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Tropical varieties

Let K = C{{t}} be the field of Puiseux series over C.

A non-zero element of K has the form c(t) = c1ta1 + c2ta2 + · · · ,
where ci ∈ C∗ and a1 < a2 < · · · are rational numbers with a
common denominator.

The (algebraically closed) field K admits a discrete valuation
v : K∗ → Q, given by v(c(t)) = a1.

Let v : (K∗)n → Qn ⊂ Rn be the n-fold product of the valuation.

The tropicalization of a variety W ⊂ (K∗)n, denoted Trop(W ), is
the closure of the set v(W ) in Rn.

This is a rational polyhedral complex in Rn. For instance, if W is a
curve, then Trop(W ) is a graph with rational edge directions.
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If T be an algebraic subtorus of (K∗)n, then Trop(T ) is the linear
subspace Hom(K∗,T )⊗ R ⊂ Hom(K∗, (K∗)n)⊗ R = Rn.

Moreover, if z ∈ (K∗)n, then Trop(z · T ) = Trop(T ) + v(z).

For a variety W ⊂ (C∗)n, we may define its tropicalization by
setting Trop(W ) = Trop(W ×C K).

In this case, the tropicalization is a polyhedral fan in Rn.

If W = V (f ) is a hypersurface, defined by a Laurent polynomial
f ∈ C[t±1

1 , . . . , t±1
n ], then Trop(W ) is the positive-codimensional

skeleton of the inner normal fan to the Newton polytope of f .
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Exponential tangent cones

Given a Zariski closed subset W ⊂ (C∗)n, let

τ1(W ) = {z ∈ Cn | exp(λz) ∈W , ∀λ ∈ C},

where exp: Cn → (C∗)n.

τ1(W ) depends only on the analytic germ of W at 1; it is
non-empty iff 1 ∈W .

If T ∼= (C∗)r is an algebraic subtorus, then τ1(T ) = T1(T ) ∼= Cr .

LEMMA (DIMCA–PAPADIMA–S. 2009; S. 2014)

τ1(W ) is a finite union of rationally defined linear subspaces.

Set τk1 (W ) = τ1(W ) ∩ kn, for a subfield k ⊂ C.

LEMMA

Let W ⊂ (C∗)n be an algebraic variety. Then τR1 (W ) ⊆ Trop(W ).
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The Bieri–Neumann–Strebel–Renz invariants

Let G be a finitely generated group, n = b1(G) > 0. Let S(G) be
the unit sphere in Hom(G,R) = Rn.

(Bieri–Neumann–Strebel 1987)

Σ1(G) = {χ ∈ S(G) | Cχ(G) is connected},
where Cχ(G) is the induced subgraph of Cay(G) on vertex set
Gχ = {g ∈ G | χ(g) ≥ 0}.

(Bieri–Renz 1988)

Σk (G,Z) = {χ ∈ S(G) | the monoid Gχ is of type FPk},
i.e., there is a projective ZGχ-resolution P• → Z, with Pi finitely
generated for all i ≤ k . In particular, Σ1(G,Z) = Σ1(G).

The BNSR-invariants of form a descending chain of open subsets,

S(G) ⊇ Σ1(G,Z) ⊇ Σ2(G,Z) ⊇ · · · .
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The Σ-invariants control the finiteness properties of normal
subgroups N /G for which G/N is free abelian:

N is of type FPk ⇐⇒ S(G,N) ⊆ Σk (G,Z)

where S(G,N) = {χ ∈ S(G) | χ(N) = 0}.

In particular: ker(χ : G � Z) is f.g.⇐⇒ {±χ} ⊆ Σ1(G).

More generally, let X be a connected CW-complex with finite
k -skeleton, for some k ≥ 1.

Let G = π1(X , x0). For each χ ∈ S(X ) := S(G), let

ẐGχ =
{
λ ∈ ZG | {g ∈ suppλ | χ(g) < c} is finite, ∀c ∈ R

}
be the Novikov–Sikorav completion of ZG.

