Sigma-invariants, cohomology jump loci, and tropicalization

Alex Suciu

Northeastern University

Hyperplane Arrangements and Singularities Hyper-JARCS

A memorial conference for Ştefan Papadima

University of Tokyo, Japan December 2, 2019

To the memory of Ştefan Papadima, 1953–2018

ALEX SUCIU (NORTHEASTERN) Σ-INVARIANTS, JUMP LOCI, TROPICALIZATION

TROPICAL GEOMETRY

- Tropical varieties
- Exponential tangent cones
- 2 FINITENESS PROPERTIES OF ABELIAN COVERS
 - The Bieri–Neumann–Strebel–Renz invariants
 - The Dwyer–Fried invariants
- 3 CHARACTERISTIC VARIETIES AND FINITENESS PROPERTIES
 - Characteristic varieties
 - Resonance varieties
 - Novikov–Betti numbers
 - Bounding the Σ-invariants
 - Bounding the Ω-invariants
 - Comparing the Σ- and Ω-bounds
 - A tropical bound for the Σ-invariants

4 APPLICATIONS

- One-relator groups
- Kähler manifolds
- Hyperplane arrangements

Tropical varieties

- Let $\mathbb{K} = \mathbb{C}\{\{t\}\}\$ be the field of Puiseux series over \mathbb{C} .
- A non-zero element of \mathbb{K} has the form $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, where $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field K admits a discrete valuation
 v: K* → Q, given by v(c(t)) = a₁.
- Let $v : (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the *n*-fold product of the valuation.
- The tropicalization of a variety W ⊂ (K*)ⁿ, denoted Trop(W), is the closure of the set v(W) in Rⁿ.
- This is a rational polyhedral complex in ℝⁿ. For instance, if *W* is a curve, then Trop(*W*) is a graph with rational edge directions.

- If *T* be an algebraic subtorus of (K^{*})ⁿ, then Trop(*T*) is the linear subspace Hom(K^{*}, *T*) ⊗ R ⊂ Hom(K^{*}, (K^{*})ⁿ) ⊗ R = Rⁿ.
- Moreover, if $z \in (\mathbb{K}^*)^n$, then $\operatorname{Trop}(z \cdot T) = \operatorname{Trop}(T) + v(z)$.
- For a variety W ⊂ (C*)ⁿ, we may define its tropicalization by setting Trop(W) = Trop(W ×_C K).
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^n .
- If W = V(f) is a hypersurface, defined by a Laurent polynomial $f \in \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$, then $\operatorname{Trop}(W)$ is the positive-codimensional skeleton of the inner normal fan to the Newton polytope of f.

Exponential tangent cones

• Given a Zariski closed subset $W \subset (\mathbb{C}^*)^n$, let

 $\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \},$ where exp: $\mathbb{C}^n \to (\mathbb{C}^*)^n$.

- τ₁(W) depends only on the analytic germ of W at 1; it is
 non-empty iff 1 ∈ W.
- If $T \cong (\mathbb{C}^*)^r$ is an algebraic subtorus, then $\tau_1(T) = T_1(T) \cong \mathbb{C}^r$.

LEMMA (DIMCA-PAPADIMA-S. 2009; S. 2014)

 $\tau_1(W)$ is a finite union of rationally defined linear subspaces.

• Set $\tau_1^{\Bbbk}(W) = \tau_1(W) \cap \Bbbk^n$, for a subfield $\Bbbk \subset \mathbb{C}$.

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

The Bieri–Neumann–Strebel–Renz invariants

- Let G be a finitely generated group, n = b₁(G) > 0. Let S(G) be the unit sphere in Hom(G, ℝ) = ℝⁿ.
- (Bieri–Neumann–Strebel 1987)

 $\Sigma^{1}(G) = \{\chi \in S(G) \mid C_{\chi}(G) \text{ is connected}\},\$

where $C_{\chi}(G)$ is the induced subgraph of Cay(G) on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$

(Bieri–Renz 1988)

 $\Sigma^k(G,\mathbb{Z}) = \{\chi \in S(G) \mid \text{the monoid } G_{\chi} \text{ is of type } FP_k\},\$

i.e., there is a projective $\mathbb{Z}G_{\chi}$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq k$. In particular, $\Sigma^1(G, \mathbb{Z}) = \Sigma^1(G)$.

