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OUTLINE

@ RESONANCE VARIETIES OF CDGAS
@ Commutative differential graded algebras
@ Resonance varieties
@ Tangent cone inclusion

© RESONANCE VARIETIES OF SPACES
@ Algebraic models for spaces
@ Germs of jump loci
@ Tangent cones and exponential maps
@ The tangent cone theorem
@ Detecting non-formality

© INFINITESIMAL FINITENESS OBSTRUCTIONS
Spaces with finite models

@ Associated graded Lie algebras

@ Holonomy Lie algebras
°
o

Malcev Lie algebras
Finiteness obstructions for groups
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RESONANCE VARIETIES OF CDGAS COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

@ Let A= (A*,d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

o A=@;. A, where A’ are k-vector spaces.
o The multiplication -: A/ ® A — At/ is graded-commutative, i.e.,
ab = (—1)lal1blpa for all homogeneous a and b.

o The differential d: A’ — A'*" satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b + (—1)@ad(b).

@ A CDGA Ais of finite-type (or g-finite) if
o itis connected (i.e., A° = k- 1);
o dimy A’ is finite for i < q.

@ Let H/(A) = ker(d: A" — A*1)/im(d: A~" — A'). Then H*(A)
inherits an algebra structure from A.
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RESONANCE VARIETIES OF CDGAS COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

@ A cdga morphism ¢: A — B is both an algebra map and a cochain
map. Hence, it induces a morphism ¢*: H*(A) — H*(B).

@ Amap ¢: A — Bis a quasi-isomorphism if ¢* is an isomorphism.
Likewise, ¢ is a g-quasi-isomorphism (for some q > 1) if ¢* is an
isomorphism in degrees < q and is injective in degree g + 1.

@ Two cdgas, A and B, are (g-)equivalent (~) if there is a zig-zag of
(g-)quasi-isomorphisms connecting A to B.

@ Acdga Ais formal (or just g-formal) if it is (g-)equivalent to
(H*(A),d = 0).
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

RESONANCE VARIETIES

@ Since Ais connected and d(1) = 0, we have Z'(A) = H'(A).
@ For each ac Z'(A), we construct a cochain complex,

5 o

A2

(A% 6): A2 At
with differentials 0% (u) = a- u +du, forall u e A'.
@ The resonance varieties of A are the sets
Ri(A) = {ae H'(A) | dim H'(A®,6,) = k}.
If Ais g-finite, then R, (A) are algebraic varieties for all i < q.

@ If Ais a CGA (so that d = 0), these varieties are homogeneous
subvarieties of H'(A) = A'.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

Fix a k-basis {ey, ..., e/} for H'(A), and let {xy, ..., x;} be the dual
basis for H; (A) = (H'(A))*.

Identify Sym(H;(A)) with S = k[x1, ..., x/], the coordinate ring of
the affine space H'(A).

Define a cochain complex of free S-modules, L(A) := (A* ®x S, ),

~-*>A"®SL>A"+1®S£>A/+2®S—>--~,
where §'(u®f) =Y uefx+dudf.
The specialization of (A®y S, §) at ae A’ coincides with (A, §,).

Hence, Rj((A) is the zero-set of the ideal generated by all minors
of size b;(A) — k + 1 of the block-matrix 6+ @ ¢'.

In particular, R}.(A) = V(I,_(5")), the zero-set of the ideal of
codimension k minors of 5'.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

EXAMPLE (EXTERIOR ALGEBRA)

Let E = A\ V,where V =k", and S = Sym(V). Then L(E) is the
Koszul complex on V. E.g., for n = 3:

Xo X3 0
51:<§;> 52—(—X1 0 x3 ) .
X 0 —xy —x 0°=(X3 —X2 Xy)
S 58 L= & &
Hence,

R n
i (0} ifk<("

RA(E) = )

¢ otherwise.
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

EXAMPLE (NON-ZERO RESONANCE)
Let A= A(eq, e, €3)/{€1€2), and set S = k[xq, X2, X3]. Then

s2—( X 0 —x
3 0 X3 —Xo

L(A): S S s2 .
1 {x3 =0} ifk=1,
Ri(A) = 1 {0} if k=2 or 3,

o if k > 3.

