On the topology of Milnor fibrations of hyperplane arrangements

ARXIV: 2105.14129 & 2107.05148

Alex Suciu

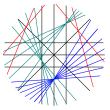
Northeastern University

Tibăr60

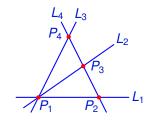
University of Wisconsin-Madison September 11, 2021

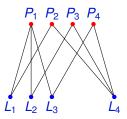
Danube Delta, 2013

HYPERPLANE ARRANGEMENTS



- An arrangement of hyperplanes is a finite collection, A, of codimension 1 linear (or affine) subspaces in C^d.
- ► Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.





- ► The complement of the arrangement, M(A) := C^d\U_{H∈A} H, is a smooth, complex, quasi-projective variety.
- M = M(A) is also a Stein manifold, and so it has the homotopy type of a finite, connected, CW-complex of dimension at most *d*.
- In fact, *M* has a minimal cell structure. Consequently, *H*_∗(*M*, ℤ) is torsion-free (and finitely generated).
- ▶ In particular, $H_1(M, \mathbb{Z}) = \mathbb{Z}^{|\mathcal{A}|}$, generated by meridians $\{x_H\}_{H \in \mathcal{A}}$.
- ► $H^*(M, \mathbb{Z})$ is the quotient of the exterior algebra on the duals $e_H = x_H^{\vee}$ by an ideal determined by $L(\mathcal{A})$. [Orlik–Solomon]
- M admits a *pure* mixed Hodge structure, and so *M* is Q-formal (albeit not Z_p-formal, in general).

Lower central series

- ▶ The *lower central series* of a group *G* is defined by $\gamma_1(G) = G$, $\gamma_2(G) = G'$, and $\gamma_{k+1}(G) = [G, \gamma_k(G)]$, where $[g, h] = ghg^{-1}h^{-1}$.
- We have: $[\gamma_k(G), \gamma_\ell(G)] \subseteq \gamma_{k+\ell}(G)$, and so $\gamma_k(G) \lhd G$.
- ▶ The LCS quotients, $\operatorname{gr}_k(G) := \gamma_k(G) / \gamma_{k+1}(G)$, are abelian.
- Associated graded Lie algebra: gr(G) = ⊕_{k≥1} gr_k(G), with Lie bracket [,]: gr_k × gr_ℓ → gr_{k+ℓ} induced by the group commutator.
- ► The factor groups $G/\gamma_{k+1}(G)$ are the maximal *k*-step nilpotent quotients of *G*.
- $G/\gamma_2(G) = G_{ab}$, while $G/\gamma_3(G)$ is determined by $H^{\leq 2}(G, \mathbb{Z})$.

Fundamental groups of arrangements

- For an arrangement A, the group G = π₁(M(A)) admits a finite presentation, with generators {x_H}_{H∈A} and commutator-relators.
- $G/\gamma_2(G) = \mathbb{Z}^{|\mathcal{A}|}$, while $G/\gamma_3(G)$ is determined by $L_{\leq 2}(\mathcal{A})$.
- $G/\gamma_4(G)$ —and thus G—is not determined by $L_{\leq 2}(A)$. [Rybnikov]
- ► Since M = M(A) is formal, $G = \pi_1(M)$ is 1-formal, i.e., its Q-pronilpotent completion, $\mathfrak{m}(G)$, is quadratic.
- Hence, $gr(G) \otimes \mathbb{Q} = gr(\mathfrak{m}(G))$ is determined by $L_{\leq 2}(\mathcal{A})$.
- An explicit combinatorial formula is lacking in general for the LCS ranks $\phi_k := \operatorname{rank} \operatorname{gr}_k(G)$, although such formulas are known when \mathcal{A} is supersolvable, or decomposable, or a graphic arrangement.
- ► The Chen ranks θ_k(G) := rank gr_k(G/G") are also combinatorially determined. [Papadima–S.]

