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Abstract 

 

The subject of this poster is the interplay between the 
topology and the combinatorics of surfaces.  The main problem 
of Topology is to classify spaces up to continuous deformations, 
known as homeomorphisms.  Under certain conditions, 
topological invariants that capture qualitative and quantitative 
properties of spaces lead to the enumeration of homeomorphism 
types.   

Surfaces are some of the simplest, yet most interesting 
topological objects.  The poster focuses on the main topological 
invariants of two-dimensional manifolds—orientability, number of 
boundary components, genus, and Euler characteristic—and 
how these invariants solve the classification problem for compact 
surfaces. 

The poster introduces a Java applet that was written in Fall, 
1998 as a class project for a Topology I course.  It implements 
an algorithm that determines the homeomorphism type of a 
closed surface from a combinatorial description as a polygon 
with edges identified in pairs.  The input for the applet is a string 
of integers, encoding the edge identifications.  The output of the 
applet consists of three topological invariants that completely 
classify the resulting surface. 
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Topology of Surfaces 
 

Topology is the abstraction of certain geometrical ideas, 

such as continuity and closeness.  Roughly speaking, topol-

ogy is the exploration of manifolds, and of the properties that 

remain invariant under continuous, invertible transforma-

tions, known as homeomorphisms.  The basic problem is to 

classify manifolds according to homeomorphism type.  In 

higher dimensions, this is an impossible task, but, in low di-

mensions, it can be done. 

 

Surfaces are some of the simplest, yet most interesting 

topological objects.  They are compact and connected 

spaces with the following property: each point has a 

neighborhood homeomorphic to either  

• the plane R2, or 

• the half-plane H2. 

Points of the first type are called interior points, and those of 

the second type are called boundary points.  The set of all 

boundary points constitutes the boundary of the surface.  It 

consists of one or boundary components, each of which is 

homeomorphic to a circle. 
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If the surface has no boundary, it is called a closed surface.  

For example, the sphere S2 and the torus T2 are closed 

surfaces. The disk has one boundary curve (a circle), and is 

topologically the same as a hemisphere (a sphere with a 

disk removed): 

 

 

 

 

 
 

The surface below is a torus with a disk removed: 
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Closed-up surfaces 

The classification of all surfaces essentially reduces to that 

of closed surfaces.  To see why this is the case, consider an 

arbitrary surface S.  To each boundary component (which, 

recall, is nothing but a circle), attach a disk.  The resulting 

space, call it S^ (the closed-up S) is clearly a closed surface.  

The closing-up operation preserves homeomorphism types, 

i.e.: 

S1 ≈ S2 if and only if S^
1 ≈ S^

2 

Thus, can divide surfaces into classes, where two surfaces 

are in the same class if they have homeomorphic closed-up 

surfaces. 

 

Examples: 

 

                              

Mb         U         D2        =      RP2 
 

U = 
When we attach a 
disk to the boundary 
of the Moebius Strip 
we get the Projective 
Plane, or Crosscap 

             
 Punctured torus U D2  = T2 

U = 
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Connected sums 

Let S1 and S2 be two closed surfaces.  Cut out a disk from 

each one, and attach the two resulting surfaces along their 

boundary.  The result is a closed surface, S1 # S2, called the 

connected sum of the two surfaces.  

 

It can be shown that connected sum does not depend on the 

choice of disks that are cut out from each surface, and so it 

is a well-defined operation.  Moreover, the connected sum 

operation respects homeomorphisms: 

If S1 ≈ S´1 and S2 ≈ S´2 then S1 # S2 ≈ S´1 # S´2 

 
  

If we take a torus, cut 
two disks from it and 
then attach two such 
twice-punctured tori, 
we get the triple torus. 

            
This picture can give an idea to the reader. When we connect 

two tori, we get a double torus. 

# = 



5 

Some Basic Surfaces 
 

This is where all begins and we introduce the most general 

surfaces. 

 

 
 
 
 
 
 
 

 The Sphere S2
 

 

 
 
 
 

The Torus T2
 

 

 
The Klein bottle K2

 
 

 
 

 
Moebius band Mb 

 

 
 

The Double torus 
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Classification of Surfaces 
 
The Main Classification Theorem for surfaces states that 

every closed surface is homeomorphic to a sphere with 

some “handles” or “crosscaps” attached.  That is, every 

single surface is one of the following:  

• S2 

• RP2  # RP2  # … # RP2  

• T2  # T2  # … # T2 

One can ask what happens if we attach a handle and a 

crosscap to a sphere. The answer can be found in the fol-

lowing fact: RP2 # T2 is homeomorphic to RP2 # RP2 # RP2.   