The BNSR-invariants of form a descending chain of open subsets,

 $S(G) \supseteq \Sigma^1(G,\mathbb{Z}) \supseteq \Sigma^2(G,\mathbb{Z}) \supseteq \cdots$.

• The Σ -invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G/N is free abelian:

N is of type $FP_k \iff S(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$

where $S(G, N) = \{\chi \in S(G) \mid \chi(N) = 0\}.$

- In particular: $\ker(\chi: G \twoheadrightarrow \mathbb{Z})$ is f.g. $\iff \{\pm\chi\} \subseteq \Sigma^1(G)$.
- More generally, let X be a connected CW-complex with finite k-skeleton, for some k ≥ 1.
- Let $G = \pi_1(X, x_0)$. For each $\chi \in S(X) := S(G)$, let

 $\widehat{\mathbb{Z}G}_{\chi} = \left\{ \lambda \in \mathbb{Z}^{\boldsymbol{G}} \mid \{ \boldsymbol{g} \in \operatorname{supp} \lambda \mid \chi(\boldsymbol{g}) < \boldsymbol{c} \} \text{ is finite, } \forall \boldsymbol{c} \in \mathbb{R} \right\}$

be the Novikov–Sikorav completion of $\mathbb{Z}G$.

• (Farber–Geoghegan,–Schütz 2010)

 $\Sigma^q(X,\mathbb{Z}) = \{\chi \in \mathcal{S}(X) \mid H_i(X,\widehat{\mathbb{Z}G}_{-\chi}) = 0, \forall i \leq q\}.$

• (Bieri 2007) If G is FP_k , then $\Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

The Dwyer–Fried invariants

- The sphere S(G) parametrizes all regular, free abelian covers of X. The Σ-invariants of X keep track of the geometric finiteness properties of these covers.
- Now fix the rank *r* of the deck-transformation group. Regular \mathbb{Z}^r -covers of *X* are classified by epimorphisms $\nu : G \twoheadrightarrow \mathbb{Z}^r$.
- Such covers are parameterized by the Grassmannian $Gr_r(\mathbb{Q}^n)$, where $n = b_1(X)$, via the correspondence

 $\{ \text{regular } \mathbb{Z}^r \text{-covers of } X \} \longleftrightarrow \{ r \text{-planes in } H^1(X, \mathbb{Q}) \}$ $X^{\nu} \to X \quad \longleftrightarrow \quad P_{\nu} := \text{im}(\nu^* \colon \mathbb{Q}^r \to H^1(X, \mathbb{Q}))$

The Dwyer–Fried invariants of X are the subsets
 Ωⁱ_r(X) = {P_ν ∈ Gr_r(ℚⁿ) | b_j(X^ν) < ∞ for j ≤ i}.

• For each r > 0, we get a descending filtration,

 $\operatorname{Gr}_r(\mathbb{Q}^n) = \Omega^0_r(X) \supseteq \Omega^1_r(X) \supseteq \Omega^2_r(X) \supseteq \cdots$

Characteristic varieties

- Let $Hom(G, \mathbb{C}^*) = H^1(X, \mathbb{C}^*)$ be the character group of $G = \pi_1(X)$.
- The characteristic varieties of X are the sets

 $\mathcal{V}^{i}(X) = \{ \rho \in \operatorname{Hom}(G, \mathbb{C}^{*}) \mid H_{i}(X, \mathbb{C}_{\rho}) \neq 0 \}.$

- If X has finite k-skeleton, then $\mathcal{V}^i(X)$ is Zariski closed for all $i \leq k$.
- Let $X^{ab} \to X$ be the maximal abelian cover. View $H_*(X^{ab}, \mathbb{C})$ as a module over $\mathbb{C}[G_{ab}]$. Then

$$\bigcup_{i\leq q} \mathcal{V}^i(X) = \bigcup_{i\leq q} V(\operatorname{ann}\left(H_i(X^{\operatorname{ab}},\mathbb{C})\right)).$$

• Let $\mathcal{W}^i(X) = \mathcal{V}^i(X) \cap \text{Hom}(G, \mathbb{C}^*)^0$. Then

 $\mathcal{W}^1(X) = \{1\} \cup V(\Delta_G),$

where $\Delta_G = \operatorname{ord}(H_1(X^{\alpha}, \mathbb{C}))$ is the Alexander polynomial of *G*. (Here $X^{\alpha} \to X$ is the maximal torsion-free abelian cover.)