(Farber–Geoghegan,–Schütz 2010)

Σq(X ,Z) = {χ ∈ S(X ) | Hi(X , ẐG−χ) = 0, ∀ i ≤ q}.

(Bieri 2007) If G is FPk , then Σq(G,Z) = Σq(K (G,1),Z), ∀q ≤ k .
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The Dwyer–Fried invariants
The sphere S(G) parametrizes all regular, free abelian covers of
X . The Σ-invariants of X keep track of the geometric finiteness
properties of these covers.

Now fix the rank r of the deck-transformation group. Regular
Zr -covers of X are classified by epimorphisms ν : G � Zr .

Such covers are parameterized by the Grassmannian Grr (Qn),
where n = b1(X ), via the correspondence{

regular Zr -covers of X
}
←→

{
r -planes in H1(X ,Q)

}
X ν → X ←→ Pν := im(ν∗ : Qr → H1(X ,Q))

The Dwyer–Fried invariants of X are the subsets

Ωi
r (X ) =

{
Pν ∈ Grr (Qn)

∣∣ bj(X ν) <∞ for j ≤ i
}
.

For each r > 0, we get a descending filtration,

Grr (Qn) = Ω0
r (X ) ⊇ Ω1

r (X ) ⊇ Ω2
r (X ) ⊇ · · · .
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Characteristic varieties

Let Hom(G,C∗) = H1(X ,C∗) be the character group of G = π1(X ).

The characteristic varieties of X are the sets

V i(X ) = {ρ ∈ Hom(G,C∗) | Hi(X ,Cρ) 6= 0}.

If X has finite k -skeleton, then V i(X ) is Zariski closed for all i ≤ k .

Let X ab → X be the maximal abelian cover. View H∗(X ab,C) as a
module over C[Gab]. Then⋃

i≤q

V i(X ) =
⋃
i≤q

V
(
ann

(
Hi
(
X ab,C

)))
.

LetW i(X ) = V i(X ) ∩ Hom(G,C∗)0. Then

W1(X ) = {1} ∪ V (∆G),

where ∆G = ord
(
H1(Xα,C)

)
is the Alexander polynomial of G.

(Here Xα → X is the maximal torsion-free abelian cover.)
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Resonance varieties
Let A = H∗(X ,C). For each a ∈ A1, we have that a2 = 0. Thus,
there is a cochain complex

(A, ·a) : A0 a // A1 a // A2 // · · · .

The resonance varieties of X are the homogeneous algebraic sets

Ri(X ) = {a ∈ A1 | H i(A,a) 6= 0}.

Identify A1 = H1(X ,C) with Cn, where n = b1(X ). The map
exp: H1(X ,C)→ H1(X ,C∗) has image Hom(G,C∗)0 = (C∗)n.

(Dimca–Papadima–S. 2009)

τ1(W i(X )) ⊆ Ri(X ).

(DPS-2009, DP-2014) If X is a q-formal space, then, for all i ≤ q,

τ1(W i(X )) = Ri(X ).
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Novikov–Betti numbers

Let χ ∈ S(X ), and set Γ = im(χ); then Γ ∼= Zr , for some r ≥ 1.

A Laurent polynomial p =
∑

γ nγγ ∈ ZΓ is χ-monic if the greatest
element in χ(supp(p)) is 0, and n0 = 1.

Let RΓχ be the Novikov ring, i.e., the localization of ZΓ at the
multiplicative subset of all χ-monic polynomials (RΓχ is a PID).

Let bi(X , χ) = rankRΓχ Hi(X ,RΓχ) be the Novikov–Betti numbers.
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Bounding the Σ-invariants

THEOREM (PAPADIMA–S. 2010)

Let X be a connected CW-complex with finite k-skeleton, and let
χ : π1(X )→ R be a non-zero character. Then, for all q ≤ k,
−χ ∈ Σq(X ,Z) =⇒ bi(X , χ) = 0, ∀i ≤ q.

