Algebra and topology of group extensions

Alex Suciu

Northeastern University

Algebra and Topology Seminar University of Strasbourg, France March 28, 2023

N-series

- ▶ An *N-series* for a group *G* is a descending filtration $G = K_1 \ge \cdots \ge K_n \ge \cdots$ such that $[K_m, K_n] \subseteq K_{m+n}, \forall m, n \ge 1$.
- ▶ In particular, $\kappa = \{K_n\}_{n \ge 1}$ is a *central series*, i.e., $[G, K_n] \subseteq K_{n+1}$.
- ▶ Thus, it is also a *normal series*, i.e., $K_n \triangleleft G$.
- ▶ Consequently, each quotient K_n/K_{n+1} lies in the center of G/K_{n+1} , and thus is an abelian group.
- ▶ If all those quotients are torsion-free, κ is called an N_0 -series.
- Associated graded Lie algebra:

$$\operatorname{gr}^{\kappa}(G) = \bigoplus_{n \geqslant 1} K_n/K_{n+1},$$

with addition induced by $: G \times G \to G$, and Lie bracket $[,]: \operatorname{gr}_m \times \operatorname{gr}_n \to \operatorname{gr}_{m+n}$ induced by $[x,y]:=xyx^{-1}y^{-1}$.

Lower central series

- ▶ The *lower central series*, $\gamma(G) = \{\gamma_n(G)\}_{n \ge 1}$ is defined inductively by $\gamma_1(G) = G$, $\gamma_2(G) = G'$, and $\gamma_{n+1}(G) = [G, \gamma_n(G)]$.
- ▶ It is an *N*-series, and the fastest descending central series for *G*.
- ▶ If φ : $G \to H$ is a homomorphism, then $\varphi(\gamma_n(G)) \subseteq \gamma_n(H)$.
- $gr(G) := gr^{\gamma}(G)$ is generated by $gr_1(G) = G_{ab}$.
- ▶ If $b_1(G) < \infty$, the *LCS ranks* of *G* are $\phi_n(G) := \dim_{\mathbb{Q}} \operatorname{gr}_n(G) \otimes \mathbb{Q}$.
- ▶ For each *N*-series κ , there is a morphism $gr(G) \rightarrow gr^{\kappa}(G)$.
- ▶ $\Gamma_n := G/\gamma_n(G)$ is the maximal (n-1)-step nilpotent quotient of G.
- $G/\gamma_2(F) = G_{ab}$, while $G/\gamma_3(G) \leftrightarrow H^{\leq 2}(G, \mathbb{Z})$.
- *G* is residually nilpotent $\iff \gamma_{\omega}(G) := \bigcap_{n \ge 1} \gamma_n(G)$ is trivial.

Split exact sequences

A short exact sequence of groups,

$$1 \longrightarrow K \stackrel{\iota}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} Q \longrightarrow 1 \tag{*}$$

yields representations $\varphi: Q \to \operatorname{Out}(K)$ and $\bar{\varphi}: Q \to \operatorname{Aut}(K_{ab})$.

- ▶ If (*) admits a splitting, $\sigma: Q \to G$, then $G = K \times_{\sigma} Q$, where $\varphi \colon Q \to \operatorname{Aut}(K), x \mapsto \operatorname{conjugation} \operatorname{by} \sigma(x).$
- (*) is ab-exact if $0 \to K_{ab} \xrightarrow{\iota_{ab}} G_{ab} \xrightarrow{\pi_{ab}} Q_{ab} \to 0$ is also exact; equivalently, Q acts trivially on K_{ab} and ι_{ab} is injective.

THEOREM (FALK-RANDELL 1985/88)

Let $G = K \rtimes_{\omega} Q$. If Q acts trivially on K_{ab} , then

- $ightharpoonup \gamma_n(G) = \gamma_n(K) \rtimes_{\varphi} \gamma_n(Q)$, for all $n \geqslant 1$.
- ▶ $\operatorname{gr}(G) = \operatorname{gr}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)$, where $\tilde{\varphi} \colon \operatorname{gr}(Q) \to \operatorname{Der}(\operatorname{gr}(K))$.
- ▶ If K and Q are residually nilpotent, then G is residually nilpotent.

► For a split extension $G = K \rtimes_{\varphi} Q$, Guaschi and de Miranda e Pereiro define a sequence $L = \{L_n\}_{n \ge 1}$ of subgroups of K by $L_1 = K$, $L_{n+1} = \langle [K, L_n], [K, \gamma_n(Q)], [L_n, Q] \rangle$.

THEOREM (GUASCHI-PEREIRO 2020)

- $\varphi: Q \to \operatorname{Aut}(K)$ restricts to $\varphi: \gamma_n(Q) \to \operatorname{Aut}(L_n)$.

LEMMA

L is an N-series for K.

THEOREM

$$\operatorname{gr}(G) = \operatorname{gr}^L(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)$$
, where $\tilde{\varphi} \colon \operatorname{gr}(Q) \to \operatorname{Der}(\operatorname{gr}(K))$.

REMARK

If Q acts trivially on K_{ab} , then $L = \gamma(K)$. So these results generalize those of Falk and Randell.

