GEOMETRY AND TOPOLOGY OF COHOMOLOGY JUMP LOCI
 Lecture 3: Fundamental groups and jump loci

Alex Suciu

Northeastern University

MIMS Summer School: New Trends in Topology and Geometry

Mediterranean Institute for the Mathematical Sciences

Tunis, Tunisia
July 9-12, 2018

(1) Fundamental groups in geometry

- Fundamental groups of manifolds
- Kähler groups
- Quasi-projective groups
- Complements of hypersurfaces
- Line arrangements
- Artin groups
(2) COMPARING CLASSES OF GROUPS
- Kähler groups vs other groups
- Quasi-projective groups vs other groups

FUNDAMENTAL GROUPS OF MANIFOLDS

- Every finitely presented group π can be realized as $\pi=\pi_{1}(M)$, for some smooth, compact, connected manifold M^{n} of $\operatorname{dim} n \geqslant 4$.
- M^{n} can be chosen to be orientable.
- If n even, $n \geqslant 4$, then M^{n} can be chosen to be symplectic (Gompf).
- If n even, $n \geqslant 6$, then M^{n} can be chosen to be complex (Taubes).
- Requiring that $n=3$ puts severe restrictions on the (closed) 3-manifold group $\pi=\pi_{1}\left(M^{3}\right)$.

KÄHLER GROUPS

- A Kähler manifold is a compact, connected, complex manifold, with a Hermitian metric h such that $\omega=\operatorname{im}(h)$ is a closed 2-form.
- Smooth, complex projective varieties are Kähler manifolds.
- A group π is called a Kähler group if $\pi=\pi_{1}(M)$, for some Kähler manifold M.
- The group π is a projective group if M can be chosen to be a projective manifold.
- The classes of Kähler and projective groups are closed under finite direct products and passing to finite-index subgroups.
- Every finite group is a projective group.
[Serre ~1955]
- The Kähler condition puts strong restrictions on π, e.g.:
- π is finitely presented.
- $b_{1}(\pi)$ is even.
[by Hodge theory]
- π is 1 -formal
[Deligne-Griffiths-Morgan-Sullivan 1975]
- π cannot split non-trivially as a free product.
[Gromov 1989]
- Problem: Are all Kähler groups projective groups?
- Problem [Serre]: Characterize the class of projective groups.

QuAsi-Projective groups

- A group π is said to be a quasi-Kähler group if $\pi=\pi_{1}(M \backslash D)$, where M is a Kähler manifold and D is a divisor.
- The group π is a quasi-projective group if M can be chosen to be a projective manifold.
- qK/qp groups are finitely presented. The classes of qK/qp groups are closed under finite direct products and passing to finite-index subgroups.
- For a qp group π,
- $b_{1}(\pi)$ can be arbitrary (e.g., the free groups F_{n}).
- π may be non-1-formal (e.g., the Heisenberg group).
- π can split as a non-trivial free product (e.g., $F_{2}=\mathbb{Z} * \mathbb{Z}$).
- Problem: Are all quasi-Kähler groups quasi-projective groups?

Resonance of Quasi-KÄhler manifolds

THEOREM (DimCA-PAPADIMA-S. 2009)

Let X be a quasi-Kähler manifold, and $G=\pi_{1}(X)$. Let $\left\{L_{\alpha}\right\}_{\alpha}$ be the non-zero irreducible components of $\mathcal{R}_{1}^{1}(G)$. If G is 1 -formal, then

- Each L_{α} is a linear subspace of $H^{1}(G, \mathbb{C})$.
- Each L_{α} is p-isotropic (i.e., restriction of \cup_{G} to L_{α} has rank p), with $\operatorname{dim} L_{\alpha} \geqslant 2 p+2$, for some $p=p(\alpha) \in\{0,1\}$.
- If $\alpha \neq \beta$, then $L_{\alpha} \cap L_{\beta}=\{0\}$.
- $\mathcal{R}_{k}^{1}(G)=\{0\} \cup \bigcup_{\alpha: \operatorname{dim} L_{\alpha}>k+p(\alpha)} L_{\alpha}$.

Furthermore,

- If X is compact, then G is 1-formal, and each L_{α} is 1-isotropic.
- If $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0$, then G is 1 -formal, and each L_{α} is 0-isotropic.

COMPLEMENTS OF HYPERSURFACES

- A subclass of quasi-projective groups consists of fundamental groups of complements of hypersurfaces in $\mathbb{C P}^{n}$,

$$
\pi=\pi_{1}\left(\mathbb{C P}^{\eta} \backslash\{f=0\}\right), \quad f \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right] \text { homogeneous. }
$$

- All such groups are 1-formal. [Kohno 1983]
- By the Lefschetz hyperplane sections theorem, $\pi=\pi_{1}\left(\mathbb{C P}^{2} \backslash \mathcal{C}\right)$, for some plane algebraic curve \mathcal{C}.
- Zariski asked Van Kampen to find presentations for such groups.
- Using the Alexander polynomial, Zariski showed that π is not determined by the combinatorics of \mathcal{C} (number and type of singularities), but also depends on the position of its singularities.

