GEOMETRY AND TOPOLOGY OF COHOMOLOGY JUMP LOCI

LECTURE 2: RESONANCE VARIETIES

Alex Suciu

Northeastern University

MIMS Summer School: New Trends in Topology and Geometry

Mediterranean Institute for the Mathematical Sciences

Tunis, Tunisia

July 9-12, 2018

ALEX SUCIU (NORTHEASTERN)

COHOMOLOGY JUMP LOCI

OUTLINE

- **D** RESONANCE VARIETIES OF CDGAS
 - Commutative differential graded algebras
 - Resonance varieties
 - Tangent cone inclusion
- 2 RESONANCE VARIETIES OF SPACES
 - Algebraic models for spaces
 - Germs of jump loci
 - Tangent cones and exponential maps
 - The tangent cone theorem
 - Detecting non-formality
- 3 INFINITESIMAL FINITENESS OBSTRUCTIONS
 - Spaces with finite models
 - Associated graded Lie algebras
 - Holonomy Lie algebras
 - Malcev Lie algebras
 - Finiteness obstructions for groups

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k of characteristic 0. That is:
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - The multiplication $\therefore A^i \otimes A^j \rightarrow A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - The differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., d(*ab*) = d(*a*)*b* + (-1)^{|*a*|}*a*d(*b*).
- A CDGA A is of finite-type (or q-finite) if
 - it is connected (i.e., $A^0 = \mathbf{k} \cdot \mathbf{1}$);
 - dim_k A^i is finite for $i \leq q$.
- Let $H^i(A) = \ker(d \colon A^i \to A^{i+1}) / \operatorname{im}(d \colon A^{i-1} \to A^i)$. Then $H^{\bullet}(A)$ inherits an algebra structure from A.

- A cdga morphism φ: A → B is both an algebra map and a cochain map. Hence, it induces a morphism φ^{*}: H[•](A) → H[•](B).
- A map φ: A → B is a quasi-isomorphism if φ* is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some q ≥ 1) if φ* is an isomorphism in degrees ≤ q and is injective in degree q + 1.
- Two cdgas, A and B, are (q-)equivalent (≃q) if there is a zig-zag of (q-)quasi-isomorphisms connecting A to B.
- A cdga A is formal (or just q-formal) if it is (q-)equivalent to $(H^{\bullet}(A), d = 0)$.

RESONANCE VARIETIES

- Since A is connected and d(1) = 0, we have $Z^1(A) = H^1(A)$.
- For each $a \in Z^1(A)$, we construct a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d u$, for all $u \in A^i$.

• The resonance varieties of A are the sets

 $\mathcal{R}_{k}^{i}(A) = \{ a \in H^{1}(A) \mid \dim H^{i}(A^{\bullet}, \delta_{a}) \geq k \}.$

If *A* is *q*-finite, then $\mathcal{R}_{k}^{i}(A)$ are algebraic varieties for all $i \leq q$.

• If A is a CGA (so that d = 0), these varieties are homogeneous subvarieties of $H^1(A) = A^1$.

- Fix a k-basis {e₁,..., e_r} for H¹(A), and let {x₁,..., x_r} be the dual basis for H₁(A) = (H¹(A))*.
- Identify Sym(H₁(A)) with S = k[x₁,...,x_r], the coordinate ring of the affine space H¹(A).
- Define a cochain complex of free *S*-modules, $L(A) := (A^{\bullet} \otimes_{\Bbbk} S, \delta)$,

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta^{i}(u \otimes f) = \sum_{j=1}^{n} e_{j}u \otimes fx_{j} + d u \otimes f$.

- The specialization of $(A \otimes_{\Bbbk} S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) .
- Hence, Rⁱ_k(A) is the zero-set of the ideal generated by all minors of size b_i(A) − k + 1 of the block-matrix δⁱ⁺¹ ⊕ δⁱ.
- In particular, $\mathcal{R}_{k}^{1}(A) = V(I_{r-k}(\delta^{1}))$, the zero-set of the ideal of codimension *k* minors of δ^{1} .

