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_ RESONANCE VARIETIES OF A CDGA
RESONANCE VARIETIES OF A CDGA

o Let A= (A*,d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:
o A=@;., A, where A’ are k-vector spaces.
o The multiplication -: A ® A — At/ is graded-commutative, i.e.,
ab = (—1)lal1blpa for all homogeneous a and b.
o The differential d: A’ — A" satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b + (—1)l@ad(b).

e We assume A is connected (i.e., A — k- 1) and of finite-type (i.e.,
dim A" < oo for all J).

e Foreach ae Z'(A) =~ H'(A), we have a cochain complex,
0 1 2
(A*,6,): AO At %o p2

with differentials ¢5(u) = a- u + d(u), for all u e A’.
@ The resonance varieties of A are the affine varieties
RL(A) = {ae H'(A) | dimy H'(A®,5,) > s}.
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e Fix a k-basis {e1,..., e} for A, and let {xy, ..., x,;} be the dual
basis for Ay = (A")*.

e |dentify Sym(A¢) with S = k[xq, ..., x|, the coordinate ring of the
affine space A'.

e Build a cochain complex of free S-modules, L(A) := (A*® S,0):
-~—>A’®S AI+1®S gt A'+2®S4>~--,
where ¢'(u®f) =] qufx+dudf.
e The specialization of (A® S,6) atae Z'(A) is (A, d,).

e Hence, RL(A) is the zero-set of the ideal generated by all minors
of size b;(A) — s + 1 of the block-matrix 5" @ ¢'.
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CHARACTERISTIC VARIETIES

e Let X be a connected, finite-type CW-complex. Then
m =11 (X, Xp) is a finitely presented group, with 7, =~ Hy (X, Z).

e Thering R = C|r,p] is the coordinate ring of the character group,
Char(X) = Hom(m,C*) =~ (C*)" x Tors(map), Where r = by (X).
e The characteristic varieties of X are the homology jump loci
VLX) = {p € Char(X) | dim¢ H;(X,C,) = s}.
e These varieties are homotopy-type invariants of X, with V! (X)
depending only on 7 = 1 (X).
e Set V] (r) := V] (K(m,1)); then V] (7) = Vi (z/7").
EXAMPLE
Let f e Z[t, ..., t3'] be a Laurent polynomial, f(1) = 0. There is then

AN~ with =~ . — 7N ciich that V102 — /()
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TANGENT CONES

e Letexp: H'(X,C) — H'(X,C*) be the coefficient homomorphism
induced by C — C*, z — €~.

e Let W = V/(I), a Zariski closed subset of Char(G) = H'(X, C*).
e The tangent cone at 1to Wis TCy(W) = V(in(/)).
e The exponential tangent cone at 1 to W:

(W) = {ze H'(X,C) | exp(Az) € W, YA e C}.

e Both tangent cones are homogeneous subvarieties of H' (X, C);
are non-empty iff 1 € W; depend only on the analytic germ of W
at 1; commute with finite unions and arbitrary intersections.

o 71(W) < TCy(W), with = if all irred components of W are subtori,
but # in general.

e (Dimca—Papadima-S. 2009) 71 (W) is a finite union of rationally
defined subspaces.
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_ ALGEBRAIC MODELS FOR SPACES
ALGEBRAIC MODELS FOR SPACES
e A CDGA map ¢: A — B s a quasi-isomorphism if
©*: H*(A) — H*(B) is an isomorphism.

@ ¢ is a g-quasi-isomorphism (for some g > 1) if p* is an
isomorphism in degrees < g and is injective in degree g + 1.

e Two CDGAs, A and B, are (q-) equivalent if there is a zig-zag of
(g-) quasi-isomorphisms connecting A to B.

e Ais formal (or just g-formal) if it is (g-) equivalent to
(H*(A),d = 0).

e A CDGA is g-minimal if it is of the form (/\ V, d), where the
differential structure is the inductive limit of a sequence of Hirsch
extensions of increasing degrees, and V' = 0 for i > q.

e Every CDGA A with H(A) = k admits a g- minimal model, Mg4(A)
(i.e., a g-equivalence Mg4(A) — A with My(A) = (A V,d) a

-minimal cdga), unique up to iso.
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e Given any (path-connected) space X, there is an associated
Sullivan Q-cdga, App(X), such that H*(Ap (X)) = H*(X, Q).

e An algebraic (g-)model (over k) for X is a k-cgda (A, d) which is
(g-) equivalent to Apr(X) ®q k.

e If M is a smooth manifold, then Qqr(M) is a model for M (over R).

e Examples of spaces having finite-type models include:
e Formal spaces (such as compact Kahler manifolds, hyperplane
arrangement complements, toric spaces, etc).

e Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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_ ALGEBRAIC MODELS FOR SPACES
THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite g-skeleton. Suppose X
admits a g-finite g-model A.
THEOREM
Foralli < q and all s:
e (DPS 2009, Dimca—Papadima 2014) V(X (1) = RQ(A)(O).
o (Budur-Wang 2017) All the irreducible components of V(X)
passing through the origin of Char(X) are algebraic subtori.