Problem (Zariski)

Is $\pi=\pi_{1}\left(\mathbb{C P}^{2} \backslash \mathcal{C}\right)$ residually finite, i.e., is the map to the profinite completion, $\pi \rightarrow \pi^{\mathrm{alg}}:=\lim _{G_{\triangleleft \mathrm{f},}, \pi} \pi / \mathrm{G}$, injective?

Hyperplane arrangements

- Even more special are the arrangement groups, i.e., the fundamental groups of complements of complex hyperplane arrangements (or, equivalently, complex line arrangements).
- Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, defined by a polynomial $f=\prod_{L \in \mathcal{A}} f_{L}$, with f_{L} linear forms so that $L=\mathbb{P}\left(\operatorname{ker}\left(f_{L}\right)\right)$.
- The combinatorics of \mathcal{A} is encoded in the intersection poset, $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}_{1}(\mathcal{A})=\{$ lines $\}$ and $\mathcal{L}_{2}(\mathcal{A})=\{$ intersection points $\}$.

- Let $U(\mathcal{A})=\mathbb{C P}^{2} \backslash \bigcup_{L \in \mathcal{A}} L$. The group $\pi=\pi_{1}(U(\mathcal{A}))$ has a finite presentation with
- Meridional generators x_{1}, \ldots, x_{n}, where $n=|\mathcal{A}|$, and $\prod x_{i}=1$.
- Commutator relators $x_{i} \alpha_{j}\left(x_{i}\right)^{-1}$, where $\alpha_{1}, \ldots \alpha_{s} \in P_{n} \subset \operatorname{Aut}\left(F_{n}\right)$, and $s=\left|\mathcal{L}_{2}(\mathcal{A})\right|$.
- Let $\gamma_{1}(\pi)=\pi, \quad \gamma_{2}(\pi)=\pi^{\prime}=[\pi, \pi], \quad \gamma_{k}(\pi)=\left[\gamma_{k-1}(\pi), \pi\right]$, be the lower central series of π. Then:
- $\pi_{\mathrm{ab}}=\pi / \gamma_{2}$ equals \mathbb{Z}^{n-1}.
- π / γ_{3} is determined by $L(\mathcal{A})$.
- π / γ_{4} (and thus, π) is not determined by $L(\mathcal{A})$ (G. Rybnikov).

Problem (Orlik)

Is π torsion-free?

- Answer is yes if $U(\mathcal{A})$ is a $K(\pi, 1)$. This happens if the cone on \mathcal{A} is a simplicial arrangement (Deligne), or supersolvable (Terao).

ARTIN GROUPS

- Let $\Gamma=(V, E)$ be a finite, simple graph, and let $\ell: E \rightarrow \mathbb{Z}_{\geqslant 2}$ be an edge-labeling. The associated Artin group:

$$
A_{\Gamma, \ell}=\langle v \in V| \underbrace{v w v \cdots}_{\ell(e)}=\underbrace{w v w \cdots}_{\ell(e)} \text {, for } e=\{v, w\} \in E\rangle \text {. }
$$

- If (Γ, ℓ) is Dynkin diagram of type A_{n-1} with $\ell(\{i, i+1\})=3$ and $\ell(\{i, j\})=2$ otherwise, then $A_{\Gamma, \ell}$ is the braid group B_{n}.
- If $\ell(e)=2$, for all $e \in E$, then

$$
\left.A_{\Gamma}=\langle v \in \mathrm{~V}| v w=w v \text { if }\{v, w\} \in \mathrm{E}\right\rangle .
$$

is the right-angled Artin group associated to Γ.

- $\Gamma \cong \Gamma^{\prime} \Leftrightarrow A_{\Gamma} \cong A_{\Gamma^{\prime}}$
[Kim-Makar-Limanov-Neggers-Roush 80 / Droms 87]

The corresponding Coxeter group,

$$
W_{\Gamma, \ell}=A_{\Gamma, \ell} /\left\langle v^{2}=1 \mid v \in V\right\rangle,
$$

fits into exact sequence $1 \rightarrow P_{\Gamma, \ell} \rightarrow A_{\Gamma, \ell} \rightarrow W_{\Gamma, \ell} \rightarrow 1$.
THEOREM (BRIESKORN 1971)
If $W_{\Gamma, \ell}$ is finite, then $G_{\Gamma, \ell}$ is quasi-projective.
Idea: let

- $\mathcal{A}_{\Gamma, \ell}=$ reflection arrangement of type $W_{\Gamma, \ell}$ (over \mathbb{C})
- $X_{\Gamma, \ell}=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}_{\Gamma, \ell}} H$, where $n=\left|\mathcal{A}_{\Gamma, \ell}\right|$
- $P_{\Gamma, \ell}=\pi_{1}\left(X_{\Gamma, \ell}\right)$
then:

$$
A_{\Gamma, \ell}=\pi_{1}\left(X_{\Gamma, \ell} / W_{\Gamma, \ell}\right)=\pi_{1}\left(\mathbb{C}^{n} \backslash\left\{\delta_{\Gamma, \ell}=0\right\}\right)
$$

THEOREM (KAPOVICH-Millson 1998)

There exist infinitely many (Γ, ℓ) such that $A_{\Gamma, \ell}$ is not quasi-projective.