EXAMPLE (EXTERIOR ALGEBRA)

Let $E = \bigwedge V$, where $V = \Bbbk^n$, and S = Sym(V). Then L(E) is the Koszul complex on *V*. E.g., for n = 3:

$$S \xrightarrow{\delta^{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}} S^{3} \xrightarrow{\delta^{2} = \begin{pmatrix} x_{2} & x_{3} & 0 \\ -x_{1} & 0 & x_{3} \\ 0 & -x_{1} & -x_{2} \end{pmatrix}} S^{3} \xrightarrow{\delta^{3} = (x_{3} - x_{2} x_{1})} S.$$

Hence,
$$\mathcal{R}_{k}^{i}(E) = \begin{cases} \{0\} & \text{if } k \leq \binom{n}{i}, \\ \emptyset & \text{otherwise.} \end{cases}$$

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES

EXAMPLE (NON-ZERO RESONANCE)

Let $A = \bigwedge (e_1, e_2, e_3) / \langle e_1 e_2 \rangle$, and set $S = \Bbbk [x_1, x_2, x_3]$. Then

$$\mathbf{L}(\mathbf{A}): \ S \xrightarrow{\delta^1 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} S^3 \xrightarrow{\delta^2 = \begin{pmatrix} x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \end{pmatrix}} S^2 .$$

$$\mathcal{R}_{k}^{1}(A) = \begin{cases} \{x_{3} = 0\} & \text{if } k = 1, \\ \{0\} & \text{if } k = 2 \text{ or } 3, \\ \emptyset & \text{if } k > 3. \end{cases}$$

EXAMPLE (NON-LINEAR RESONANCE)

Let $A = \bigwedge (e_1, \ldots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$. Then

$$\mathsf{L}(\mathsf{A}): \ S \xrightarrow{\delta^{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix}} S^{4} \xrightarrow{\delta^{2} = \begin{pmatrix} x_{4} & 0 & 0 & -x_{1} \\ 0 & x_{3} & -x_{2} & 0 \\ -x_{2} & x_{1} & x_{4} & -x_{3} \end{pmatrix}} S^{3}$$

$$\mathcal{R}_1^1(A) = \{x_1x_2 + x_3x_4 = 0\}$$

EXAMPLE (NON-HOMOGENEOUS RESONANCE)

- Let $A = \bigwedge (a, b)$ with d a = 0, d $b = b \cdot a$.
- $H^1(A) = \mathbb{C}$, generated by *a*. Set $S = \mathbb{C}[x]$. Then:

$$\mathbf{L}(\mathbf{A}): \mathbf{S} \xrightarrow{\delta^1 = \begin{pmatrix} 0 \\ \mathbf{X} \end{pmatrix}} \mathbf{S}^2 \xrightarrow{\delta^2 = (\mathbf{X} - 1 \ \mathbf{0})} \mathbf{S}.$$

- Hence, $\mathcal{R}^1(A) = \{0, 1\}$, a non-homogeneous subvariety of \mathbb{C} .
- Let A' be the sub-CDGA generated by a. The inclusion map, $A' \hookrightarrow A$, induces an isomorphism in cohomology.
- But R¹(A') = {0}, and so the resonance varieties of A and A' differ, although A and A' are quasi-isomorphic.

PROPOSITION

If $A \simeq_q A'$, then $\mathcal{R}_k^i(A)_{(0)} \cong \mathcal{R}_k^i(A')_{(0)}$, for all $i \leqslant q$ and $k \ge 0$.

TANGENT CONE INCLUSION

THEOREM (BUDUR-RUBIO, DENHAM-S. 2018)

If A is a connected k-CDGA A with locally finite cohomology, then

 $\mathsf{TC}_0(\mathcal{R}^i_k(A)) \subseteq \mathcal{R}^i_k(H^{\bullet}(A)).$

In general, we cannot replace $TC_0(\mathcal{R}_k^i(A))$ by $\mathcal{R}_k^i(A)$.

EXAMPLE

- Let $A = \bigwedge (a, b)$ with d a = 0 and d $b = b \cdot a$.
- Then $H^{\bullet}(A) = \bigwedge (a)$, and so $\mathcal{R}_1^1(A) = \{0\}$.
- Hence $\mathcal{R}_1^1(A) = \{0, 1\}$ is *not* contained in $\mathcal{R}_1^1(A)$, though $\mathsf{TC}_0(\mathcal{R}^1(A)) = \{0\}$ is.

In general, the inclusion $\mathsf{TC}_0(\mathcal{R}^i_k(A)) \subseteq \mathcal{R}^i_k(H^{\bullet}(A))$ is strict.

