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RESONANCE VARIETIES OF CDGAS COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

Let A “ pA‚, dq be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

A “
À

iě0 Ai , where Ai are k-vector spaces.

The multiplication ¨ : Ai b Aj Ñ Ai`j is graded-commutative, i.e.,
ab “ p´1q|a||b|ba for all homogeneous a and b.
The differential d: Ai Ñ Ai`1 satisfies the graded Leibnitz rule, i.e.,
dpabq “ dpaqb ` p´1q|a|a dpbq.

A CDGA A is of finite-type (or q-finite) if
it is connected (i.e., A0 “ k ¨ 1);
dimk Ai is finite for i ď q.

Let H ipAq “ kerpd: Ai Ñ Ai`1q{ impd: Ai´1 Ñ Aiq. Then H‚pAq
inherits an algebra structure from A.
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RESONANCE VARIETIES OF CDGAS COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

A cdga morphism ϕ : A Ñ B is both an algebra map and a cochain
map. Hence, it induces a morphism ϕ˚ : H‚pAq Ñ H‚pBq.

A map ϕ : A Ñ B is a quasi-isomorphism if ϕ˚ is an isomorphism.
Likewise, ϕ is a q-quasi-isomorphism (for some q ě 1) if ϕ˚ is an
isomorphism in degrees ď q and is injective in degree q ` 1.

Two cdgas, A and B, are (q-)equivalent (»q) if there is a zig-zag of
(q-)quasi-isomorphisms connecting A to B.

A cdga A is formal (or just q-formal) if it is (q-)equivalent to
pH‚pAq,d “ 0q.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

RESONANCE VARIETIES

Since A is connected and dp1q “ 0, we have Z 1pAq “ H1pAq.

For each a P Z 1pAq, we construct a cochain complex,

pA‚, δaq : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
apuq “ a ¨ u ` d u, for all u P Ai .

The resonance varieties of A are the sets

Ri
k pAq “ ta P H1pAq | dim H ipA‚, δaq ě ku.

If A is q-finite, then Ri
k pAq are algebraic varieties for all i ď q.

If A is a CGA (so that d “ 0), these varieties are homogeneous
subvarieties of H1pAq “ A1.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

Fix a k-basis te1, . . . ,eru for H1pAq, and let tx1, . . . , xru be the dual
basis for H1pAq “ pH1pAqq˚.

Identify SympH1pAqq with S “ krx1, . . . , xr s, the coordinate ring of
the affine space H1pAq.

Define a cochain complex of free S-modules, LpAq :“ pA‚ bk S, δq,

¨ ¨ ¨ // Ai b S δi
// Ai`1 b S δi`1

// Ai`2 b S // ¨ ¨ ¨ ,

where δipu b f q “
řn

j“1 eju b f xj ` d u b f .

The specialization of pAbk S, δq at a P A1 coincides with pA, δaq.

Hence, Ri
k pAq is the zero-set of the ideal generated by all minors

of size bipAq ´ k ` 1 of the block-matrix δi`1 ‘ δi .

In particular, R1
k pAq “ V pIr´k pδ

1qq, the zero-set of the ideal of
codimension k minors of δ1.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

EXAMPLE (EXTERIOR ALGEBRA)

Let E “
Ź

V , where V “ kn, and S “ SympV q. Then LpEq is the
Koszul complex on V . E.g., for n “ 3:

S
δ1“

ˆ x1
x2
x3

˙

// S3
δ2“

˜ x2 x3 0
´x1 0 x3

0 ´x1 ´x2

¸

// S3 δ3“p x3 ´x2 x1 q // S .

Hence,

Ri
k pEq “

#

t0u if k ď
`n

i

˘

,

H otherwise.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

EXAMPLE (NON-ZERO RESONANCE)

Let A “
Ź

pe1,e2,e3q{xe1e2y, and set S “ krx1, x2, x3s. Then

LpAq : S
δ1“

ˆ x1
x2
x3

˙

// S3
δ2“

ˆ

x3 0 ´x1
0 x3 ´x2

˙

// S2 .

R1
k pAq “

$

&

%

tx3 “ 0u if k “ 1,
t0u if k “ 2 or 3,
H if k ą 3.

