Sigma-invariants, cohomology jump loci, and tropicalization

Alex Suciu

Northeastern University

Hyperplane Arrangements and Singularities Hyper-JARCS

A memorial conference for Ştefan Papadima
University of Tokyo, Japan
December 2, 2019

To the memory of Ştefan Papadima, 1953-2018

- Tropical varieties
- Exponential tangent cones
(2) Finiteness properties of abelian covers
- The Bieri-Neumann-Strebel-Renz invariants
- The Dwyer-Fried invariants
(3) CHARACTERISTIC VARIETIES AND FINITENESS PROPERTIES
- Characteristic varieties
- Resonance varieties
- Novikov-Betti numbers
- Bounding the Σ-invariants
- Bounding the Ω-invariants
- Comparing the Σ - and Ω-bounds
- A tropical bound for the Σ-invariants

4) Applications

- One-relator groups
- Kähler manifolds
- Hyperplane arrangements

Tropical varieties

- Let $\mathbb{K}=\mathbb{C}\{\{t\}\}$ be the field of Puiseux series over \mathbb{C}.
- A non-zero element of \mathbb{K} has the form $c(t)=c_{1} t^{a_{1}}+c_{2} t^{a_{2}}+\cdots$, where $c_{i} \in \mathbb{C}^{*}$ and $a_{1}<a_{2}<\cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a discrete valuation $v: \mathbb{K}^{*} \rightarrow \mathbb{Q}$, given by $v(c(t))=a_{1}$.
- Let $v:\left(\mathbb{K}^{*}\right)^{n} \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be the n-fold product of the valuation.
- The tropicalization of a variety $W \subset\left(\mathbb{K}^{*}\right)^{n}$, denoted $\operatorname{Trop}(W)$, is the closure of the set $v(W)$ in \mathbb{R}^{n}.
- This is a rational polyhedral complex in \mathbb{R}^{n}. For instance, if W is a curve, then $\operatorname{Trop}(W)$ is a graph with rational edge directions.
- If T be an algebraic subtorus of $\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(T)$ is the linear subspace $\operatorname{Hom}\left(\mathbb{K}^{*}, T\right) \otimes \mathbb{R} \subset \operatorname{Hom}\left(\mathbb{K}^{*},\left(\mathbb{K}^{*}\right)^{n}\right) \otimes \mathbb{R}=\mathbb{R}^{n}$.
- Moreover, if $z \in\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(z \cdot T)=\operatorname{Trop}(T)+v(z)$.
- For a variety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, we may define its tropicalization by setting $\operatorname{Trop}(W)=\operatorname{Trop}\left(W \times_{\mathbb{C}} \mathbb{K}\right)$.
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^{n}.
- If $W=V(f)$ is a hypersurface, defined by a Laurent polynomial $f \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, then $\operatorname{Trop}(W)$ is the positive-codimensional skeleton of the inner normal fan to the Newton polytope of f.

Exponential tangent cones

- Given a Zariski closed subset $W \subset\left(\mathbb{C}^{*}\right)^{n}$, let

$$
\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}
$$

where exp: $\mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$.

- $\tau_{1}(W)$ depends only on the analytic germ of W at 1 ; it is non-empty iff $1 \in W$.
- If $T \cong\left(\mathbb{C}^{*}\right)^{r}$ is an algebraic subtorus, then $\tau_{1}(T)=T_{1}(T) \cong \mathbb{C}^{r}$.

LEMMA (DIMCA-PAPADIMA-S. 2009; S. 2014)
$\tau_{1}(W)$ is a finite union of rationally defined linear subspaces.

- Set $\tau_{1}^{\mathbb{k}}(W)=\tau_{1}(W) \cap \mathbb{k}^{n}$, for a subfield $\mathbb{k} \subset \mathbb{C}$.

LEMMA

Let $W \subset\left(\mathbb{C}^{*}\right)^{n}$ be an algebraic variety. Then $\tau_{1}^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

The Bieri-Neumann-Strebel-Renz invariants

- Let G be a finitely generated group, $n=b_{1}(G)>0$. Let $S(G)$ be the unit sphere in $\operatorname{Hom}(G, \mathbb{R})=\mathbb{R}^{n}$.
- (Bieri-Neumann-Strebel 1987)

$$
\Sigma^{1}(G)=\left\{\chi \in S(G) \mid \mathcal{C}_{\chi}(G) \text { is connected }\right\}
$$

where $\mathcal{C}_{\chi}(G)$ is the induced subgraph of $\operatorname{Cay}(G)$ on vertex set $G_{\chi}=\{g \in G \mid \chi(g) \geq 0\}$.