Resonance varieties

• Let $A = H^*(X, \mathbb{C})$. For each $a \in A^1$, we have that $a^2 = 0$. Thus, there is a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

- The resonance varieties of X are the homogeneous algebraic sets $\mathcal{R}^{i}(X) = \{a \in A^{1} \mid H^{i}(A, a) \neq 0\}.$
- Identify $A^1 = H^1(X, \mathbb{C})$ with \mathbb{C}^n , where $n = b_1(X)$. The map $\exp \colon H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$ has image $\operatorname{Hom}(G, \mathbb{C}^*)^0 = (\mathbb{C}^*)^n$.
- (Dimca–Papadima–S. 2009) $\tau_1(\mathcal{W}^i(X)) \subseteq \mathcal{R}^i(X).$
- (DPS-2009, DP-2014) If X is a q-formal space, then, for all $i \leq q$, $\tau_1(\mathcal{W}^i(X)) = \mathcal{R}^i(X).$

Novikov–Betti numbers

- Let $\chi \in S(X)$, and set $\Gamma = im(\chi)$; then $\Gamma \cong \mathbb{Z}^r$, for some $r \ge 1$.
- A Laurent polynomial p = ∑_γ n_γγ ∈ ℤΓ is χ-monic if the greatest element in χ(supp(p)) is 0, and n₀ = 1.
- Let *R*Γ_χ be the Novikov ring, i.e., the localization of ZΓ at the multiplicative subset of all χ-monic polynomials (*R*Γ_χ is a PID).
- Let $b_i(X, \chi) = \operatorname{rank}_{\mathcal{R}\Gamma_{\chi}} H_i(X, \mathcal{R}\Gamma_{\chi})$ be the Novikov–Betti numbers.

Bounding the Σ -invariants

THEOREM (PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite k-skeleton, and let $\chi: \pi_1(X) \to \mathbb{R}$ be a non-zero character. Then, for all $q \leq k$,

• $-\chi \in \Sigma^q(X,\mathbb{Z}) \implies b_i(X,\chi) = 0, \forall i \leq q.$

•
$$\chi \notin \tau_1^{\mathbb{R}}(\bigcup_{i \leq q} \mathcal{W}^i(X))) \iff b_i(X, \chi) = 0, \ \forall i \leq q.$$

COROLLARY

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}(X)\setminus \mathcal{S}igg(au_1^{\mathbb{R}}\Big(igcup_{i\leq q}\mathcal{W}^i(X)\Big)igg)$$

Thus, $\Sigma^q(X,\mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.

Bounding the Ω-invariants

THEOREM (DWYER-FRIED 1987, PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite k-skeleton. For an epimorphism $\nu : \pi_1(X) \twoheadrightarrow \mathbb{Z}^r$, the following are equivalent:

- The vector space $\bigoplus_{i=0}^{k} H_i(X^{\nu}, \mathbb{C})$ is finite-dimensional.

THEOREM (S. 2014)

Let $\exp: H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$. For all $q \leq k$ and all $r \geq 1$,

$$\Omega^q_r(X) = \left\{ P \in \mathrm{Gr}_r(H^1(X,\mathbb{Q})) \mid \dim\left(\exp(P \otimes \mathbb{C}) \cap \left(\bigcup_{i \leq q} \mathcal{W}^i(X)\right)\right) = 0 \right\}.$$

• Let V be a homogeneous variety in \mathbb{k}^n . Then the set

$$\sigma_r(V) = \left\{ P \in \operatorname{Gr}_r(\Bbbk^n) \mid P \cap V \neq \{0\} \right\}$$

is Zariski closed.

If L ⊂ kⁿ is a linear subspace, σ_r(L) is the special Schubert variety defined by L. If codim L = d, then codim σ_r(L) = d − r + 1.

THEOREM (S. 2014)

$$\Omega^{q}_{r}(X) \subseteq \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \setminus \sigma_{r}\left(\tau^{\mathbb{Q}}_{1}\left(\bigcup_{i \leq q} W^{i}(X)\right)\right)$$

- Thus, each set $\Omega_r^q(X)$ is contained in the complement of a finite union of special Schubert varieties.
- If r = 1, the inclusion always holds as an equality. In general, though, the inclusion is strict.

