- $\mathcal{R}_7^1(M) \cong \{z \in \mathbb{C}^6 \mid z_1 z_6 z_2 z_5 + z_3 z_4 = 0\}$, an irreducible quadric with an isolated singular point at 0.
- $\mathcal{V}_k^1(M) \subseteq \{1\}$, for all $k \geqslant 1$.
- Thus, $TC_1(\mathcal{V}_7^1(M)) \neq \mathcal{R}_7^1(M)$, and so M is not 1-formal.

THE BIERI-NEUMANN-STREBEL-RENZ INVARIANTS

- Let G be a finitely generated group, $n = b_1(G) > 0$. Let $S(G) = S^{n-1}$ be the unit sphere in $\text{Hom}(G, \mathbb{R}) = \mathbb{R}^n$.
- (BNS 1987) $\Sigma^1(G) = \{\chi \in S(G) \mid \mathsf{Cay}_\chi(G) \text{ is connected}\}$, where $\mathsf{Cay}_\chi(G)$ is the induced subgraph of the Cayley graph of G on vertex set the monoid $G_\chi = \{g \in G \mid \chi(g) \geqslant 0\}$.
- (Bieri–Renz 1988) $\Sigma^q(G,\mathbb{Z}) = \{\chi \in S(G) \mid G_\chi \text{ is of type FP}_q\}$, i.e., there is a projective $\mathbb{Z}G_\chi$ -resolution $P_\bullet \to \mathbb{Z}$, with P_i finitely generated for all $i \leqslant q$. Moreover, $\Sigma^1(G,\mathbb{Z}) = -\Sigma^1(G)$.
- The BNSR-invariants of form a descending chain of *open* subsets, $S(G) \supseteq \Sigma^1(G, \mathbb{Z}) \supseteq \Sigma^2(G, \mathbb{Z}) \supseteq \cdots$.
- The Σ -invariants control the finiteness properties of normal subgroups $N \lhd G$ for which G/N is free abelian:

N is of type
$$\mathsf{FP}_q \Longleftrightarrow \{\chi \in \mathcal{S}(G) \mid \chi(N) = 0\} \subseteq \Sigma^q(G, \mathbb{Z})$$

• In particular: $\ker(\chi \colon G \to \mathbb{Z})$ is f.g. $\iff \{\pm \chi\} \subseteq \Sigma^1(G)$.

NOVIKOV-SIKORAV HOMOLOGY

• The Novikov–Sikorav completion of $\mathbb{Z}G$ at $\chi \in S(G)$ is

$$\widehat{\mathbb{Z}G}_{\chi} = \big\{\lambda \in \mathbb{Z}^G \mid \{g \in \operatorname{supp} \lambda \mid \chi(g) \geqslant c\} \text{ is finite, } \forall c \in \mathbb{R} \big\}.$$

- Alternatively, is U_m the additive subgroup of $\mathbb{Z}G$ (freely) generated by $\{g \in G \mid \chi(g) \geqslant m\}$, then $\widehat{\mathbb{Z}G}_{-\chi} = \varprojlim_m \mathbb{Z}G/U_m$.
- Example: Let $G = \mathbb{Z} = \langle t \rangle$ and $\chi(t) = 1$. Then $\widehat{\mathbb{Z}G}_{\chi} = \Big\{ \sum_{i \leqslant k} n_i t^i \mid n_i \in \mathbb{Z}, \text{ for some } k \in \mathbb{Z} \Big\}.$
- Now let X be a connected CW-complex with finite q-skeleton. Write S(X) := S(G) and define (Farber–Geoghegan–Schütz 2010):

$$\Sigma^{q}(X,\mathbb{Z}) = \{ \chi \in S(X) \mid H_{i}(X,\widehat{\mathbb{Z}G}_{-\chi}) = 0, \ \forall \ i \leq q \}.$$

- (Bieri 2007) If G is FP_k , then $\Sigma^q(G,\mathbb{Z}) = \Sigma^q(K(G,1),\mathbb{Z})$, $\forall q \leqslant k$.
- In particular, if G is f.g., the BNS set $\Sigma^1(G) = -\Sigma^1(G, \mathbb{Z})$ consists of those $\chi \in S(G)$ for which both $H_0(G, \widehat{\mathbb{Z}G}_{\chi})$ and $H_1(G, \widehat{\mathbb{Z}G}_{\chi})$ vanish.