- (Bieri-Renz 1988)

$$
\Sigma^{k}(G, \mathbb{Z})=\left\{\chi \in S(G) \mid \text { the monoid } G_{\chi} \text { is of type } \mathrm{FP}_{k}\right\}
$$

i.e., there is a projective $\mathbb{Z} G_{\chi}$-resolution $P_{\bullet} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leq k$. In particular, $\Sigma^{1}(G, \mathbb{Z})=\Sigma^{1}(G)$.

- The BNSR-invariants of form a descending chain of open subsets,

$$
S(G) \supseteq \Sigma^{1}(G, \mathbb{Z}) \supseteq \Sigma^{2}(G, \mathbb{Z}) \supseteq \cdots
$$

- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G / N is free abelian:

$$
N \text { is of type } \mathrm{FP}_{k} \Longleftrightarrow S(G, N) \subseteq \Sigma^{k}(G, \mathbb{Z})
$$

where $S(G, N)=\{\chi \in S(G) \mid \chi(N)=0\}$.

- In particular: $\operatorname{ker}(\chi: G \rightarrow \mathbb{Z})$ is f.g. $\Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G)$.
- More generally, let X be a connected CW-complex with finite k-skeleton, for some $k \geq 1$.
- Let $G=\pi_{1}\left(X, x_{0}\right)$. For each $\chi \in S(X):=S(G)$, let

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g)<c\} \text { is finite, } \forall c \in \mathbb{R}\right\}
$$

be the Novikov-Sikorav completion of $\mathbb{Z} G$.

- (Farber-Geoghegan,-Schütz 2010)

$$
\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in S(X) \mid H_{i}(X, \widehat{\mathbb{Z} G}-\chi)=0, \forall i \leq q\right\} .
$$

- (Bieri 2007) If G is FP_{k}, then $\Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leq k$.

The Dwyer-Fried invariants

- The sphere $S(G)$ parametrizes all regular, free abelian covers of X. The \sum-invariants of X keep track of the geometric finiteness properties of these covers.
- Now fix the rank r of the deck-transformation group. Regular \mathbb{Z}^{r}-covers of X are classified by epimorphisms $\nu: G \rightarrow \mathbb{Z}^{r}$.
- Such covers are parameterized by the Grassmannian $\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)$, where $n=b_{1}(X)$, via the correspondence

$$
\begin{gathered}
\left\{\text { regular } \mathbb{Z}^{r} \text {-covers of } X\right\} \longleftrightarrow\left\{r \text {-planes in } H^{1}(X, \mathbb{Q})\right\} \\
\quad X^{\nu} \rightarrow X \longleftrightarrow P_{\nu}:=\operatorname{im}\left(\nu^{*}: \mathbb{Q}^{r} \rightarrow H^{1}(X, \mathbb{Q})\right)
\end{gathered}
$$

- The Dwyer-Fried invariants of X are the subsets

$$
\Omega_{r}^{i}(X)=\left\{P_{\nu} \in \operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right) \mid b_{j}\left(X^{\nu}\right)<\infty \text { for } j \leq i\right\}
$$

- For each $r>0$, we get a descending filtration,

$$
\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)=\Omega_{r}^{0}(X) \supseteq \Omega_{r}^{1}(X) \supseteq \Omega_{r}^{2}(X) \supseteq \cdots
$$

Characteristic varieties

- Let $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=H^{1}\left(X, \mathbb{C}^{*}\right)$ be the character group of $G=\pi_{1}(X)$.
- The characteristic varieties of X are the sets

$$
\mathcal{V}^{i}(X)=\left\{\rho \in \operatorname{Hom}\left(G, \mathbb{C}^{*}\right) \mid H_{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0\right\}
$$

- If X has finite k-skeleton, then $\mathcal{V}^{i}(X)$ is Zariski closed for all $i \leq k$.
- Let $X^{\mathrm{ab}} \rightarrow X$ be the maximal abelian cover. View $H_{*}\left(X^{\mathrm{ab}}, \mathbb{C}\right)$ as a module over $\mathbb{C}\left[G_{a b}\right]$. Then

$$
\bigcup_{i \leq q} \mathcal{V}^{i}(X)=\bigcup_{i \leq q} V\left(\operatorname{ann}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right) .
$$

- Let $\mathcal{W}^{i}(X)=\mathcal{V}^{i}(X) \cap \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)^{0}$. Then

$$
\mathcal{W}^{1}(X)=\{1\} \cup V\left(\Delta_{G}\right)
$$

where $\Delta_{G}=\operatorname{ord}\left(H_{1}\left(X^{\alpha}, \mathbb{C}\right)\right)$ is the Alexander polynomial of G. (Here $X^{\alpha} \rightarrow X$ is the maximal torsion-free abelian cover.)