Comparing the Σ - and Ω -bounds

THEOREM (S. 2012)

Suppose that

$$\Sigma^q(X,\mathbb{Z}) = S(X) \setminus S\left(au_1^{\mathbb{R}}\left(\bigcup_{i \leq q} W^i(X)\right)\right).$$

Then

$$\Omega^q_r(X) = \mathsf{Gr}_r(H^1(X,\mathbb{Q})) \setminus \sigma_r \bigg(au_1^{\mathbb{Q}} \Big(igcup_{i \leq q} \mathcal{W}^i(X) \Big) \bigg), ext{ for all } r \geq 1.$$

In general, the above implication cannot be reversed.

EXAMPLE

- Let $G = \langle x_1, x_2 \mid x_1 x_2 = x_2^2 x_1 \rangle$.
- Then $\mathcal{W}^1(G) = \{1,2\} \subset \mathsf{Hom}(G,\mathbb{C}^*) = \mathbb{C}^*.$
- Thus, $\Omega_1^1(G) = \{ pt \}$, and so $\Omega_1^1(G) = \sigma_1(\tau_1^{\mathbb{Q}}(\mathcal{W}^1(G)))^{c}$.
- But $\Sigma^1(G) = \{-1\}$, whereas $S(\tau_1^{\mathbb{Q}}(\mathcal{W}^1(G)))^{c} = \{\pm 1\}$.

A tropical bound for the Σ -invariants

- Let *X* be a connected CW-complex w/ finite *k*-skeleton.
- For each algebraic variety W ⊂ (C*)ⁿ there is an associated polyhedral fan, Trop(W) ⊂ Rⁿ.
- Thus, to each algebraic variety V ⊂ H¹(X, C*) we may associate a polyhedral fan, Trop(V) ⊂ Rⁿ, where n = b₁(X).

THEOREM

$$\Sigma^q(X,\mathbb{Z})\subseteq \mathcal{S}(X)\setminus \mathcal{S}\left(\operatorname{Trop}\Big(\bigcup_{i\leq q}\mathcal{V}^i(X)\Big)\Big),\quad orall q\leq k.$$

COROLLARY

Let G be a finitely generated group. Then:

 $\Sigma^1(G) \subseteq S(G) \setminus S(\operatorname{Trop}(V(\Delta_G))).$

ALEX SUCIU (NORTHEASTERN) Σ-INVARIANTS, JUMP LOCI, TROPICALIZATION

Two-generator, one-relator groups

• If $G = \langle x, y | r \rangle$, there is a very concrete algorithm for computing $\Sigma^{1}(G)$ (K. Brown 1987, Friedl–Tillman 2019).

EXAMPLE

- On the other hand, $\Delta_G = 1 + b a$.
- Thus, $\Sigma^1(G) = S(\operatorname{Trop}(V(\Delta_G)))^{c}$, though $\tau_1 \mathcal{V}^1(G) = \{0\}$.

EXAMPLE

- Let $G = \langle a, b \mid a^2 b a^{-1} b a^2 b a^{-1} b^{-3} a^{-1} b a^2 b a^{-1} b a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-2} b^{-1} a b^3 a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-1} b \rangle$.
- Then $\Delta_G = (a-1)(ab-1)$, and so $S(\text{Trop}(V(\Delta_G)))$ consists of two pairs of points.
- Yet $\Sigma^{1}(G)$ consists of two open arcs joining those points.

ALEX SUCIU (NORTHEASTERN)

 Σ -INVARIANTS, JUMP LOCI, TROPICALIZATION

Kähler manifolds

THEOREM (DELZANT 2010)

Let M be a compact Kähler manifold. Then

$$\Sigma^1(M,\mathbb{Z}) = \mathcal{S}(M) \setminus \bigcup_{\alpha} \mathcal{S}(f^*_{\alpha}(H^1(\mathcal{C}_{\alpha},\mathbb{R}))),$$

where the union is taken over those orbifold fibrations $f_{\alpha} \colon M \to C_{\alpha}$ with the property that either $\chi(C_{\alpha}) < 0$, or $\chi(C_{\alpha}) = 0$ and f_{α} has some multiple fiber.