- Let h(G) = Lie(G_{ab})/im(H₂(G, ℤ) → G_{ab} ∧ G_{ab}) be the holonomy Lie algebra associated to a f.g. group G.
- This is a quadratic Lie algebra, with presentation determined by H^{≤2}(G, ℤ). Moreover, 𝔥(G) → gr(G).
- If G is 1-formal: $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$.
- gr_k(G) may have torsion (for k ≥ 4), but torsion is not necessarily determined by L_{≤2}(A). [Artal Bartolo–Guerville–Viu-Sos]
- The map h₃(G) → gr₃(G) is an isomorphism [Porter–S.], but it is not known whether h₃(G) is torsion-free.
- \mathcal{A} is decomposable if $\mathfrak{h}_3(G)$ is free abelian of rank $2\sum_{P \in L_2(\mathcal{A})} {m_P \choose 3}$.
- In this case, gr(G) = 𝔥(G) is torsion-free, with ranks computed by an explicit combinatorial formula [Papadima−S.]
- Moreover, all nilpotent quotients G/γ_k(G) are combinatorially determined [Porter–S.]

ALEX SUCIU (NORTHEASTERN)

MILNOR FIBRATIONS OF ARRANGEMENT

Alexander invariant

- The *derived series* of a group *G* is defined inductively by $G^{(0)} = G, G^{(1)} = G', G^{(2)} = G'', \text{ and } G^{(r)} = [G^{(r-1)}, G^{(r-1)}].$
- $G/G^{(r)}$ is the maximal solvable quotient of G of length r.
- The Alexander invariant of G:

B(G) := G'/G'',

a $\mathbb{Z}[G_{ab}]$ -module via $gG' \cdot xG'' = gxg^{-1}G''$ for $g \in G$ and $x \in G'$.

• If X is a connected CW-complex with $\pi_1(X) = G$, then

$$B(G) = H_1(X^{ab}, \mathbb{Z}) = H_1(X, \mathbb{Z}[G_{ab}]).$$

► Let $I = I(G_{ab})$. Then $I^k B(G) = \gamma_{k+2}(G/G'')$, and thus $gr_k(B) \cong gr_{k+2}(G/G'')$ for all $n \ge 0$. [Massey]

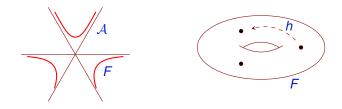
Characteristic varieties

- Let G be a finitely generated group. The character group, T_G := Hom(G, C^{*}), is an abelian, complex algebraic group.
- $\mathbb{T}_G \cong \mathbb{T}_G^0 \times \text{Tors}(G_{ab})$, where $\mathbb{T}_G^0 \cong (\mathbb{C}^*)^{b_1(G)}$.
- The characteristic varieties of G:

 $\mathcal{V}_j(G) := \{ \rho \in \mathbb{T}_G \mid \dim H^1(G, \mathbb{C}_\rho) \ge j \}.$

- $\mathcal{V}_j(G) = V(\operatorname{ann}(\bigwedge^j B(G) \otimes \mathbb{C}))$, at least away from 1.
- ▶ Now let $G = \pi_1(M(\mathcal{A}))$. Then $\mathbb{T}_G = (\mathbb{C}^*)^n$, where $n = |\mathcal{A}|$.
- The components of V₁(G) passing through 1 ∈ (C*)ⁿ are combinatorially determined.
- ► In general, though, there are translated subtori in $\mathcal{V}_1(G) = \mathcal{V}_1(M(\mathcal{A}))$, which are not *a priori* determined by $L(\mathcal{A})$.

Milnor fibration



- ▶ The map $f: \mathbb{C}^d \to \mathbb{C}$ restricts to a smooth fibration, $f: M \to \mathbb{C}^*$, called the *Milnor fibration* of A.
- ► The *Milnor fiber* is $F(A) := f^{-1}(1)$. The monodromy, $h: F \to F$, is given by $h(z) = e^{2\pi i/n} z$.
- ► F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension d - 1 (connected if d > 1).
- MHS on *F* may not be pure; $\pi_1(F)$ may be non-1-formal [Zuber].

- ► *F* is the regular, \mathbb{Z}_n -cover of $U = \mathbb{P}(M)$, classified by the projection $\pi_1(U) \twoheadrightarrow \mathbb{Z}_n, x_H \mapsto 1$.
- ► To understand $\pi_1(F)$, we may assume wlog that d = 3, so that $\overline{A} = \mathbb{P}(A)$ is an arrangement of lines in \mathbb{CP}^2 .
- Let $\iota: F \hookrightarrow M$ be the inclusion. Induced maps on π_1 :



b₁(F) ≥ n − 1, and may be computed from V¹_j(U). Combinatorial formulas are known in some cases (e.g., if P(A) has only double or triple points [Papadima–S.]), but not in general.