χ /∈ τR1 (
⋃

i≤qW i(X )))⇐⇒ bi(X , χ) = 0, ∀i ≤ q.

COROLLARY

Σq(X ,Z) ⊆ S(X ) \ S
(
τR1

(⋃
i≤q

W i(X )
))

Thus, Σq(X ,Z) is contained in the complement of a finite union of
rationally defined great subspheres.
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Bounding the Ω-invariants

THEOREM (DWYER–FRIED 1987, PAPADIMA–S. 2010)

Let X be a connected CW-complex with finite k-skeleton. For an
epimorphism ν : π1(X ) � Zr , the following are equivalent:

The vector space
⊕k

i=0 Hi(X ν ,C) is finite-dimensional.
The algebraic torus
Tν := im

(
ν∗ : Hom(Zr ,C∗) ↪→ Hom(π1(X ),C∗)

)
intersects the

variety
⋃

i≤k V i(X ) in only finitely many points.

THEOREM (S. 2014)

Let exp: H1(X ,C)→ H1(X ,C∗). For all q ≤ k and all r ≥ 1,

Ωq
r (X ) =

{
P ∈ Grr (H1(X ,Q))

∣∣ dim
(

exp(P ⊗C)∩
(⋃

i≤q

W i(X )
))

= 0
}
.
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Let V be a homogeneous variety in kn. Then the set

σr (V ) =
{

P ∈ Grr (kn)
∣∣ P ∩ V 6= {0}

}
is Zariski closed.

If L ⊂ kn is a linear subspace, σr (L) is the special Schubert variety
defined by L. If codim L = d , then codimσr (L) = d − r + 1.

THEOREM (S. 2014)

Ωq
r (X ) ⊆ Grr (H1(X ,Q)) \ σr

(
τQ1

(⋃
i≤q

W i(X )
))

Thus, each set Ωq
r (X ) is contained in the complement of a finite

union of special Schubert varieties.

If r = 1, the inclusion always holds as an equality. In general,
though, the inclusion is strict.
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Comparing the Σ- and Ω-bounds

THEOREM (S. 2012)

Suppose that

Σq(X ,Z) = S(X ) \ S
(
τR1

(⋃
i≤q
W i(X )

))
.

Then

Ωq
r (X ) = Grr (H1(X ,Q)) \ σr

(
τQ1

(⋃
i≤q
W i(X )

))
, for all r ≥ 1.

In general, the above implication cannot be reversed.

EXAMPLE

Let G = 〈x1, x2 | x1x2 = x2
2 x1〉.

ThenW1(G) = {1,2} ⊂ Hom(G,C∗) = C∗.
Thus, Ω1

1(G) = {pt}, and so Ω1
1(G) = σ1(τQ1 (W1(G))){.

But Σ1(G) = {−1}, whereas S(τQ1 (W1(G))){ = {±1}.
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A tropical bound for the Σ-invariants

Let X be a connected CW-complex w/ finite k -skeleton.

For each algebraic variety W ⊂ (C∗)n there is an associated
polyhedral fan, Trop(W ) ⊂ Rn.

Thus, to each algebraic variety V ⊂ H1(X ,C∗) we may associate
a polyhedral fan, Trop(V ) ⊂ Rn, where n = b1(X ).

THEOREM

Σq(X ,Z) ⊆ S(X ) \ S
(

Trop
(⋃

i≤q

V i(X )
))
, ∀q ≤ k .

COROLLARY

Let G be a finitely generated group. Then:

Σ1(G) ⊆ S(G) \ S(Trop(V (∆G))).
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Two-generator, one-relator groups
If G = 〈x , y | r〉, there is a very concrete algorithm for computing
Σ1(G) (K. Brown 1987, Friedl–Tillman 2019).