Consequently,
T1(Vs(X)) = TG (Vs(X)) = Re(A).

THEOREM (PAPADIMA-S. 2017)

A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie
algebra m(G) is the LCS completion of a finitely presented Lie algebra.
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_ INFINITESIMAL FINITENESS OBSTRUCTIONS
INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X
admits a q-finite g-model A. Then, for all i < q and all s,

o (Dimca—Papadima 2014) V(X)) = RE(A)()-
In particular, if X is g-formal, then Vi(X) 1) = R5(X) 0)-
e (Macinic, Papadima, Popescu, S. 2017) TCo(RL(A)) € RL(X).

o (Budur-Wang 2017) All the irreducible components of Vi(X)
passing through the origin of H' (X, C*) are algebraic subtori.

EXAMPLE

Let G be a f.p. group with G, = Z" and V] (G) = {t e (C*)" |
>, t; = n}. Then G admits no 1-finite 1-model.
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THEOREM (PAPADIMA-S. 2017)

Suppose X is (q + 1) finite, or X admits a g-finite g-model. Then
bi(Mg(X)) < oo, foralli < q+ 1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then bx(M1(G)) < oo.

EXAMPLE
e Consider the free metabelian group G = F, /F}, with n > 2.
e We have V'(G) = V'(F,) = (C*)", and so G passes the
Budur—Wang test.

@ But bp(M1(G)) = w0, and so G admits no 1-finite 1-model (and is
not finitely presented).
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LOWER CENTRAL SERIES

e Let G be a group. The lower central series {vx(G)}x=1 is defined
inductively by v1(G) = G and v,41(G) = [G, 7 (G)].

e Here, if H, K < G, then [H, K] is the subgroup of G generated by
{[a,b] := aba 'b~" |ac H,be K}. If H K < G, then [H,K] < G.

e The subgroups ~«(G) are, in fact, characteristic subgroups of G.
Moreover [v«(G), 7 (G)] € Yk+e(G), Yk, £ = 1.

e 72(G) = [G, G] is the derived subgroup, and so G/v2(G) = Gap.
o [ (G),%(G)] < vk+1(G), and thus the LCS quotients,
gk(G) == % (G)/k+1(G)
are abelian.

e If Gis finitely generated, then so are its LCS quotients. Set
ok (G) = rankgry(G).
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_ ASSOCIATED GRADED LIE ALGEBRA
ASSOCIATED GRADED LIE ALGEBRA

e Fix a coefficient ring k. Given a group G, we let

gr(G.k) = @ grk(G) ®k.
k=1

e This is a graded Lie algebra, with Lie bracket
[,]: grg x gr, — gry,e induced by the group commutator.

e For k = Z, we simply write gr(G) = gr(G, Z).
@ The construction is functorial.

e Example: if F, is the free group of rank n, then
e gr(Fp) is the free Lie algebra Lie(Z").
o gri(Fy) is free abelian, of rank ¢ (Fp) = & 3, p(d)ns.
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HOLONOMY LIE ALGEBRA

e A quadratic approximation of the Lie algebra gr(G, k), where k is a
field, is the holonomy Lie algebra of G, which is defined as

b(G,k) := Lie(H1(G,k)) Kim(pg)),
where
o L = Lie(V) the free Lie algebra on the k-vector space V = H;(G; k),
with Ly = Vand L, =V A V.
o nug: Ho(G, k) — V A Vis the dual of the cup product map
pa: H'(G;k) A H'(G k) — H?(G; k).
e There is a surjective morphism of graded Lie algebras,
b(G,k) —=gr(G;k) , (")
which restricts to isomorphisms b, (G, k) — gry(G; k) for k < 2.
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ARRANGEMENT GROUPS AND LIE ALGEBRAS

o Let A = {/q,...,¢,} be an affine line arrangement in C?, and let
G = G(A) be the fundamental group of the complement of A.

e The holonomy Lie algebra h(.A) := h(G(A)) has (combinatorially
determined) presentation
b(A) ={X1,...,Xn | Z[prk], je P, PeP)
keP
where x; represents the meridian about the i-th line, P = 2l is
the set of multiple points, and P = P\{max P} for P € P.