TROPICAL VARIETIES

- Let $\mathbb{K} = \mathbb{C}\{\{t\}\} = \bigcup_{n \ge 1} \mathbb{C}((t^{1/n}))$ be the field of Puiseux series \mathbb{C} .
- A non-zero element of \mathbb{K} has the form $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, where $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a valuation $v \colon \mathbb{K}^* \to \mathbb{Q}$, $v(c(t)) = a_1$. Let $v \colon (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be its *n*-fold product.
- The tropicalization of a subvariety $W \subset (\mathbb{K}^*)^n$, denoted Trop(W), is the closure (in the Euclidean topology) of v(W) in \mathbb{R}^n .
- This is a rational polyhedral complex in \mathbb{R}^n . For instance, if W is a curve, then $\mathsf{Trop}(W)$ is a graph with rational edge directions.
- If T be an algebraic subtorus of $(\mathbb{K}^*)^n$, then $\mathsf{Trop}(T)$ is the linear subspace $\mathsf{Hom}(\mathbb{K}^*,T)\otimes\mathbb{R}\subset\mathsf{Hom}(\mathbb{K}^*,(\mathbb{K}^*)^n)\otimes\mathbb{R}=\mathbb{R}^n$. Moreover, if $z\in(\mathbb{K}^*)^n$, then $\mathsf{Trop}(z\cdot T)=\mathsf{Trop}(T)+\nu(z)$.

- For a variety $W \subset (\mathbb{C}^*)^n$, we may define its tropicalization by setting $\operatorname{Trop}(W) = \operatorname{Trop}(W \times_{\mathbb{C}} \mathbb{K})$. This is a polyhedral fan in \mathbb{R}^n .
- For a polytope P, with (polar) dual P^* , let
 - $\mathcal{F}(P)$ face fan (the set of cones spanned by the faces of P).
 - $\mathcal{N}(P)$ (inner) normal fan.

If
$$0 \in int(P)$$
, then $\mathcal{N}(P) = \mathcal{F}(P^*)$.

• If W = V(f) is a hypersurface defined by $f = \sum_{\mathbf{u} \in A} a_{\mathbf{u}} \mathbf{t}^{\mathbf{u}} \in \mathbb{C}[\mathbf{t}^{\pm 1}]$, and $\mathrm{Newt}(f) = \mathrm{conv}\{\mathbf{u} \mid a_{\mathbf{u}} \neq 0\} \subset \mathbb{R}^n$, then

$$\mathsf{Trop}(V(f)) = \mathcal{N}(\mathsf{Newt}(f))^{\mathsf{codim}>0}.$$

EXAMPLE

Let $f = t_1 + t_2 + 1$. Then $Newt(f) = conv\{(1, 0), (0, 1), (0, 0)\}$ is a triangle, and so Trop(V(f)) is a tripod.

Tropicalizing the characteristic varieties

- Recall $\mathbb{K} = \mathbb{C}\{\{t\}\}\$ comes with a valuation map, $v \colon \mathbb{K}^* \to \mathbb{Q}$.
- Let ν_X : $\operatorname{Char}_{\mathbb{K}}(X) \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the composite

$$H^1(X, \mathbb{K}^*) \xrightarrow{\nu_*} H^1(X, \mathbb{Q}) \longrightarrow H^1(X, \mathbb{R}).$$

• Given an algebraic subvariety $W \subset H^1(X, \mathbb{C}^*)$ we define its tropicalization as the closure in $H^1(X, \mathbb{R}) \cong \mathbb{R}^n$ of the image of $W \times_{\mathbb{C}} \mathbb{K} \subset H^1(X, \mathbb{K}^*)$ under ν_X ,

$$\mathsf{Trop}(W) := \overline{\nu_X(W \times_{\mathbb{C}} \mathbb{K})}.$$

• Applying this to the characteristic varieties $\mathcal{V}^i(X) \coloneqq \mathcal{V}^i_1(X)$, and recalling that $\mathcal{V}^i(X,\mathbb{K}) = \mathcal{V}^i(X) \times_{\mathbb{C}} \mathbb{K}$, we have that

$$\operatorname{Trop}(\mathcal{V}^{i}(X)) = \overline{\nu_{X}(\mathcal{V}^{i}(X,\mathbb{K}))}.$$

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

Sketch of proof.

- Every irreducible component of $\tau_1^{\mathbb{R}}(W)$ is of the form $L \otimes_{\mathbb{Q}} \mathbb{R}$, for some linear subspace $L \subset \mathbb{Q}^n$.
- The complex torus $T := \exp(L \otimes_{\mathbb{Q}} \mathbb{C})$ lies inside W.
- Thus, $\operatorname{Trop}(T) = L \otimes_{\mathbb{Q}} \mathbb{R}$ lies inside $\operatorname{Trop}(W)$.