EXAMPLE

- Let $A = \bigwedge (a, b, c)$ with da = db = 0 and $dc = a \land b$.
- Writing S = k[x, y], we have:

$$\mathbf{L}(\mathbf{A}): \ \mathbf{S} \xrightarrow{\delta^1 = \begin{pmatrix} \mathbf{X} \\ \mathbf{y} \\ \mathbf{0} \end{pmatrix}} \ \mathbf{S}^3 \xrightarrow{\delta^2 = \begin{pmatrix} \mathbf{y} - \mathbf{X} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & -\mathbf{X} \\ \mathbf{0} & \mathbf{0} & -\mathbf{y} \end{pmatrix}} \mathbf{S}^3$$

• Hence $\mathcal{R}_1^1(A) = \{0\}.$

• But $H^{\bullet}(A) = \bigwedge (a, b)/(ab)$, and so $\mathcal{R}^{1}_{1}(H^{\bullet}(A)) = \mathbb{k}^{2}$.

ALEX SUCIU (NORTHEASTERN)

ALGEBRAIC MODELS FOR SPACES

- Given any space X, there is an associated Sullivan \mathbb{Q} -cdga, $A_{\text{PL}}(X)$, such that $H^{\bullet}(A_{\text{PL}}(X)) = H^{\bullet}(X, \mathbb{Q})$.
- We say X is *q*-finite if X has the homotopy type of a connected CW-complex with finite *q*-skeleton, for some *q* ≥ 1.
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-) equivalent to A_{PL}(X) ⊗_Q k.
- If *M* is a smooth manifold, then $\Omega_{dR}(M)$ is a model for *M* (over \mathbb{R}).
- Examples of spaces having finite-type models include:
 - Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
 - Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

GERMS OF JUMP LOCI

THEOREM (DIMCA–PAPADIMA 2014)

Let X be a q-finite space, and suppose X admits a q-finite, q-model A. Then the map exp: $H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$ induces a local analytic isomorphism $H^1(A)_{(0)} \to \operatorname{Char}(X)_{(1)}$, which identifies the germ at 0 of $\mathcal{R}^i_k(A)$ with the germ at 1 of $\mathcal{V}^i_k(X)$, for all $i \leq q$ and $k \geq 0$.

COROLLARY

If X is a q-formal space, then $\mathcal{V}_k^i(X)_{(1)} \cong \mathcal{R}_k^i(X)_{(0)}$, for $i \leq q$ and $k \geq 0$.

- A precursor to corollary can be found in work of Green, Lazarsfeld, and Ein on cohomology jump loci of compact Kähler manifolds.
- The case when q = 1 was first established in [DPS 2019].

TANGENT CONES AND EXPONENTIAL MAPS

- The map exp: $\mathbb{C}^n \to (\mathbb{C}^{\times})^n$, $(z_1, \ldots, z_n) \mapsto (e^{z_1}, \ldots, e^{z_n})$ is a homomorphism taking 0 to 1.
- For a Zariski-closed subset W = V(I) inside $(\mathbb{C}^{\times})^n$, define:
 - The tangent cone at 1 to W as $TC_1(W) = V(in(I))$.
 - The exponential tangent cone at 1 to W as

 $\tau_1(\boldsymbol{W}) = \{ \boldsymbol{z} \in \mathbb{C}^n \mid \exp(\lambda \boldsymbol{z}) \in \boldsymbol{W}, \ \forall \lambda \in \mathbb{C} \}$

- These sets are homogeneous subvarieties of Cⁿ, which depend only on the analytic germ of W at 1.
- Both commute with finite unions and arbitrary intersections.
- $\tau_1(W) \subseteq \mathsf{TC}_1(W)$.
 - = if all irred components of W are subtori.
 - \neq in general.

• (DPS 2009) $\tau_1(W)$ is a finite union of rationally defined subspaces.

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton.