Resonance varieties

- Let $A=H^{*}(X, \mathbb{C})$. For each $a \in A^{1}$, we have that $a^{2}=0$. Thus, there is a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots .
$$

- The resonance varieties of X are the homogeneous algebraic sets

$$
\mathcal{R}^{i}(X)=\left\{a \in A^{1} \mid H^{i}(A, a) \neq 0\right\}
$$

- Identify $A^{1}=H^{1}(X, \mathbb{C})$ with \mathbb{C}^{n}, where $n=b_{1}(X)$. The map $\exp : H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right)$ has image $\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)^{0}=\left(\mathbb{C}^{*}\right)^{n}$.
- (Dimca-Papadima-S. 2009)

$$
\tau_{1}\left(\mathcal{W}^{i}(X)\right) \subseteq \mathcal{R}^{i}(X)
$$

- (DPS-2009, DP-2014) If X is a q-formal space, then, for all $i \leq q$, $\tau_{1}\left(\mathcal{W}^{i}(X)\right)=\mathcal{R}^{i}(X)$.

Novikov-Betti numbers

- Let $\chi \in S(X)$, and set $\Gamma=\operatorname{im}(\chi)$; then $\Gamma \cong \mathbb{Z}^{r}$, for some $r \geq 1$.
- A Laurent polynomial $p=\sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z} \Gamma$ is χ-monic if the greatest element in $\chi(\operatorname{supp}(p))$ is 0 , and $n_{0}=1$.
- Let $\mathcal{R} \Gamma_{\chi}$ be the Novikov ring, i.e., the localization of $\mathbb{Z} \Gamma$ at the multiplicative subset of all χ-monic polynomials ($\mathcal{R} \Gamma_{\chi}$ is a PID).
- Let $b_{i}(X, \chi)=\operatorname{rank}_{\mathcal{R} \Gamma_{\chi}} H_{i}\left(X, \mathcal{R} \Gamma_{\chi}\right)$ be the Novikov-Betti numbers.

Bounding the \sum-invariants

THEOREM (PAPADIMA-S. 2010)
Let X be a connected CW-complex with finite k-skeleton, and let $\chi: \pi_{1}(X) \rightarrow \mathbb{R}$ be a non-zero character. Then, for all $q \leq k$,

- $-\chi \in \Sigma^{q}(X, \mathbb{Z}) \Longrightarrow b_{i}(X, \chi)=0, \forall i \leq q$.
- $\left.\chi \notin \tau_{1}^{\mathbb{R}}\left(\bigcup_{i \leq q} \mathcal{W}^{i}(X)\right)\right) \Longleftrightarrow b_{i}(X, \chi)=0, \forall i \leq q$.

COROLLARY

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S(X) \backslash S\left(\tau_{1}^{\mathbb{R}}\left(\bigcup_{i \leq q} \mathcal{W}^{i}(X)\right)\right)
$$

Thus, $\Sigma^{q}(X, \mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.

Bounding the Ω-invariants

THEOREM (DWYER-FRIED 1987, PAPADIMA-S. 2010)

Let X be a connected CW-complex with finite k-skeleton. For an epimorphism $\nu: \pi_{1}(X) \rightarrow \mathbb{Z}^{r}$, the following are equivalent:

- The vector space $\bigoplus_{i=0}^{k} H_{i}\left(X^{\nu}, \mathbb{C}\right)$ is finite-dimensional.
- The algebraic torus
$\mathbb{T}_{\nu}:=\operatorname{im}\left(\nu^{*}: \operatorname{Hom}\left(\mathbb{Z}^{r}, \mathbb{C}^{*}\right) \hookrightarrow \operatorname{Hom}\left(\pi_{1}(X), \mathbb{C}^{*}\right)\right)$ intersects the variety $\bigcup_{i \leq k} \mathcal{V}^{i}(X)$ in only finitely many points.

THEOREM (S. 2014)

Let exp: $H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right)$. For all $q \leq k$ and all $r \geq 1$,
$\Omega_{r}^{q}(X)=\left\{P \in \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \mid \operatorname{dim}\left(\exp (P \otimes \mathbb{C}) \cap\left(\bigcup_{i \leq q} \mathcal{W}^{i}(X)\right)\right)=0\right\}$.

- Let V be a homogeneous variety in \mathbb{k}^{n}. Then the set

$$
\sigma_{r}(V)=\left\{P \in \operatorname{Gr}_{r}\left(\mathbb{k}^{n}\right) \mid P \cap V \neq\{0\}\right\}
$$

is Zariski closed.