Exact sequences and lower central series

A short exact sequence of groups,

$$1 \longrightarrow K \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1$$
 (*)

yields

- A representation $\varphi \colon \mathbf{Q} \to \mathsf{Out}(\mathbf{K})$.
- A "monodromy" representation $\bar{\varphi} \colon Q \to Aut(K_{ab})$.
- ▶ If (*) admits a splitting, $\sigma: Q \to G$, then $G = K \rtimes_{\varphi} Q$, where $\varphi: Q \to Aut(K), x \mapsto conjugation by <math>\sigma(x)$.
- (*) is *ab-exact* if $0 \longrightarrow K_{ab} \xrightarrow{\iota_{ab}} G_{ab} \xrightarrow{\pi_{ab}} Q_{ab} \longrightarrow 0$ is also exact; equivalently, Q acts trivially on K_{ab} and ι_{ab} is injective.

THEOREM (FALK-RANDELL)

Let $G = K \rtimes_{\varphi} Q$. If Q acts trivially on K_{ab} , then

- $\gamma_k(G) = \gamma_k(K) \rtimes_{\varphi} \gamma_k(Q)$, for all $k \ge 1$.
- $\operatorname{gr}(G) = \operatorname{gr}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}(Q).$

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an ab-exact sequence, and assume Q is abelian. Then:

- $\iota: K \hookrightarrow G$ restricts to an equality, K' = G'.
- $B(\iota)$ factors through a $\mathbb{Z}[K_{ab}]$ -linear isomorphism $B(K) \xrightarrow{\simeq} B(G)_{\iota}$.
- If, moreover, G_{ab} is f.g., then $\theta_k(K) \leq \theta_k(G)$ for all $k \geq 1$.
- If G and K are finitely generated, then the map *ι**: T_G → T_K restricts to maps *ι**: *V_j*(G) → *V_j*(K) for all *j* ≥ 1; furthermore, *ι**: *V*₁(G) → *V*₁(K) is a surjection.

Assume now that the sequence is also split-exact. Then:

• $\operatorname{gr}_{\geqslant 2}(K) \xrightarrow{\simeq} \operatorname{gr}_{\geqslant 2}(G)$ and $\operatorname{gr}_{\geqslant 2}(K/K'') \xrightarrow{\simeq} \operatorname{gr}_{\geqslant 2}(G/G'')$.

▶ If, moreover, $b_1(G) < \infty$, then $\phi_k(K) = \phi_k(G)$ and $\theta_k(K) = \theta_k(G)$ for all $k \ge 2$.

Rational LCS and rational Alexander invariant

- ► The rational lower central series of *G* is defined by $\gamma_1^{\mathbb{Q}}G = G$ and $\gamma_{k+1}^{\mathbb{Q}}G = \sqrt{[G, \gamma_k^{\mathbb{Q}}G]}$. [Stallings]
- ► G/γ₂^QG = G_{abf}, where G_{abf} = G_{ab}/Tors(G_{ab}) is the maximal torsion-free abelian quotient of G.
- Quotients $\operatorname{gr}_{k}^{\mathbb{Q}}(G) := \gamma_{k}^{\mathbb{Q}} G / \gamma_{k+1}^{\mathbb{Q}} G$ are torsion-free abelian groups.
- Associated graded Lie algebra: $\operatorname{gr}^{\mathbb{Q}}(G) = \bigoplus_{k \ge 1} \gamma_k^{\mathbb{Q}} G / \gamma_{k+1}^{\mathbb{Q}} G$.
- The rational derived series of *G* is defined by $G_Q^{(0)} = G$ and $G_Q^{(r)} = \sqrt{[G_Q^{(r-1)}, G_Q^{(r-1)}]}$. [Stallings, Harvey, Cochran]
- $B_{\mathbb{Q}}(G) := G'_{\mathbb{Q}}/G''_{\mathbb{Q}}$, viewed as a module over $\mathbb{Z}G_{abf}$.
- Let $\mathcal{W}_k(G) := \mathcal{V}_k(G) \cap \mathbb{T}_G^0$. Then $\mathcal{W}_k(G) = V(\operatorname{ann}(\bigwedge^k B_{\mathbb{Q}}(G) \otimes \mathbb{C}))$, at least away from 1.