EXAMPLE (NON-LINEAR RESONANCE)
Let A= A(ey,...,e4)/{€1€3,60€4, €162 + €364). Then

X4 0 0 —Xq
5= 0 x3 —x2 O
4

v

—Xo Xy X4 —X3
LA : S S S8
1
R1 (A) = {X1 Xo + X3X4 = 0}
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RESONANCE VARIETIES OF CDGAS RESONANCE VARIETIES

EXAMPLE (NON-HOMOGENEOUS RESONANCE)
o LetA= A(ab)withda=0,db=0>b-a.

e H'(A) = C, generated by a. Set S = C[x]. Then:

51=(0 Be(( g
La): s | g #i=tt0) o

e Hence, R'(A) = {0, 1}, a non-homogeneous subvariety of C.

o Let A’ be the sub-CDGA generated by a. The inclusion map,
A’ — A, induces an isomorphism in cohomology.

e But R'(A’) = {0}, and so the resonance varieties of A and A’
differ, although A and A’ are quasi-isomorphic.

PROPOSITION
IfA ~4 A, then R} (A) o) = R} (A) ), foralli < q and k > 0.
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RESONANCE VARIETIES OF CDGAS TANGENT CONE INCLUSION

TANGENT CONE INCLUSION

THEOREM (BUDUR-RUBIO, DENHAM-S. 2018)
If A is a connected k-CDGA A with locally finite cohomology, then

TCo(R(A)) € R (H*(A).

In general, we cannot replace TCo(R}(A)) by R} (A).

EXAMPLE
o LetA= A(a,b)withda=0anddb=b"a.
e Then H*(A) = A(a), and so R1(A) = {0}.

) =
e Hence R1(A) = {0, 1} is not contained in R1(A), though
TCo(R'(A)) = {0} is.
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RESONANCE VARIETIES OF CDGAS TANGENT CONE INCLUSION

In general, the inclusion TCo (R} (A)) < R} (H*(A)) is strict.

EXAMPLE
o LetA= A(a,b,c)withda=db=0anddc=an b.

y —x 1
#2=|0 0 —x
3 00 —y

e Writing S = k[x, y|, we have:

=,

Il
A/~
o< X

)

S g0

e Hence R1(A) = {0}.
e But H*(A) = A(a,b)/(ab), and so R1(H*(A)) = k2.
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RESONANCE VARIETIES OF SPACES ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

@ Given any space X, there is an associated Sullivan Q-cdga,
App(X), such that H*(App(X)) = H*(X, Q).

@ We say X is g-finite if X has the homotopy type of a connected
CW-complex with finite g-skeleton, for some g > 1.

@ An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is
(g-) equivalent to Apr(X) ®q k.

@ If M is a smooth manifold, then Q4g(M) is a model for M (over R).

@ Examples of spaces having finite-type models include:
e Formal spaces (such as compact K&hler manifolds, hyperplane
arrangement complements, toric spaces, etc).

e Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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RESONANCE VARIETIES OF SPACES GERMS OF JUMP LOCI

GERMS OF JUMP LOCI

THEOREM (DIMCA-PAPADIMA 2014)

Let X be a g-finite space, and suppose X admits a g-finite, g-model A.
Then the map exp: H'(X,C) — H'(X,C*) induces a local analytic
isomorphism H' (A) (o) — Char(X)), which identifies the germ at 0 of
R, (A) with the germ at1 of Vi(X), for all i < q and k > 0.

COROLLARY
If X is a q-formal space, then V;(X)1) = R} (X)), fori < g and k > 0.

v

@ A precursor to corollary can be found in work of Green, Lazarsfeld,
and Ein on cohomology jump loci of compact Kéhler manifolds.