e Thus, every double point P = L; n L; contributes a relation [Xx;, x;],
each triple point P = L; n L; n L, contributes two relations,
[xi, Xj] + [xi, xk] and —[x;, x;] + [x;, k], etc.

e Consequently, h1(.A) is free abelian with basis {x1, ..., x,}, while
ha(A) is free abelian of rank ¢, = (5) — > pcp(|P| — 1), with basis
{[xi,x;]: i,j€ 13, P e Pj}.
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e The canonical projection h(G, Q) — gr(G, Q) is an isomorphism.
Thus, the LCS ranks ¢ (G) are combinatorially determined.

o (Falk—Randell 1985) If A is supersolvable, with exponents
di,...,d;, then G = Fy, x -+ x Fg, x Fy, (almost direct product)

and ¢
= > ok(Fa).
i—1

e (Papadima-S. 2006) If A is decomposable, then h(G) — gr(G) is
an isomorphism, and gr(G) is free abelian of rank

= > ¢k(Fux)) fork =2,

XGLZ .A)

@ (S.2001) For G = G(A), the groups gr,(G) may have non-zero
torsion. Question: Is that torsion combinatorially determined?

o (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2018): Answer: No!
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MALCEV LIE ALGEBRA

o Let k be a field of characteristic 0. The group-algebra kG has a
natural Hopf algebra structure, with comultiplication A(g) = g® g
and counite: kG — k.

@ Let | = kere. The /-adic completion kG = lim, kG/I¥ is a filtered,
complete Hopf algebra.

o An element x € kG is called primitive if Ax = x&1 + 1&x. The set
of all such elements,

m(G,k) = Prim(kG),

with bracket [x, y| = xy — yx, is a complete, filtered Lie algebra,
called the Malcev Lie algebra of G.

o If Gis finitely generated, then m(G, k) = lim L(G/v(G) ®k), and

P

gr(m(G,k)) =~ gr(G, k).
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_ FORMALITY AND FILTERED FORMALITY
FORMALITY AND FILTERED FORMALITY

e Let G be a finitely generated group, k a field of characteristic 0.

e G s filtered-formal (over k), if there is an isomorphism of filtered
Lie algebras,
m(G; k) = gr(G; k).
e Gis 1-formal (over k) if it is filtered formal and the canonical
projection h(G, k) — gr(G; k) is an isomorphism; that is,
m(G;k) = h(G;k).
@ An obstruction to 1-formality is provided by the Massey products
<Oz1 , o, 043> € Hz(G7 k), for o) € H? (G, ]k) with aqan = asag = 0.
THEOREM (S.—-WANG)

The above formality properties are preserved under finite direct
products and coproducts, split injections, passing to solvable quotients,
as well as extension or restriction of coefficient fields.
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e Examples of 1-formal groups

e Fundamental groups of compact Kahler manifolds; e.g., surface
groups.

e Fundamental groups of complements of complex algebraic affine
hypersurfaces; e.g., arrangement groups, free groups.

o Right-angled Artin groups.

e Examples of filtered formal groups

o Finitely generated, torsion-free, 2-step nilpotent groups with
torsion-free abelianization; e.g., the Heisenberg group.

e Fundamental groups of Sasakian manifolds.

e Fundamental groups of graphic configuration spaces of surfaces of
genus g > 1; e.g., pure braid groups of elliptic curves.

e Examples of non-filtered formal groups
o Certain finitely generated, torsion-free, 3-step nilpotent groups.
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NILPOTENT QUOTIENTS
e Consider the tower of nilpotent quotients of a group G,

o G/4(G) —2= G/v3(G) — 2~ G/72(G) .

@ We then have central extensions

0 —> grk(G) —> G/ +1(G) —*~ G/ (G) —=0..

e Passing to classifying spaces, we obtain commutative diagrams,

K(G/vk+1(G), 1)
Vi1 J/rk

G— — K(G/w(G).1)

e The map 74 may be viewed as the fibration with fiber K(gr,(G), 1)
obtained as the pullback of the path space fibration with base
K(grk(G),2) via a k-invariant xx: K(G/v(G),1) — K(grx(G),2).
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e Let X be a connected CW-complex, and let G = 71 (X).

e A K(G,1) can be constructed by adding to X cells of dimension 3

or higher. Thus, H>(G, Z) is a quotient of Hx(X,Z).
e Let.: X - K(G,1) be the inclusion, and let
hie =Yg o: X — K(G/w(G), 1).

@ We obtain a Postnikov tower of fibrations,

K(G/Ta(G).1)

im

b K(G/ rs

/

ALEX SUCIU (NORTHEASTERN) FINITENESS & FORMALITY OBSTRUCTIONS JANUARY 21, 2020

K(G/T2(G

20/27



_ INJECTIVE HOLONOMY AND K-INVARIANTS
INJECTIVE HOLONOMY AND K-INVARIANTS

e As noted by Stallings, there is an exact sequence,

Ha(X; Z) % Hy(G/uk(G): Z) - gri(G) —= 0 .