EXAMPLE (NON-LINEAR RESONANCE)

Let A “
Ź

pe1, . . . ,e4q{xe1e3,e2e4,e1e2 ` e3e4y. Then

LpAq : S

δ1“

¨

˝

x1
x2
x3
x4

˛

‚

// S4
δ2“

˜

x4 0 0 ´x1
0 x3 ´x2 0
´x2 x1 x4 ´x3

¸

// S3 .

R1
1pAq “ tx1x2 ` x3x4 “ 0u
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

EXAMPLE (NON-HOMOGENEOUS RESONANCE)

Let A “
Ź

pa,bq with d a “ 0, d b “ b ¨ a.

H1pAq “ C, generated by a. Set S “ Crxs. Then:

LpAq : S
δ1“p 0

x q // S2 δ2“p x´1 0 q // S .

Hence, R1pAq “ t0,1u, a non-homogeneous subvariety of C.

Let A1 be the sub-CDGA generated by a. The inclusion map,
A1 ãÑ A, induces an isomorphism in cohomology.

But R1pA1q “ t0u, and so the resonance varieties of A and A1

differ, although A and A1 are quasi-isomorphic.

PROPOSITION

If A »q A1, then Ri
k pAqp0q – Ri

k pA
1qp0q, for all i ď q and k ě 0.
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RESONANCE VARIETIES OF CDGAS TANGENT CONE INCLUSION

TANGENT CONE INCLUSION

THEOREM (BUDUR–RUBIO, DENHAM–S. 2018)

If A is a connected k-CDGA A with locally finite cohomology, then

TC0pRi
k pAqq Ď Ri

k pH
‚pAqq.

In general, we cannot replace TC0pRi
k pAqq by Ri

k pAq.

EXAMPLE

Let A “
Ź

pa,bq with d a “ 0 and d b “ b ¨ a.
Then H‚pAq “

Ź

paq, and so R1
1pAq “ t0u.

Hence R1
1pAq “ t0,1u is not contained in R1

1pAq, though
TC0pR1pAqq “ t0u is.
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RESONANCE VARIETIES OF CDGAS TANGENT CONE INCLUSION

In general, the inclusion TC0pRi
k pAqq Ď Ri

k pH
‚pAqq is strict.

EXAMPLE

Let A “
Ź

pa,b, cq with d a “ d b “ 0 and d c “ a^ b.

Writing S “ krx , ys, we have:

LpAq : S
δ1“

ˆ x
y
0

˙

// S3

δ2“

¨

˝

y ´x 1
0 0 ´x
0 0 ´y

˛

‚

// S3 .

Hence R1
1pAq “ t0u.

But H‚pAq “
Ź

pa,bq{pabq, and so R1
1pH

‚pAqq “ k2.
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RESONANCE VARIETIES OF SPACES ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

Given any space X , there is an associated Sullivan Q-cdga,
APLpX q, such that H‚pAPLpX qq “ H‚pX ,Qq.

We say X is q-finite if X has the homotopy type of a connected
CW-complex with finite q-skeleton, for some q ě 1.

An algebraic (q-)model (over k) for X is a k-cgda pA,dq which is
(q-) equivalent to APLpX q bQ k.

If M is a smooth manifold, then ΩdRpMq is a model for M (over R).

Examples of spaces having finite-type models include:

Formal spaces (such as compact Kähler manifolds, hyperplane
arrangement complements, toric spaces, etc).
Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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RESONANCE VARIETIES OF SPACES GERMS OF JUMP LOCI

GERMS OF JUMP LOCI

THEOREM (DIMCA–PAPADIMA 2014)

Let X be a q-finite space, and suppose X admits a q-finite, q-model A.
Then the map exp: H1pX ,Cq Ñ H1pX ,C˚q induces a local analytic
isomorphism H1pAqp0q Ñ CharpX qp1q, which identifies the germ at 0 of
Ri

k pAq with the germ at 1 of V i
k pX q, for all i ď q and k ě 0.

COROLLARY

If X is a q-formal space, then V i
k pX qp1q – Ri

k pX qp0q, for i ď q and k ě 0.

A precursor to corollary can be found in work of Green, Lazarsfeld,
and Ein on cohomology jump loci of compact Kähler manifolds.