@ The case when g = 1 was first established in [DPS 2019].
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RESONANCE VARIETIES OF SPACES TANGENT CONES AND EXPONENTIAL MAPS

TANGENT CONES AND EXPONENTIAL MAPS

@ Themapexp: C" — (C*)", (z1,...,2n) — (€*1,...,€"")is a
homomorphism taking 0 to 1.
@ For a Zariski-closed subset W = V/(/) inside (C*)", define:
e The tangent cone at 1to W as TCy(W) = V(in(/)).
o The exponential tangent cone at 1 to W as
(W) ={zeC"|exp(A\z) e W, Y\ e C}

@ These sets are homogeneous subvarieties of C”, which depend
only on the analytic germ of W at 1.

@ Both commute with finite unions and arbitrary intersections.

4 T1(W) < TC1(W).
o = if all irred components of W are subtori.
e # ingeneral.

@ (DPS 2009) 71 (W) is a finite union of rationally defined subspaces.
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RESONANCE VARIETIES OF SPACES THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite g-skeleton.

THEOREM (LIBGOBER 2002, DPS 2009)
Foralli < qandk >0,

1 (Ve(X)) € TC1(Vk(X)) € Ri(X).

THEOREM (DPS-2009, DP-2014)
Suppose X is a g-formal space. Then, for all i < q and k > 0,
T1(Vk(X)) = TC1(Vi(X)) = R (X).

In particular, all irreducible components of R, (X) are rationally defined
linear subspaces of H' (X, C).

V.
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RESONANCE VARIETIES OF SPACES DETECTING NON-FORMALITY

DETECTING NON-FORMALITY

EXAMPLE
Let 7 = {(x1, X | [x1, [x1, x2]]). Then V! (7) = {t; = 1}, and so

1 (V](m) = TG (Vi (m)) = {x1 = O}

On the other hand, R}(r) = C?, and so « is not 1-formal.

EXAMPLE

' x3][%2, Xa]). Then

Let 7 = (x1,...,Xa | [X1, %], [X1, Xa][X5 2, Xa], [X;
Ri(n) = {ze C*| 22 — 222 = 0}.

This is a quadric hypersurface which splits into two linear subspaces
over R, but is irreducible over Q. Thus, = is not 1-formal.

v
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RESONANCE VARIETIES OF SPACES DETECTING NON-FORMALITY

EXAMPLE

Let 7 be a finitely presented group with 7., = Z% and
Vi) = {(t, o, ts) € (C*)° | (= 1) = (b + 1)(ta — 1)},

This is a complex, 2-dimensional torus passing through the origin, but
this torus does not embed as an algebraic subgroup in (C*)3. Indeed,

(V] (7)) = {X2 = X3 = 0} U {X; — X3 = Xo — 2x3 = O}..

Hence, 7 is not 1-formal.
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RESONANCE VARIETIES OF SPACES DETECTING NON-FORMALITY

EXAMPLE

e Let Conf,(E) be the configuration space of n labeled points of an
elliptic curve E = ¥;.

@ Using the computation of H*(Conf,(X4),C) by Totaro (1996), we
find that R1(Conf,(E)) is equal to

n n
n n| 2imt Xi = 2i=1Yi =0,
{(va)e(c x C Xl.ijjyizo,for1<i<j<n}

e For n > 3, this is an irreducible, non-linear variety (a rational
normal scroll). Hence, Conf,(E) is not 1-formal.
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INFINITESIMAL FINITENESS OBSTRUCTIONS SPACES WITH FINITE MODELS

SPACES WITH FINITE MODELS

THEOREM (EXPONENTIAL AX—LINDEMANN THEOREM)
Let V < C" and W < (C*)" be irreducible algebraic subvarieties.
© Suppose dim V = dim W and exp(V) < W. Then V is a translate
of a linear subspace, and W is a translate of an algebraic
subtorus.
@ Suppose the exponential map exp: C" — (C*)" induces a local
analytic isomorphism V(o) — W4,. Then W4, is the germ of an
algebraic subtorus.