THEOREM (LIBGOBER 2002, DPS 2009)

For all $i \leq q$ and $k \geq 0$,

 $\tau_1(\mathcal{V}_k^i(\boldsymbol{X})) \subseteq \mathsf{TC}_1(\mathcal{V}_k^i(\boldsymbol{X})) \subseteq \mathcal{R}_k^i(\boldsymbol{X}).$

THEOREM (DPS-2009, DP-2014)

Suppose X is a q-formal space. Then, for all $i \leq q$ and $k \geq 0$,

 $\tau_1(\mathcal{V}_k^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}_k^i(\boldsymbol{X})) = \mathcal{R}_k^i(\boldsymbol{X}).$

In particular, all irreducible components of $\mathcal{R}_k^i(X)$ are rationally defined linear subspaces of $H^1(X, \mathbb{C})$.

ALEX SUCIU (NORTHEASTERN)

DETECTING NON-FORMALITY

EXAMPLE

Let $\pi = \langle x_1, x_2 | [x_1, [x_1, x_2]] \rangle$. Then $\mathcal{V}_1^1(\pi) = \{t_1 = 1\}$, and so $\tau_1(\mathcal{V}_1^1(\pi)) = \mathsf{TC}_1(\mathcal{V}_1^1(\pi)) = \{x_1 = 0\}.$

On the other hand, $\mathcal{R}_1^1(\pi) = \mathbb{C}^2$, and so π is not 1-formal.

EXAMPLE

Let $\pi = \langle x_1, \dots, x_4 \mid [x_1, x_2], [x_1, x_4] [x_2^{-2}, x_3], [x_1^{-1}, x_3] [x_2, x_4] \rangle$. Then $\mathcal{R}_1^1(\pi) = \{ z \in \mathbb{C}^4 \mid z_1^2 - 2z_2^2 = 0 \}.$

This is a quadric hypersurface which splits into two linear subspaces over \mathbb{R} , but is irreducible over \mathbb{Q} . Thus, π is not 1-formal.

ALEX SUCIU (NORTHEASTERN)

COHOMOLOGY JUMP LOCI

EXAMPLE

Let π be a finitely presented group with $\pi_{ab} = \mathbb{Z}^3$ and

$$\mathcal{V}_1^1(\pi) = \{ (t_1, t_2, t_3) \in (\mathbb{C}^*)^3 \mid (t_2 - 1) = (t_1 + 1)(t_3 - 1) \},\$$

This is a complex, 2-dimensional torus passing through the origin, but this torus does not embed as an algebraic subgroup in $(\mathbb{C}^*)^3$. Indeed,

$$\tau_1(\mathcal{V}_1^1(\pi)) = \{x_2 = x_3 = 0\} \cup \{x_1 - x_3 = x_2 - 2x_3 = 0\}.$$

Hence, π is not 1-formal.

EXAMPLE

- Let $Conf_n(E)$ be the configuration space of *n* labeled points of an elliptic curve $E = \Sigma_1$.
- Using the computation of H[•](Conf_n(Σ_g), C) by Totaro (1996), we find that R¹₁(Conf_n(E)) is equal to

$$\left\{ (x, y) \in \mathbb{C}^n \times \mathbb{C}^n \middle| \begin{array}{l} \sum_{i=1}^n x_i = \sum_{i=1}^n y_i = 0, \\ x_i y_j - x_j y_i = 0, \text{ for } 1 \leqslant i < j < n \end{array} \right\}$$

For n ≥ 3, this is an irreducible, non-linear variety (a rational normal scroll). Hence, Conf_n(E) is not 1-formal.

SPACES WITH FINITE MODELS

THEOREM (EXPONENTIAL AX-LINDEMANN THEOREM)

Let $V \subseteq \mathbb{C}^n$ and $W \subseteq (\mathbb{C}^*)^n$ be irreducible algebraic subvarieties.

- Suppose dim $V = \dim W$ and $\exp(V) \subseteq W$. Then V is a translate of a linear subspace, and W is a translate of an algebraic subtorus.
- Suppose the exponential map $\exp: \mathbb{C}^n \to (\mathbb{C}^*)^n$ induces a local analytic isomorphism $V_{(0)} \to W_{(1)}$. Then $W_{(1)}$ is the germ of an algebraic subtorus.

THEOREM (BUDUR–WANG 2017)

If X is a q-finite space which admits a q-finite q-model, then, for all $i \leq q$ and $k \geq 0$, the irreducible components of $\mathcal{V}_k^i(X)$ passing through 1 are algebraic subtori of Char(X).

EXAMPLE

Let *G* be a f.p. group with $G_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1^1(G) = \{t \in (\mathbb{C}^{\times})^n \mid \sum_{i=1}^n t_i = n\}$. Then *G* admits no 1-finite 1-model.