The case when q “ 1 was first established in [DPS 2019].
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RESONANCE VARIETIES OF SPACES TANGENT CONES AND EXPONENTIAL MAPS

TANGENT CONES AND EXPONENTIAL MAPS

The map exp: Cn Ñ pCˆqn, pz1, . . . , znq ÞÑ pez1 , . . . ,eznq is a
homomorphism taking 0 to 1.

For a Zariski-closed subset W “ V pIq inside pCˆqn, define:
The tangent cone at 1 to W as TC1pW q “ V pinpIqq.

The exponential tangent cone at 1 to W as

τ1pW q “ tz P Cn | exppλzq P W , @λ P Cu

These sets are homogeneous subvarieties of Cn, which depend
only on the analytic germ of W at 1.

Both commute with finite unions and arbitrary intersections.

τ1pW q Ď TC1pW q.
“ if all irred components of W are subtori.
‰ in general.

(DPS 2009) τ1pW q is a finite union of rationally defined subspaces.
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RESONANCE VARIETIES OF SPACES THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton.

THEOREM (LIBGOBER 2002, DPS 2009)
For all i ď q and k ě 0,

τ1pV i
k pX qq Ď TC1pV i

k pX qq Ď Ri
k pX q.

THEOREM (DPS-2009, DP-2014)

Suppose X is a q-formal space. Then, for all i ď q and k ě 0,

τ1pV i
k pX qq “ TC1pV i

k pX qq “ Ri
k pX q.

In particular, all irreducible components of Ri
k pX q are rationally defined

linear subspaces of H1pX ,Cq.
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RESONANCE VARIETIES OF SPACES DETECTING NON-FORMALITY

DETECTING NON-FORMALITY

EXAMPLE

Let π “ xx1, x2 | rx1, rx1, x2ssy. Then V1
1 pπq “ tt1 “ 1u, and so

τ1pV1
1 pπqq “ TC1pV1

1 pπqq “ tx1 “ 0u.

On the other hand, R1
1pπq “ C2, and so π is not 1-formal.

EXAMPLE

Let π “ xx1, . . . , x4 | rx1, x2s, rx1, x4srx´2
2 , x3s, rx´1

1 , x3srx2, x4sy. Then

R1
1pπq “ tz P C

4 | z2
1 ´ 2z2

2 “ 0u.

This is a quadric hypersurface which splits into two linear subspaces
over R, but is irreducible over Q. Thus, π is not 1-formal.
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RESONANCE VARIETIES OF SPACES DETECTING NON-FORMALITY

EXAMPLE

Let π be a finitely presented group with πab “ Z3 and

V1
1 pπq “

 

pt1, t2, t3q P pC˚q3 | pt2 ´ 1q “ pt1 ` 1qpt3 ´ 1q
(

,

This is a complex, 2-dimensional torus passing through the origin, but
this torus does not embed as an algebraic subgroup in pC˚q3. Indeed,

τ1pV1
1 pπqq “ tx2 “ x3 “ 0u Y tx1 ´ x3 “ x2 ´ 2x3 “ 0u.

Hence, π is not 1-formal.
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RESONANCE VARIETIES OF SPACES DETECTING NON-FORMALITY

EXAMPLE

Let ConfnpEq be the configuration space of n labeled points of an
elliptic curve E “ Σ1.

Using the computation of H‚pConfnpΣgq,Cq by Totaro (1996), we
find that R1

1pConfnpEqq is equal to
"

px , yq P Cn ˆ Cn
ˇ

ˇ

ˇ

ˇ

řn
i“1 xi “

řn
i“1 yi “ 0,

xiyj ´ xjyi “ 0, for 1 ď i ă j ă n

*

For n ě 3, this is an irreducible, non-linear variety (a rational
normal scroll). Hence, ConfnpEq is not 1-formal.
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INFINITESIMAL FINITENESS OBSTRUCTIONS SPACES WITH FINITE MODELS

SPACES WITH FINITE MODELS

THEOREM (EXPONENTIAL AX–LINDEMANN THEOREM)

Let V Ď Cn and W Ď pC˚qn be irreducible algebraic subvarieties.
1 Suppose dim V “ dim W and exppV q Ď W. Then V is a translate

of a linear subspace, and W is a translate of an algebraic
subtorus.