THEOREM (BUDUR-WANG 2017)

If X is a q-finite space which admits a q-finite q-model, then, for all
I < q andk = 0, the irreducible components of V, (X) passing through
1 are algebraic subtori of Char(X).
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INFINITESIMAL FINITENESS OBSTRUCTIONS SPACES WITH FINITE MODELS

EXAMPLE

Let G be a f. p group with G,, = Z" and
= {te (C*)"| X[, ti = n}. Then G admits no 1-finite 1-model.

v

THEOREM (PAPADIMA-S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite g-model. Let Niy(X)
be Sullivan’s q-minimal model of X. Then b;(Mq(X)) < 0, Vi < g+ 1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then b>(Mt1(G)) < .

EXAMPLE

Let G = F,/F}, with n > 2. We have V] (G) = V] (F,) = (C*)", and so
G passes the Budur-Wang test. But bo (011 (G)) = oo, and so G admits
no 1-finite 1-model (and is not finitely presented).
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INFINITESIMAL FINITENESS OBSTRUCTIONS ASSOCIATED GRADED LIE ALGEBRAS

ASSOCIATED GRADED LIE ALGEBRAS

@ The lower central series of a group G is defined inductively by
711G = Gand v.1G = [%G, G].

@ This forms a filtration of G by characteristic subgroups. The LCS
quotients, v G/vx.1G, are abelian groups.

@ The group commutator induces a graded Lie algebra structure on
gr(G.k) = D, (wG/k+1G) @z k.

@ Assume G is finitely generated. Then gr(G) is also finitely
generated (in degree 1) by grq(G) = H1(G, k).

@ Forinstance, gr(Fp) is the free graded Lie algebra L, := Lie(k").
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INFINITESIMAL FINITENESS OBSTRUCTIONS HOLONOMY LIE ALGEBRAS

HOLONOMY LIE ALGEBRAS

@ Let Abe a 1-finite cdga. Set A; = (A)* = Homy (A’ k).

@ Let u*: Ao — Ay A Aq be the dual to the multiplication map
p: Al A AT - A2

@ Let d*: A, — A; be the dual of the differential d: A" — A=2.
@ The holonomy Lie algebra of A is the quotient

h(A) = Lie(Ay)/Cim(p* + d*)).
@ Foraf.g. group G, set h(G) := h(H*(G,k)). There is then a

canonical surjection h(G) — gr(G), which is an isomorphism
precisely when gr(G) is quadratic.
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INFINITESIMAL FINITENESS OBSTRUCTIONS MALCEV LIE ALGEBRAS

MALCEV LIE ALGEBRAS

@ The group-algebra kG has a natural Hopf algebra structure, with
comultiplication A(g) = g® g and counite: kG — k. Let | = kere.

@ (Quillen 1968) The /-adic completion of the group-algebra,

o~

kG = lim, kG/I%, is a filtered, complete Hopf algebra.

@ Anelement x € kG is called primitive if Ax = x®1 + 1®x. The set
of all such elements, with bracket [x, y| = xy — yx, and endowed
with the induced filtration, is a complete, filtered Lie algebra.

@ We then have m(G) = Prim(kG) and gr(m(G)) = gr(G).

@ (Sullivan 1977) G is 1-formal < m(G) is quadratic, namely:

m(G) = h(H*(G, k).
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INFINITESIMAL FINITENESS OBSTRUCTIONS FINITENESS OBSTRUCTIONS FOR GROUPS

FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if m(G) is the Ics
completion of a finitely presented Lie algebra, namely,

THEOREM (PS 2017)
Let G be a f.g. group which has a free, non-cyclic quotient. Then:
e G/@" is not finitely presentable.

e G/G" does not admit a 1-finite 1-model.
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