Abf-exact sequences

- A sequence $1 \rightarrow K \xrightarrow{\iota} G \xrightarrow{\pi} Q \rightarrow 1$ is called abf-exact if one of the following equivalent conditions is satisfied.
 - The group Q acts trivially on K_{abf} and the composite $H_2(Q, \mathbb{Z}) \xrightarrow{\delta} H_1(K, \mathbb{Z}) \to H_1(K, \mathbb{Z})/$ Tors is zero.
 - $\circ \ \ \, \text{The sequence} \ \ \, 0 \ \longrightarrow \ \ \, \textit{K}_{abf} \ \stackrel{\iota_{abf}}{\longrightarrow} \ \ \, \textit{G}_{abf} \ \stackrel{\pi_{abf}}{\longrightarrow} \ \ \, \textit{Q}_{abf} \ \longrightarrow \ \ \, 0 \ \ \, \text{is exact.}$
- Suppose K_{abf} is finitely generated. Then the extension is abf-exact iff *Q* acts trivially on H₁(K, Q) and δ ⊗ Q = 0.
- Reverse implication may not hold if K_{abf} not f.g.

LEMMA

Let $1 \to K \to G \to Q \to 1$ be a split exact sequence.

- The sequence is abf-exact iff Q acts trivially on K_{abf} .
- If K_{abf} is finitely generated, then the sequence is abf-exact iff Q acts trivially on H₁(K, ℚ).

THEOREM

Let $G = K \rtimes_{\varphi} Q$ be a split extension. If Q acts trivially on K_{abf} , then,

- $\gamma_k^{\mathbb{Q}}(G) = \gamma_k^{\mathbb{Q}}(K) \rtimes_{\varphi} \gamma_k^{\mathbb{Q}}(Q)$, for all $k \ge 1$.
- $\operatorname{gr}^{\mathbb{Q}}(G) = \operatorname{gr}^{\mathbb{Q}}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\mathbb{Q}}(Q).$

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an abf-exact sequence, and assume Q is torsion-free abelian. Then:

- $K'_{\mathbb{Q}} = G'_{\mathbb{Q}}$ and $B_{\mathbb{Q}}(K) \cong B_{\mathbb{Q}}(G)_{\iota}$.
- If, moreover, G_{abf} is f.g., then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.
- ▶ If G and K are f.g., then $\iota^* : \mathbb{T}^0_G \twoheadrightarrow \mathbb{T}^0_K$ restricts to $\iota^* : \mathcal{W}_j(G) \to \mathcal{W}_j(K)$; furthermore, $\iota^* : \mathcal{W}_1(G) \to \mathcal{W}_1(K)$ is surjective.

Assume now that the sequence is also split-exact. Then:

- $\operatorname{gr}_{\geq 2}^{\mathbb{Q}}(K) \xrightarrow{\simeq} \operatorname{gr}_{\geq 2}^{\mathbb{Q}}(G)$ and $\operatorname{gr}_{\geq 2}^{\mathbb{Q}}(K/K'') \xrightarrow{\simeq} \operatorname{gr}_{\geq 2}^{\mathbb{Q}}(G/G'').$
- If $b_1(G) < \infty$, then $\phi_k(K) = \phi_k(G)$ and $\theta_k(K) = \theta_k(G)$ for all $k \ge 2$.

Let \mathcal{A} be an arrangement, with complement M, Milnor fibration $F \xrightarrow{\iota} M \to \mathbb{C}^*$, and split exact sequence $1 \to \pi_1(F) \xrightarrow{\iota} \pi_1(M) \to \mathbb{Z} \to 1$.

COROLLARY

If the monodromy action on $H_1(F,\mathbb{Z})$ is trivial, then

- $\iota^* : H^1(M, \mathbb{C}^*) \twoheadrightarrow H^1(F, \mathbb{C}^*)$ restricts to $\iota^* : \mathcal{V}_1(M) \twoheadrightarrow \mathcal{V}_1(F)$.
- $\phi_k(\pi_1(F)) = \phi_k(\pi_1(M))$ for $k \ge 2$.
- $\theta_k(\pi_1(F)) = \theta_k(\pi_1(M))$ for $k \ge 2$.

COROLLARY

If the monodromy action on $H_1(F, \mathbb{Q})$ is trivial, then

- $\iota^* : H^1(M, \mathbb{C}^*)^0 \twoheadrightarrow H^1(F, \mathbb{C}^*)^0$ restricts to $\iota^* : \mathcal{W}_1(M) \twoheadrightarrow \mathcal{W}_1(F)$.
- $\phi_k(\pi_1(F)) = \phi_k(\pi_1(M))$ for $k \ge 2$.
- $\theta_k(\pi_1(F)) = \theta_k(\pi_1(M))$ for $k \ge 2$.