 

 

 

 

                 
  # = # # 
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Invariants of Surfaces 
 

In order to better understand surfaces, we need some 

simple characteristics that capture their essential qualitative 

and qualitative properties.  Such characteristics should re-

main the same for homeomorphic surfaces—that is why they 

are called (topological) invariants.  It turns out that only three 

invariants are needed for the complete classification of sur-

faces. 

 

• Number of boundary components. 
This is an integer c, counting the number of boundary com-

ponents of the surface. 

 

 

 

 

  

Can you tell how 
many boundaries 

these surfaces 
have? 
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• Orientability.  

This is a boolean value ε .  To understand it, let us consider a 

closed curve in the surface, homeomorphic to a circle.  Each 

of its closed neighborhoods in the surface is homeomorphic 

to a cylinder or a Moebius Strip, depending on the parity of 

the number of twists in it.  A surface is called orientable if all 

of these are cylinders (ε=1), and non-orientable if there is at 

least one Moebius Strip (ε=0). 

 
Examples: 
 
 
 
 
 
 
 
 
 
 
 

 The 1st, the 3rd and the 4th surfaces are orientable, while the 2nd 
is non-orientable – it has just one side of the band 

.   

The real projective plane is 
non-orientable surface that 
cannot be realized in R3. It 
is essentially the same as 
the set of all lines, passing 
through a given point in R3. 

The torus (on the left) is an
orientable surface, while
the Klein bottle (on the

right) is not, since it does
not enclose any space, even

though it is closed
 

The torus (on the left) is an
orientable surface, while
the Klein bottle (on the

right) is not, since it does
not enclose any space, even

though it is closed
 

.   
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• Genus.  
This is an integer g that counts the number of handles (if  

ε = 1) or crosscaps (if ε = 0) in a closed surface. 

 

Examples: 
 

Insert picture of crosscap! 

 

 

 

 

We also set the genus of a surface with boundary to be 

equal to the corresponding closed surface.  For example, the 

genus of a disk is the same as that of a sphere, namely 0.  

The same is true for the annulus.  The genus of the Moebius 

band is the same as that of the projective space, which is 1. 

 

. 
The sphere is a closed surface 

of genus 0. 
The torus is a closed 
surface of genus 1.  
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• Euler Characteristic 
 
Besides the above three invariants, there is another general 

invariant of spaces: the Euler characteristic, χ .  For a 

polyhedron, this is given by  

χ  = v – e + f 

where  

• v is the number of vertices 

• e is the number of edges  

• f is the number of faces 

 

For a surface, it turns out that the Euler characteristic can be 

expressed solely in terms of the three invariants above.  

Namely: 

χ  = 2 – 2g – c   if ε  = 1 

χ  = 2 – g – c   if ε = 0 

For example, if we take the sphere—a closed orientable 

surface of genus 0—the Euler characteristic is 2, according 

to the latter formula.  Now, consider an empty cube.  It is 

homeomorphic to the sphere, it has 8 vertices, 12 edges and 

6 sides—so, the Euler characteristic is 2 according to the 

first formula, also. 
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Examples 
 

Surface g ε c χ  

Disk 0 1 0 1 

Sphere 0 1 1 2 

Annulus 0 1 2 0 

Moebius band 1 0 1 0 

Projective space 1 0 0 1 

Torus 1 1 0 0 

Klein bottle 2 0 0 0 

Double torus 2 1 0 –2 

Punctured torus 2 1 1 –1 
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Surfaces as Polygons with Sides Identified 

 

One way to understand surfaces is to view them as polygons 

with sides identified according to some specific, purely com-

binatorial rules. The polygon lies in the real plane and the 

nice thing is that we can represent each closed surface this 

way.  We identify each if its sides to another one and keep 

track of the direction we do this.  That is how we do it: 

 

 
 

 
 For the torus 

For the Klein bottle 
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Here is a more complicated example. We start with the 

octogon and after the identifications we get the double torus. 