- If $L \subset \mathbb{k}^{n}$ is a linear subspace, $\sigma_{r}(L)$ is the special Schubert variety defined by L. If $\operatorname{codim} L=d$, then $\operatorname{codim} \sigma_{r}(L)=d-r+1$.

THEOREM (S. 2014)

$$
\Omega_{r}^{q}(X) \subseteq \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash \sigma_{r}\left(\tau_{1}^{\mathbb{Q}}\left(\bigcup_{i \leq q} \mathcal{W}^{i}(X)\right)\right)
$$

- Thus, each set $\Omega_{r}^{q}(X)$ is contained in the complement of a finite union of special Schubert varieties.
- If $r=1$, the inclusion always holds as an equality. In general, though, the inclusion is strict.

Comparing the Σ - and Ω-bounds

THEOREM (S. 2012)
Suppose that

$$
\Sigma^{q}(X, \mathbb{Z})=S(X) \backslash S\left(\tau_{1}^{\mathbb{R}}\left(\bigcup_{i \leq q} \mathcal{W}^{i}(X)\right)\right)
$$

Then

$$
\Omega_{r}^{q}(X)=\operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash \sigma_{r}\left(\tau_{1}^{\mathbb{Q}}\left(\bigcup_{i \leq q} \mathcal{W}^{i}(X)\right)\right) \text {, for all } r \geq 1
$$

In general, the above implication cannot be reversed.

EXAMPLE

- Let $G=\left\langle x_{1}, x_{2} \mid x_{1} x_{2}=x_{2}^{2} x_{1}\right\rangle$.
- Then $\mathcal{W}^{1}(G)=\{1,2\} \subset \operatorname{Hom}\left(G, \mathbb{C}^{*}\right)=\mathbb{C}^{*}$.
- Thus, $\Omega_{1}^{1}(G)=\{p t\}$, and so $\Omega_{1}^{1}(G)=\sigma_{1}\left(\tau_{1}^{\mathbb{Q}}\left(\mathcal{W}^{1}(G)\right)\right)^{\text {C }}$.
- But $\Sigma^{1}(G)=\{-1\}$, whereas $S\left(\tau_{1}^{\mathbb{Q}}\left(\mathcal{W}^{1}(G)\right)\right)^{\complement}=\{ \pm 1\}$.

A tropical bound for the Σ-invariants

- Let X be a connected CW-complex w/ finite k-skeleton.
- For each algebraic variety $W \subset\left(\mathbb{C}^{*}\right)^{n}$ there is an associated polyhedral fan, $\operatorname{Trop}(W) \subset \mathbb{R}^{n}$.
- Thus, to each algebraic variety $V \subset H^{1}\left(X, \mathbb{C}^{*}\right)$ we may associate a polyhedral fan, $\operatorname{Trop}(V) \subset \mathbb{R}^{n}$, where $n=b_{1}(X)$.

THEOREM

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S(X) \backslash S\left(\operatorname{Trop}\left(\bigcup_{i \leq q} \mathcal{V}^{i}(X)\right)\right), \quad \forall q \leq k
$$

Corollary
Let G be a finitely generated group. Then:

$$
\Sigma^{1}(G) \subseteq S(G) \backslash S\left(\operatorname{Trop}\left(V\left(\Delta_{G}\right)\right)\right)
$$

Two-generator, one-relator groups

- If $G=\langle x, y \mid r\rangle$, there is a very concrete algorithm for computing $\Sigma^{1}(G)(K$. Brown 1987, Friedl-Tillman 2019).

EXAMPLE

- Let $G=\left\langle a, b \mid a^{-1} b^{2} a b^{-1} a b^{-1} a^{-1}\right\rangle$.
- Then $\Sigma^{1}(G)=S^{1} \backslash\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),(0,-1),(-1,0)\right\}$.
- On the other hand, $\Delta_{G}=1+b-a$.
- Thus, $\Sigma^{1}(G)=S\left(\operatorname{Trop}\left(V\left(\Delta_{G}\right)\right)\right)^{\text {e }}$, though $\tau_{1} \mathcal{V}^{1}(G)=\{0\}$.

EXAMPLE

- Let $G=\langle a, b| a^{2} b a^{-1} b a^{2} b a^{-1} b^{-3} a^{-1} b a^{2} b a^{-1} b a$ $\left.b^{-1} a^{-2} b^{-1} a b^{-1} a^{-2} b^{-1} a b^{3} a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-1} b\right\rangle$.
- Then $\Delta_{G}=(a-1)(a b-1)$, and so $S\left(\operatorname{Trop}\left(V\left(\Delta_{G}\right)\right)\right)$ consists of two pairs of points.
- Yet $\Sigma^{1}(G)$ consists of two open arcs joining those points.