In general, this sequence is natural but not split exact.
@ The homomorphism
(ho)s: Ho(X;Z) —= Ho(G/72(G); Z) ~ Hi(G;Z) A H1(G; Z)
is the holonomy map of X (over Z).

e When H;(G;Z) is torsion-free, set
h(G) = Lie(H1(G; Z))/<im((h2)))-

e As before, get surjective morphism h(G) — gr(G), which is
injective in degrees k < 2.
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Suppose H = H{(G; Z) is a finitely-generated, free abelian group, and
the map (ho).: Ho(G;Z) — H A His injective.

THEOREM (RYBNIKOV, PORTER-S.)
The canonical projection h3(G) — gr3(G) is an isomorphism.

THEOREM (PORTER-S.)
For each k > 3, there is a split exact sequence,

0 —> grk(G) —> Ho(G/w(G): Z) > Ho(X;Z) — 0. (f)
\/

(e

Moreover, the k-invariant of the extension from G/~x(G) to G/vk+1(G),

Xk € Hom(Ha2(G/v(G)), grk(G)),

with respect to the direct sum decomposition defined by o, is given by
Xk(X,¢) = x —X(c), where A = o o (D).

v
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_ A HOMOLOGICAL VERSION OF RYBNIKOV’S THEOREM
A HOMOLOGICAL VERSION OF RYBNIKOV’S THEOREM

e Let X3 and X, be two path-connected spaces with
o Finitely generated, torsion-free Hj.
o Injective holonomy map H. — H; A H;.

e Let G, and G, be the respective fundamental groups.

@ A homomorphism f: G; — Gp induces homomorphisms on
nilpotent quotients, fx: Ga/vk(Ga) — Gp/7k(Gp).-

@ Suppose there is an isomorphism of graded algebras,
g9: H2(Xp) — H<%(Xa).
Set g = g": Heo(Xa) > Hea(Xp).
e There is then an isomorphism Gg/v3(Ga) = Gp/v3(Gp).

e Moreover, the isomorphism g, : Hy(X3) — Hi(Xp) induces an
isomorphism gy h3(Ga) — b3(Gp).
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THEOREM (RYBNIKOV, PORTER-S.)

Letoy: Ho(Gp/T3(Gp)) — b3(Gp) be any left splitting of (1), and let
f3: Ga/v3(Ga) = Gp/v3(Gp) be any extension of g. Then f3 extends to
an isomorphism

fy: Ga/v4(Ga) — Gp/v4(Gp)

if and only if there are liftings hS: X; — K(G¢/v3(Ge), 1) for c = a and
b such that the following diagram commutes

«l

b3(Ga) h3(Gp)

3o ( Ho(Ga/3(Ga)) ~22 Ha(Gi/7s(Gib)) | Ao

() (hg)x

~

lle

Ha(Xa) Ha(Xp) -
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_ AN EXTENSION TO CHARACTERISTIC p
AN EXTENSION TO CHARACTERISTIC P

@ Let p=0ora prime.

e Given a group G, define subgroups 7£(G) as 7} (G) = G and
Yo 1(G) =(gug~'u"'VP : ge G, u,veL(G)).

° {’yf(G)}k>1 is a descending central series of normal subgroups.

e For p=0itisthe LCS; for p # 0 it is the most rapidly descending
central series whose successive quotients are Z,-vector spaces.

e All the above results work for p > 0, by replacing v« (G) ~ vf(G),
hk(G) ~ hk(G, Zp), and H*(—,Z) ~> H*(—,Zp).

e The entries of the matrices A5 and )\, are generalized Massey
triple products in H?(Xp, Zp) and H?(Xa, Zp), respectively.
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RYBNIKOV’S ARRANGEMENTS

e For groups of hyperplane arrangements, h. and h3 are torsion
free. Moreover, the holonomy map is injective, and so hz = grs.

e The obstruction to extending g to an isomorphism from G/v4(Ga)
to G/v4(Gp) is computed by generalized Massey triple products.

e Rybnikov used the above theorem (with n = 3) to show that
arrangement groups are not combinatorially determined.

e Starting from a realization A of the MacLane matroid over C, he
constructed a pair of arrangements of 13 planes in C3, A* and
A~, such that

o L(AT) =~ L(A™),andthus G /y3(G") =~ G /v3(G™).
o G"/v(G*) # G~ /n(G7).

e Goal: Make explicit the generalized Massey products (over Zz)
that distinguish these two nilpotent quotients.
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