Proposition

- $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subseteq \text{Trop}(\mathcal{V}^i(X))$, for all $i \leq q$.
- If there is a subtorus $T \subset \operatorname{Char}^0(X)$ such that $T \not\subset \mathcal{V}^i(X)$, yet $\rho T \subset \mathcal{V}^i(X)$ for some $\rho \in \operatorname{Char}(X)$, then $\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)) \subsetneq \operatorname{Trop}(\mathcal{V}^i(X))$.

A TROPICAL BOUND FOR THE Σ -INVARIANTS

THEOREM (PS-2010, S-2021)

Let $\rho \colon \pi_1(X) \to \mathbb{k}^*$ be a character such that $\rho \in \mathcal{V}^{\leqslant q}(X, \mathbb{k})$. Let $v \colon \mathbb{k}^* \to \mathbb{R}$ be a valuation on \mathbb{k} , and set $\chi = v \circ \rho$. If $\chi \colon \pi_1(X) \to \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^q(X, \mathbb{Z})$.

THEOREM (S-2021)

$$\Sigma^q(X,\mathbb{Z}) \subseteq S(\mathsf{Trop}(\mathcal{V}^{\leqslant q}(X)))^{\mathrm{c}}$$

COROLLARY

$$\Sigma^{q}(X,\mathbb{Z}) \subseteq S(\mathsf{Trop}(\mathcal{V}^{\leqslant q}(X)))^{c} \subseteq S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{\leqslant q}(X)))^{c}.$$

$$\Sigma^{1}(G) \subseteq -S(\mathsf{Trop}(\mathcal{V}^{1}(G)))^{c} \subseteq S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{1}(G)))^{c}.$$

COROLLARY

If $\mathcal{V}^{\leqslant q}(X)$ contains a component of $\operatorname{Char}(X)$, then $\Sigma^q(X,\mathbb{Z})=\emptyset$.

BNS INVARIANTS OF 3-MANIFOLDS

- Let M be a compact, connected, orientable 3-manifold with $b_1(M) > 0$.
- The Thurston norm $\|\phi\|_{\mathcal{T}}$ of a class $\phi \in H^1(M; \mathbb{Z})$ is the infimum of $-\chi(\hat{S})$, where S runs though all the properly embedded, oriented surfaces in M dual to ϕ , and \hat{S} denotes the result of discarding all components of S which are disks or spheres.
- Thurston showed that $\|-\|_{\mathcal{T}}$ defines a seminorm on $H^1(M; \mathbb{Z})$, which can be extended to a continuous seminorm on $H^1(M; \mathbb{R})$.
- The unit norm ball, $B_T = \{\phi \in H^1(M; \mathbb{R}) \mid \|\phi\|_T \leq 1\}$, is a rational polyhedron with finitely many sides and symmetric in the origin.
- Alexander norm: $\|\phi\|_A = \operatorname{length}(\phi(\operatorname{Newt}(\Delta_M)))$, where $\operatorname{Newt}(\Delta_M) \subset H_1(M,\mathbb{R})$ is the Newton polytope of Δ_M .
- This defines a semi-norm on $H^1(M, \mathbb{R})$, with unit ball $B_A = \{ \phi \in H^1(M; \mathbb{R}) \mid \|\phi\|_A \leq 1 \}.$

- A non-zero class $\phi \in H^1(M; \mathbb{Z}) = \operatorname{Hom}(\pi_1(M), \mathbb{Z})$ is fibered if there is a fibration $p \colon M \to S^1$ such that $\phi = p_* \colon \pi_1(M) \to \pi_1(S^1) = \mathbb{Z}$.
- There are facets of B_T , called the *fibered faces* (coming in antipodal pairs), so that a class $\phi \in H^1(M; \mathbb{Z})$ fibers if and only if it lies in the cone over the interior of a fibered face.
- BNS: If $G = \pi_1(M)$, then $\Sigma^1(G)$ is the projection onto S(G) of the open fibered faces of B_T ; in particular, $\Sigma^1(G) = -\Sigma^1(G)$.
- Under some mild assumptions, McMullen showed that $\|\phi\|_A \leq \|\phi\|_T$; thus, $B_T \subset B_A$, leading to an upper bound for $\Sigma_1(G)$ in terms of B_A .

THEOREM

Let M be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G = \pi_1(M)$ and assume $b_1(M) \ge 2$. Then

- (1) Trop $(\mathcal{V}^1(G) \cap \mathbb{T}_G^0)$ is the positive-codimension skeleton of $\mathcal{F}(B_A)$, the face fan of the unit ball in the Alexander norm.
- (2) (Partly recovers McMullen's theorem) $\Sigma^1(G)$ is contained in the union of the open cones on the facets of B_A .

REFERENCES

A.I. Suciu, *Cohomology jump loci of 3-manifolds*, Manuscripta Math. **67** (2022), no. 1-2, 89–123. doi:10.1007/s00229-020-01264-5