 

For surfaces with boundaries, the method works the same 

except that we allow some holes in the polygon: 

 

 

 

 

->

              

 

+ 

= 

Here the circles l1 and l2 are not 
identified with anything. 

+ 
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How does the applet work 
 

• The surface should be given in the format: 1, 2, –1, 2, ... If 

one side is entered more than two times, the applet will 

not work even though it might be a closed surface. 

• The applet will be working only if a correct closed (without 

any boundary) surface is entered. This is valid only if all of 

the sides entered are pairwise identified.  E.g. if you enter 

'1' as a side of the polygon, you must enter once again 

(exactly once) '1' or '–1'. 

• In the result S stands for S2, P stands for RP2 and T 

stands for T2. 

• Checking Show will allow the step-by-step visualization of 

the calculation. 

• The blue labels are the vertices and one can see them 

only if Show is checked. 

• In the final drawing the yellow passages are tori and the 

blue—projective planes. 

 

The algorithm for identifying the surface has seven steps.  
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 Step 1   
 

This is the initial step of the algorithm. The main purpose is 

to present the surface in the way 1, 2, –1, –2 etc.  The differ-

ent numbers correspond to different cuts in the surface and 

the same (or opposite) numbers correspond to identified 

sides of the polygon combining the directions nicely – i.e., 

the arrows must be in the same direction when identifying 

two sides.    

On the picture is shown a double torus that corresponds to 

sequence 1, 2, –1, –2, 3, 4, –3, and –4.  
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Step 2   
 

This step is again called often.  It replaces all pairs of equal 

or opposite sequences with a pair of sides in the 

corresponding direction.    

 

For instance, if we have ...1, 2, –3, 4, –4, 3, –2, –1, ... the re-

sult will be ...1, –1,... 

 

 

Step 3   
 

This step also is called often.  It simplifies the polygon by 

removing all appearances of type X, –X, where X is an 

arbitrary integer.  It is clear that when we remove such a 

pair, the surface will remain the same. 

 

At this step the algorithm can finish.  This will happen if the 

polygon consists of only two sides.  Then, if they are oppo-

site, the surface is a sphere.  
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Step 4   
 

This is the most complicated step in the process.  The task is 

to cut-and-paste the polygon in order that there remains only 

one vertex.  So the first thing to do is to label the vertices in 

some manner, count them, and if there are more than one of 

them, perform the action.    

 

The exact cut-and-pasting is rather complicate to explain in 

all detail but, for instance, it will take the sequence  

1,..., 1, 2, ...., 2, ...  to  1, ..., 3, ...., –1, 3, ....  

This is actually cutting from the beginning of 1 to the end of 

2, labeling the new side 3, and sticking the two parts along 2. 

This will increase by 1 the vertices labeled equally with this 

at the beginning of 1 and decrease these at the end of 1. 

 

Note that the applet would rather label the new side 2 than 

leave it 3.  This saves time to check that the number 3 is free 

(there is no other side labeled 3 or –3) and moreover, keeps 

the numbers of the sides small which means that the picture 

is better looking. 
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Step 5   
 

On this step the twisted pairs are collected together.  Once 

they are together they form a projective plane.  This is done 

again by cut-and-pasting.  A configuration looking like  

1, ...(X)..., 1, ...(Y)... 

is replaced by  

2, 2, ...(Y)..., ...(–X)... 

where X and Y are sequences.  The actual cut is from the 

end of 1 to the end of the other 1.  The program will again 

ignore the numbers and will label the new side 1.  

 

 

Step 6   
 

This step is rather similar to the previous one, with the only 

difference that it collects together opposing pairs. The steps 

till now guarantee that this can be done and the collected 

sides will form a torus.  This time we look for  

1, ...(X)..., 2, ...(Y)..., –1, ...(Z)..., –2, ...(T)... 

and replace it by  

...(Z)..., ...(Y)..., 1, 2, –1, –2, ...(X)..., ...(T).... 
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Step 7   
 

Here everything is put together. The only essential transfor-

mation is replacing each torus by two projective planes if 

needed.    

 

Some of the labels of the sides are changed for better un-

derstanding of the final result. 

 

 

 

 

 

 

 

 

 

 

 

 
The applet can be found at 
http://mystic.math.neu.edu/inikolov/Surfaces/Surfaces.html 