KÄHLER GROUPS VS OTHER GROUPS

QUESTION (DONALDSON-GOLDMAN 1989)
Which 3-manifold groups are Kähler groups?

Reznikov gave a partial solution in 2002.

Theorem (Dimca-S. 2009)

Let G be the fundamental group of a closed 3-manifold. Then G is a Kähler group $\Longleftrightarrow \pi$ is a finite subgroup of $\mathrm{O}(4)$, acting freely on S^{3}.

- Idea of our proof: compare the resonance varieties of 3-manifolds to those of Kähler manifolds.
- By passing to a suitable index-2 subgroup of G, we may assume that the closed 3-manifold is orientable.

Proposition

Let M be a closed, orientable 3-manifold. Then:
(1) $H^{1}(M, \mathbb{C})$ is not 1 -isotropic.
(2) If $b_{1}(M)$ is even, then $\mathcal{R}_{1}^{1}(M)=H^{1}(M, \mathbb{C})$.

On the other hand, it follows from a previous theorem that:

PROPOSITION

Let M be a compact Kähler manifold with $b_{1}(M) \neq 0$. If $\mathcal{R}_{1}^{1}(M)=H^{1}(M, \mathbb{C})$, then $H^{1}(M, \mathbb{C})$ is 1-isotropic.

- If G is a Kähler, then $b_{1}(G)$ even.
- Thus, if G is both a 3-mfd group and a Kähler group $\Rightarrow b_{1}(G)=0$.
- Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan's property (T), as well as Perelman (2003), it follows that G is a finite subgroup of $\mathrm{O}(4)$.
- Alternative proofs have later been given by Kotschick (2012) and Biswas, Mj, and Seshadri (2012).

```
THEOREM (FRIEDL-S. 2014)
Let N}\mathrm{ be a 3-manifold with non-empty, toroidal boundary. If }\mp@subsup{\pi}{1}{}(N)\mathrm{ is a Kähler group, then \(N \cong S^{1} \times S^{1} \times I\).
```

- Subsequent generalization by Kotschick (dropping the toroidal boundary assumption): If G is both an infinite 3-manifold group and a Kähler group, then G is a surface group.

THEOREM (DPS 2009)

Let Γ be a finite simple graph, and le A_{Γ} be the corresponding RAAG. The following are equivalent:
(1) A_{Γ} is a Kähler group.
(2) A_{Γ} is a free abelian group of even rank.
(3) Γ is a complete graph on an even number of vertices.

THEOREM (S. 2011)

Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, with group $\pi=\pi_{1}(U(\mathcal{A}))$.
The following are equivalent:
(1) π is a Kähler group.
(2) π is a free abelian group of even rank.
(3) \mathcal{A} consists of an odd number of lines in general position.

QUASI-PROJECTIVE GROUPS VS OTHER GROUPS

THEOREM (DimCA-PAPADIMA-S. 2011)

Let π be the fundamental group of a closed, orientable 3-manifold.
Assume π is 1 -formal. Then the following are equivalent:
(1) $\mathfrak{m}(\pi) \cong \mathfrak{m}\left(\pi_{1}(X)\right)$, for some quasi-projective manifold X.
(2) $\mathfrak{m}(\pi) \cong \mathfrak{m}\left(\pi_{1}(N)\right)$, where N is either S^{3}, $\#^{n} S^{1} \times S^{2}$, or $S^{1} \times \Sigma_{g}$.

Theorem (Friedl-S. 2014)
Let N be a 3-mfd with empty or toroidal boundary. If $\pi_{1}(N)$ is a quasiprojective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with empty or toroidal boundary is never a qp-group.

THEOREM (DPS 2009)

A right-angled Artin group A_{Γ} is a quasi-projective group if and only if Γ is a complete multipartite graph $K_{n_{1}, \ldots, n_{r}}=\bar{K}_{n_{1}} * \cdots * \bar{K}_{n_{r}}$, in which case $A_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$.

THEOREM (S. 2011)

Let $\pi=\pi_{1}(U(\mathcal{A}))$ be an arrangement group. The following are equivalent:
(1) π is a RAAG.
(2) π is a finite direct product of finitely generated free groups.
(3) $\mathcal{G}(\mathcal{A})$ is a forest.

Here $\mathcal{G}(\mathcal{A})$ is the 'multiplicity' graph, with

- vertices: points $P \in \mathcal{L}_{2}(\mathcal{A})$ with multiplicity at least 3;
- edges: $\{P, Q\}$ if $P, Q \in L$, for some $L \in \mathcal{A}$.