Formality properties

- ▶ Let $Y \rightarrow X$ be a finite, regular cover, with deck group Γ . If Y is 1-formal, then X is 1-formal, but the converse is not true.
- (Dimca–Papadima) If Γ acts trivially on H₁(Y, Q), then the converse holds.
- Applying to \mathbb{Z}_n -cover $F(\mathcal{A}) \to U(\mathcal{A})$: if the Milnor fibration of \mathcal{A} has trivial \mathbb{Q} -monodromy, then F is 1-formal.
- (S.-Wang) Let 1 → K → G → Q → 1 be an exact sequence. If G is 1-formal and retracts onto K, then K is also 1-formal.
- (Papadima–S.) Let 1 → K → G → Z → 1 be an exact sequence. Assume G is 1-formal and b₁(K) < ∞. Then the eigenvalue 1 of the monodromy action on H₁(K, C) has only 1 × 1 Jordan blocks.

THEOREM

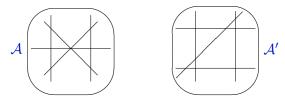
Let $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$ be a split-exact and abf-exact sequence. If G is 1-formal and K is finitely generated, then K is 1-formal.

ALEX SUCIU (NORTHEASTERN)

MILNOR FIBRATIONS OF ARRANGEMENT

18 / 22

Falk's pair of arrangements



▶ Both \mathcal{A} and \mathcal{A}' have 2 triple points and 9 double points, yet $L(\mathcal{A}) \cong L(\mathcal{A}')$. Nevertheless, $M(\mathcal{A}) \simeq M(\mathcal{A}')$.

- *V*₁(*M*) and *V*₁(*M'*) consist of two 2-dimensional subtori of (ℂ*)⁶, corresponding to the triple points; *V*₂(*M*) = *V*₂(*M'*) = {1}.
- ▶ Both Milnor fibrations have trivial Z-monodromy.
- On the other hand, $\mathcal{V}_2(F) \cong \mathbb{Z}_3$, yet $\mathcal{V}_2(F') = \{1\}$.
- Thus, $\pi_1(F) \ncong \pi_1(F')$.

Yoshinaga's icosidodecahedral arrangement

- ► The icosidodecahedron is a quasiregular polyhedron in \mathbb{R}^3 , with 20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices, given by the even permutations of $(0, 0, \pm 1)$ and $\frac{1}{2}(\pm 1, \pm \phi, \pm \phi^2)$, where $\phi = (1 + \sqrt{5})/2$.
- One can choose 10 edges to form a decagon; there are 6 ways to choose these decagons, thereby giving 6 planes.
- Each pentagonal face has five diagonals; there are 60 such diagonals in all, and they partition in 10 disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals.

ALEX SUCIU (NORTHEASTERN)

MILNOR FIBRATIONS OF ARRANGEMEN

- ► These 16 planes form a arrangement A_R in R³, whose complexification is the icosidodecahedral arrangement A in C³.
- ► The complement *M* is a $K(\pi, 1)$. Moreover, $P_U(t) = 1 + 15t + 60t^2$; thus, $\chi(U) = 36$ and $\chi(F) = 576$.
- In fact, H₁(F, Z) = Z¹⁵ ⊕ Z₂. Thus, the algebraic monodromy of the Milnor fibration is trivial over Q and Z_p (p > 2), but not over Z.
- ► Hence, $gr(\pi_1(F)) \cong gr(\pi_1(U))$, away from the prime 2. Moreover, $\circ gr_1(\pi_1(F)) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$
 - $\circ \ \operatorname{gr}_2(\pi_1(\boldsymbol{F})) = \mathbb{Z}^{45} \oplus \mathbb{Z}_2^7$
 - $\circ \ \operatorname{gr}_3(\pi_1({\boldsymbol{\mathsf{F}}})) = \mathbb{Z}^{250} \oplus \mathbb{Z}_2^{43}$

$$\circ \operatorname{gr}_4(\pi_1(F)) = \mathbb{Z}^{1405} \oplus \mathbb{Z}_2^?$$

La Mulți Ani, Mihai!