Kähler manifolds

THEOREM (Delzant 2010)

Let M be a compact Kähler manifold. Then

$$
\Sigma^{1}(M, \mathbb{Z})=S(M) \backslash \bigcup_{\alpha} S\left(f_{\alpha}^{*}\left(H^{1}\left(C_{\alpha}, \mathbb{R}\right)\right)\right)
$$

where the union is taken over those orbifold fibrations $f_{\alpha}: M \rightarrow C_{\alpha}$ with the property that either $\chi\left(C_{\alpha}\right)<0$, or $\chi\left(C_{\alpha}\right)=0$ and f_{α} has some multiple fiber.

COROLLARY

$$
\Sigma^{1}(M, \mathbb{Z})=S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(M)\right)^{\complement}\right.
$$

Hyperplane arrangements

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an (essential, central) arrangement of hyperplanes in \mathbb{C}^{d}.
- Its complement, $M(\mathcal{A}) \subset\left(\mathbb{C}^{*}\right)^{d}$, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, d-dimensional CW-complex.
- $\operatorname{Trop}(M(\mathcal{A}))$ is the 'Bergman fan' of the underlying matroid $L(\mathcal{A})$.
- $H^{*}(M(\mathcal{A}), \mathbb{Z})$ is the Orlik-Solomon algebra of $L(\mathcal{A})$.
- Let $\mathcal{V}^{i}(\mathcal{A}):=\mathcal{V}^{i}(M(\mathcal{A})) \subset\left(\mathbb{C}^{*}\right)^{n}$ and $\mathcal{R}^{i}(\mathcal{A}):=\mathcal{R}^{i}(M(\mathcal{A})) \subset \mathbb{C}^{n}$.
- $M(\mathcal{A})$ is formal. Thus, $\tau_{1}\left(\mathcal{V}^{i}(\mathcal{A})\right)=\mathcal{R}^{i}(\mathcal{A})$ for all i.

THEOREM (KOHNO-PAJITNOV 2015)
Let $S^{-}(\mathcal{A}):=S^{n-1} \cap\left(\mathbb{R}_{<0}\right)^{n}$. Then $S^{-}(\mathcal{A}) \subseteq \Sigma^{q}(\mathcal{A})$, for all $q<d$. In particular, $S^{-}(\mathcal{A}) \subseteq \Sigma^{1}(\mathcal{A})$.

THEOREM (DENHAM-YUZVINSKY-S. 2016/17)
$M(\mathcal{A})$ is an "abelian duality space," and hence its characteristic varieties propagate: $\mathcal{V}^{1}(\mathcal{A}) \subseteq \mathcal{V}^{2}(\mathcal{A}) \subseteq \cdots \subseteq \mathcal{V}^{d}(\mathcal{A})$.

COROLLARY

$$
\Sigma^{q}(M(\mathcal{A}), \mathbb{Z}) \subseteq S^{n-1} \backslash S\left(\operatorname{Trop}\left(\mathcal{V}^{q}(\mathcal{A})\right)\right), \quad \forall q \leq d
$$

QUESTION (S., AT MFO Miniworkshop 2007)
Given an arrangement \mathcal{A}, do we have

$$
\Sigma^{1}(M(\mathcal{A}))=S\left(\mathcal{R}^{1}(\mathcal{A}, \mathbb{R})\right)^{C} ?
$$

Example (Koban-McCammond-Meier 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^{n}, defined by $\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)=0$. Then $M(\mathcal{A})=\operatorname{Conf}(n, \mathbb{C}) \simeq K\left(P_{n}, 1\right)$.
- Answer to (\star) is yes: $\Sigma^{1}(M(\mathcal{A}))$ is the complement of the union of $\binom{n}{3}+\binom{n}{4}$ planes in $\mathbb{C}\binom{n}{2}$, intersected with the unit sphere.

Example

- Let \mathcal{A} be the "deleted B_{3} " arrangement, defined by $z_{1} z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{2}^{2}-z_{3}^{2}\right)=0$.
- (S. 2002) $\mathcal{V}^{1}(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot T$.
- Thus, $\operatorname{Trop}(\rho \cdot T)=\operatorname{Trop}(T)$ is a line in \mathbb{C}^{8} which is not contained in $\mathcal{R}^{1}(\mathcal{A}, \mathbb{R})$. Hence, the answer to (\star) is no.

QUEstion

$$
\Sigma^{1}(M(\mathcal{A}))=S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(\mathcal{A})\right)^{\mathrm{C}} ?\right.
$$