COROLLARY

$$\Sigma^1(M,\mathbb{Z}) = S(\operatorname{Trop}(\mathcal{V}^1(M))^{\complement}.$$

Hyperplane arrangements

- Let A = {H₁,..., H_n} be an (essential, central) arrangement of hyperplanes in C^d.
- Its complement, *M*(*A*) ⊂ (ℂ*)^d, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, *d*-dimensional CW-complex.
- $\operatorname{Trop}(M(\mathcal{A}))$ is the 'Bergman fan' of the underlying matroid $L(\mathcal{A})$.
- $H^*(M(\mathcal{A}),\mathbb{Z})$ is the Orlik–Solomon algebra of $L(\mathcal{A})$.
- Let $\mathcal{V}^{i}(\mathcal{A}) := \mathcal{V}^{i}(\mathcal{M}(\mathcal{A})) \subset (\mathbb{C}^{*})^{n}$ and $\mathcal{R}^{i}(\mathcal{A}) := \mathcal{R}^{i}(\mathcal{M}(\mathcal{A})) \subset \mathbb{C}^{n}$.
- $M(\mathcal{A})$ is formal. Thus, $\tau_1(\mathcal{V}^i(\mathcal{A})) = \mathcal{R}^i(\mathcal{A})$ for all *i*.

THEOREM (KOHNO–PAJITNOV 2015)

Let $S^{-}(\mathcal{A}) := S^{n-1} \cap (\mathbb{R}_{<0})^n$. Then $S^{-}(\mathcal{A}) \subseteq \Sigma^q(\mathcal{A})$, for all q < d. In particular, $S^{-}(\mathcal{A}) \subseteq \Sigma^1(\mathcal{A})$.

THEOREM (DENHAM–YUZVINSKY–S. 2016/17)

 $M(\mathcal{A})$ is an "abelian duality space," and hence its characteristic varieties propagate: $\mathcal{V}^1(\mathcal{A}) \subseteq \mathcal{V}^2(\mathcal{A}) \subseteq \cdots \subseteq \mathcal{V}^d(\mathcal{A})$.

COROLLARY

$$\Sigma^q(M(\mathcal{A}),\mathbb{Z})\subseteq \mathcal{S}^{n-1}\setminus \mathcal{S}ig(\mathrm{Trop}(\mathcal{V}^q(\mathcal{A}))ig),\quad orall q\leq d.$$

QUESTION (S., AT MFO MINIWORKSHOP 2007)

Given an arrangement \mathcal{A} , do we have

$$\Sigma^{1}(M(\mathcal{A})) = S(\mathcal{R}^{1}(\mathcal{A},\mathbb{R}))^{c}$$
?

Alex Suciu (Northeastern)

Σ-INVARIANTS, JUMP LOCI, TROPICALIZATION

 (\star)

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^n , defined by $\prod_{1 \le i < j \le n} (z_i z_j) = 0$. Then $M(\mathcal{A}) = \text{Conf}(n, \mathbb{C}) \simeq \mathcal{K}(P_n, 1)$.
- Answer to (\star) is yes: $\Sigma^1(\mathcal{M}(\mathcal{A}))$ is the complement of the union of $\binom{n}{3} + \binom{n}{4}$ planes in $\mathbb{C}^{\binom{n}{2}}$, intersected with the unit sphere.

EXAMPLE

- Let A be the "deleted B₃" arrangement, defined by $z_1 z_2 (z_1^2 z_2^2) (z_1^2 z_2^2) (z_2^2 z_3^2) = 0.$
- (S. 2002) $\mathcal{V}^1(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot T$.
- Thus, Trop(ρ · T) = Trop(T) is a line in C⁸ which is *not* contained in R¹(A, ℝ). Hence, the answer to (⋆) is no.

QUESTION

$$\Sigma^1(M(\mathcal{A})) = S(\operatorname{Trop}(\mathcal{V}^1(\mathcal{A}))^{\complement}?$$

 $(\star\star)$

ALEX SUCIU (NORTHEASTERN) Σ-INVARIANTS, JUMP LOCI, TROPICALIZATION TOKYO, 12/2/2019 22/22