EXAMPLE

Let G = 〈a,b | a−1b2ab−1ab−1a−1〉.

Then Σ1(G) = S1 \ {( 1√
2
, 1√

2
), (0,−1), (−1,0)}.

On the other hand, ∆G = 1 + b − a.

Thus, Σ1(G) = S(Trop(V (∆G))){, though τ1V1(G) = {0}.

EXAMPLE

Let G = 〈a,b | a2ba−1ba2ba−1b−3a−1ba2ba−1ba
b−1a−2b−1ab−1a−2b−1ab3ab−1a−2b−1ab−1a−1b〉.

Then ∆G = (a− 1)(ab − 1), and so S(Trop(V (∆G)))
consists of two pairs of points.

Yet Σ1(G) consists of two open arcs joining those points.
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Kähler manifolds

THEOREM (DELZANT 2010)

Let M be a compact Kähler manifold. Then

Σ1(M,Z) = S(M) \
⋃

α
S(f ∗α(H1(Cα,R))),

where the union is taken over those orbifold fibrations fα : M → Cα with
the property that either χ(Cα) < 0, or χ(Cα) = 0 and fα has some
multiple fiber.

COROLLARY

Σ1(M,Z) = S(Trop(V1(M)){.

ALEX SUCIU (NORTHEASTERN) Σ-INVARIANTS, JUMP LOCI, TROPICALIZATION TOKYO, 12/2/2019 19 / 22



Hyperplane arrangements

Let A = {H1, . . . ,Hn} be an (essential, central) arrangement of
hyperplanes in Cd .

Its complement, M(A) ⊂ (C∗)d , is a smooth, quasi-projective
Stein manifold; thus, it has the homotopy type of a finite,
d-dimensional CW-complex.

Trop(M(A)) is the ‘Bergman fan’ of the underlying matroid L(A).

H∗(M(A),Z) is the Orlik–Solomon algebra of L(A).

Let V i(A) := V i(M(A)) ⊂ (C∗)n and Ri(A) := Ri(M(A)) ⊂ Cn.

M(A) is formal. Thus, τ1(V i(A)) = Ri(A) for all i .
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THEOREM (KOHNO–PAJITNOV 2015)

Let S−(A) := Sn−1 ∩ (R<0)n. Then S−(A) ⊆ Σq(A), for all q < d.
In particular, S−(A) ⊆ Σ1(A).

THEOREM (DENHAM–YUZVINSKY–S. 2016/17)

M(A) is an “abelian duality space," and hence its characteristic
varieties propagate: V1(A) ⊆ V2(A) ⊆ · · · ⊆ Vd (A).

COROLLARY

Σq(M(A),Z) ⊆ Sn−1 \ S
(
Trop(Vq(A))

)
, ∀q ≤ d .

QUESTION (S., AT MFO MINIWORKSHOP 2007)

Given an arrangement A, do we have

Σ1(M(A)) = S(R1(A,R)){? (?)
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EXAMPLE (KOBAN–MCCAMMOND–MEIER 2013)

Let A be the braid arrangement in Cn, defined by∏
1≤i<j≤n(zi − zj) = 0. Then M(A) = Conf(n,C) ' K (Pn,1).

Answer to (?) is yes: Σ1(M(A)) is the complement of the union of(n
3

)
+
(n

4

)
planes in C(n

2), intersected with the unit sphere.

EXAMPLE

Let A be the “deleted B3" arrangement, defined by
z1z2(z2

1 − z2
2 )(z2

1 − z2
2 )(z2

2 − z2
3 ) = 0.

(S. 2002) V1(A) contains a (1-dimensional) translated torus ρ · T .

Thus, Trop(ρ · T ) = Trop(T ) is a line in C8 which is not contained
in R1(A,R). Hence, the answer to (?) is no.

QUESTION

Σ1(M(A)) = S(Trop(V1(A)){? (??)
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