THEOREM (PAPADIMA-S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite q-model. Let $\mathfrak{M}_q(X)$ be Sullivan's q-minimal model of X. Then $b_i(\mathfrak{M}_q(X)) < \infty$, $\forall i \leq q + 1$.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G has a 1-finite 1-model. Then $b_2(\mathfrak{M}_1(G)) < \infty$.

EXAMPLE

Let $G = F_n / F''_n$ with $n \ge 2$. We have $\mathcal{V}_1^1(G) = \mathcal{V}_1^1(F_n) = (\mathbb{C}^{\times})^n$, and so *G* passes the Budur–Wang test. But $b_2(\mathfrak{M}_1(G)) = \infty$, and so *G* admits no 1-finite 1-model (and is not finitely presented).

ALEX SUCIU (NORTHEASTERN)

Associated graded Lie Algebras

- The *lower central series* of a group *G* is defined inductively by $\gamma_1 G = G$ and $\gamma_{k+1} G = [\gamma_k G, G]$.
- This forms a filtration of *G* by characteristic subgroups. The LCS quotients, *γ_kG/γ_{k+1}G*, are abelian groups.
- The group commutator induces a graded Lie algebra structure on

 $\operatorname{gr}(\boldsymbol{G}, \Bbbk) = \bigoplus_{k \ge 1} (\gamma_k \boldsymbol{G} / \gamma_{k+1} \boldsymbol{G}) \otimes_{\mathbb{Z}} \Bbbk.$

- Assume *G* is finitely generated. Then gr(G) is also finitely generated (in degree 1) by $gr_1(G) = H_1(G, \Bbbk)$.
- For instance, $gr(F_n)$ is the free graded Lie algebra $\mathbb{L}_n := \text{Lie}(\mathbb{k}^n)$.

HOLONOMY LIE ALGEBRAS

• Let *A* be a 1-finite cdga. Set $A_i = (A^i)^* = \text{Hom}_{\Bbbk}(A^i, \Bbbk)$.

- Let $\mu^* \colon A_2 \to A_1 \land A_1$ be the dual to the multiplication map $\mu \colon A^1 \land A^1 \to A^2$.
- Let $d^*: A_2 \to A_1$ be the dual of the differential $d: A^1 \to A^2$.
- The holonomy Lie algebra of A is the quotient

$$\mathfrak{h}(\boldsymbol{A}) = \operatorname{Lie}(\boldsymbol{A}_1) / \langle \operatorname{im}(\mu^* + \boldsymbol{d}^*) \rangle.$$

For a f.g. group G, set h(G) := h(H[●](G, k)). There is then a canonical surjection h(G) → gr(G), which is an isomorphism precisely when gr(G) is quadratic.

MALCEV LIE ALGEBRAS

- The group-algebra kG has a natural Hopf algebra structure, with comultiplication Δ(g) = g ⊗ g and counit ε: kG → k. Let I = ker ε.
- (Quillen 1968) The *I*-adic completion of the group-algebra, $\widehat{\Bbbk G} = \lim_{k} \& G/I^k$, is a filtered, complete Hopf algebra.
- An element x ∈ kG is called *primitive* if Âx = x⊗1 + 1⊗x. The set of all such elements, with bracket [x, y] = xy yx, and endowed with the induced filtration, is a complete, filtered Lie algebra.
- We then have $\mathfrak{m}(G) \cong \operatorname{Prim}(\widehat{\Bbbk G})$ and $\operatorname{gr}(\mathfrak{m}(G)) \cong \operatorname{gr}(G)$.
- (Sullivan 1977) *G* is 1-formal $\iff \mathfrak{m}(G)$ is quadratic, namely:

$$\mathfrak{m}(G) = \mathfrak{h}(\widehat{H^{\bullet}(G)}, \Bbbk).$$

FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if $\mathfrak{m}(G)$ is the lcs completion of a finitely presented Lie algebra, namely,

 $\mathfrak{m}(G) \cong \widehat{\mathfrak{h}(A)}.$

THEOREM (PS 2017)

Let G be a f.g. group which has a free, non-cyclic quotient. Then:

- G/G'' is not finitely presentable.
- G/G" does not admit a 1-finite 1-model.