2 Suppose the exponential map exp: Cn Ñ pC˚qn induces a local
analytic isomorphism Vp0q Ñ Wp1q. Then Wp1q is the germ of an
algebraic subtorus.

THEOREM (BUDUR–WANG 2017)

If X is a q-finite space which admits a q-finite q-model, then, for all
i ď q and k ě 0, the irreducible components of V i

k pX q passing through
1 are algebraic subtori of CharpX q.
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INFINITESIMAL FINITENESS OBSTRUCTIONS SPACES WITH FINITE MODELS

EXAMPLE

Let G be a f.p. group with Gab “ Zn and
V1

1 pGq “
 

t P pCˆqn |
řn

i“1 ti “ n
(

. Then G admits no 1-finite 1-model.

THEOREM (PAPADIMA–S. 2017)

Suppose X is pq ` 1q finite, or X admits a q-finite q-model. Let MqpX q
be Sullivan’s q-minimal model of X . Then bipMqpX qq ă 8, @i ď q ` 1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then b2pM1pGqq ă 8.

EXAMPLE

Let G “ Fn {F2n with n ě 2. We have V1
1 pGq “ V1

1 pFnq “ pCˆqn, and so
G passes the Budur–Wang test. But b2pM1pGqq “ 8, and so G admits
no 1-finite 1-model (and is not finitely presented).
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INFINITESIMAL FINITENESS OBSTRUCTIONS ASSOCIATED GRADED LIE ALGEBRAS

ASSOCIATED GRADED LIE ALGEBRAS

The lower central series of a group G is defined inductively by
γ1G “ G and γk`1G “ rγkG,Gs.

This forms a filtration of G by characteristic subgroups. The LCS
quotients, γkG{γk`1G, are abelian groups.

The group commutator induces a graded Lie algebra structure on

grpG,kq “
à

kě1pγkG{γk`1Gq bZ k.

Assume G is finitely generated. Then grpGq is also finitely
generated (in degree 1) by gr1pGq “ H1pG,kq.

For instance, grpFnq is the free graded Lie algebra Ln :“ Liepknq.
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INFINITESIMAL FINITENESS OBSTRUCTIONS HOLONOMY LIE ALGEBRAS

HOLONOMY LIE ALGEBRAS

Let A be a 1-finite cdga. Set Ai “ pAiq˚ “ HomkpAi ,kq.

Let µ˚ : A2 Ñ A1 ^ A1 be the dual to the multiplication map
µ : A1 ^ A1 Ñ A2.

Let d˚ : A2 Ñ A1 be the dual of the differential d : A1 Ñ A2.

The holonomy Lie algebra of A is the quotient

hpAq “ LiepA1q{ximpµ
˚ ` d˚qy.

For a f.g. group G, set hpGq :“ hpH‚pG,kqq. There is then a
canonical surjection hpGq� grpGq, which is an isomorphism
precisely when grpGq is quadratic.
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INFINITESIMAL FINITENESS OBSTRUCTIONS MALCEV LIE ALGEBRAS

MALCEV LIE ALGEBRAS

The group-algebra kG has a natural Hopf algebra structure, with
comultiplication ∆pgq “ g b g and counit ε : kG Ñ k. Let I “ ker ε.

(Quillen 1968) The I-adic completion of the group-algebra,
xkG “ lim

ÐÝk kG{Ik , is a filtered, complete Hopf algebra.

An element x P xkG is called primitive if p∆x “ x pb1` 1pbx . The set
of all such elements, with bracket rx , ys “ xy ´ yx , and endowed
with the induced filtration, is a complete, filtered Lie algebra.

We then have mpGq – PrimpxkGq and grpmpGqq – grpGq.

(Sullivan 1977) G is 1-formal ðñ mpGq is quadratic, namely:

mpGq “ {hpH‚pG,kq.
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INFINITESIMAL FINITENESS OBSTRUCTIONS FINITENESS OBSTRUCTIONS FOR GROUPS

FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if mpGq is the lcs
completion of a finitely presented Lie algebra, namely,

mpGq –zhpAq.

THEOREM (PS 2017)

Let G be a f.g. group which has a free, non-cyclic quotient. Then:

G{G2 is not finitely presentable.

G{G2 does not admit a 1-finite 1-model.
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