Isolators

The isolator in G of a subset S ⊆ G is the subset

$$\sqrt{S} := \sqrt[G]{S} = \{g \in G \mid g^m \in S \text{ for some } m \in \mathbb{N}\}$$

- ► Clearly, $S \subseteq \sqrt{S}$ and $\sqrt{\sqrt{S}} = \sqrt{S}$. Also, if $\varphi: G \to H$ is a homomorphism, and $\varphi(S) \subseteq T$, then $\varphi(\sqrt[G]{S}) \subseteq \sqrt[H]{T}$.
- The isolator of a subgroup of G need not be a subgroup; for instance, $\sqrt[G]{\{1\}} = \text{Tors}(G)$, which is not a subgroup in general (although it is if G is nilpotent).
- ▶ If $N \triangleleft G$ is a normal subgroup, then $\sqrt[G]{N} = \pi^{-1}(\text{Tors}(G/N))$, where $\pi: G \to G/N$, and so $\sqrt[G]{N}/N \cong \text{Tors}(G/N)$.

PROPOSITION (MASSUYEAU 2007)

Suppose $\kappa = \{K_n\}_{n \ge 1}$ is an N-series for G. Then $\sqrt{\kappa} := \{\sqrt{K_n}\}_{n \ge 1}$ is an N_0 -series for G.

The rational lower central series

- ▶ The rational lower central series, $\gamma^{\mathbb{Q}}(G)$, is defined by $\gamma^{\mathbb{Q}}_{1}(G) = G$ and $\gamma_{n+1}^{\mathbb{Q}}(G) = \sqrt{[G, \gamma_n^{\mathbb{Q}}(G)]}$. (Stallings, 1965)
- $\gamma_n^{\mathbb{Q}}(G) = \sqrt{\gamma_n(G)}$ for all $n \ge 1$.
- ▶ Hence, $\gamma^{\mathbb{Q}}(G)$ is an N_0 -series (since $\gamma(G)$ is an N-series).
- $G/\gamma_n^{\mathbb{Q}}(G) = \Gamma_n/\operatorname{Tors}(\Gamma_n)$ is the maximal torsion-free (n-1)-step nilpotent quotient of G; in particular, $G/\gamma_2^{\mathbb{Q}}(G) = G_{abf}$.
- ▶ Associated graded Lie algebra: $gr^{\mathbb{Q}}(G) = \bigoplus_{n \geq 1} \gamma_n^{\mathbb{Q}}(G) / \gamma_{n+1}^{\mathbb{Q}}(G)$.
- G is residually torsion-free nilpotent (RTFN) iff $\gamma_{\omega}^{\mathbb{Q}}(G) = \{1\}$.

PROPOSITION (BASS & LUBOTZKY 1994)

- ▶ $gr(G) \rightarrow gr^{\mathbb{Q}}(G)$ has torsion kernel and cokernel in each degree.
- $\operatorname{gr}(G) \otimes \mathbb{Q} \to \operatorname{gr}^{\mathbb{Q}}(G) \otimes \mathbb{Q}$ is an isomorphism.
- ▶ Thus, if $b_1(G) < \infty$, then $\phi_n^{\mathbb{Q}}(G) = \phi_n(G)$

Split extensions

▶ Let $G = K \rtimes_{\varphi} Q$. Since L is an N-series, \sqrt{L} is an N_0 -series for K.

THEOREM

- $\varphi \colon Q \to \operatorname{Aut}(K)$ restricts to $\varphi \colon \sqrt[Q]{\gamma_n(Q)} \to \operatorname{Aut}(\sqrt[K]{L_n})$.

THEOREM

Suppose Q acts trivially on $K_{abf} := H_1(K, \mathbb{Z}) / \text{Tors. Then}$

- $\sqrt[K]{L_n} = \sqrt[K]{\gamma_n(K)}$ for all n.

COROLLARY

Let $G = K \times Q$ be a split extension of RTFN groups. If Q acts trivially on K_{abf} , then G is also RTFN.

Alexander invariants and Chen ranks

- ▶ The Chen Lie algebra of G is gr(G/G''), where G'' = (G')'.
- ▶ If $b_1(G) < \infty$, the *Chen ranks* of *G* are defined as $\theta_n(G) := \dim_{\mathbb{Q}} \operatorname{gr}_n(G/G'') \otimes \mathbb{Q}.$
- $\theta_n(G) \leqslant \phi_n(G)$, with equality for $n \leqslant 3$.
- ▶ Alexander invariant: B(G) := G'/G'', viewed as a $\mathbb{Z}[G_{ab}]$ -module via $gG' \cdot xG'' = gxg^{-1}G''$ for $g \in G$ and $x \in G'$.
- (Massey) $I^nB(G) = \gamma_{n+2}(G/G'')$, where I is the augmentation ideal of $\mathbb{Z}[G_{ab}]$, and hence $\operatorname{gr}_n(B(G)) \cong \operatorname{gr}_{n+2}(G/G'')$, for all $n \geq 0$.
- ▶ If $b_1(G) < \infty$, then Hilb(gr($B(G) \otimes \mathbb{Q}$), t) = $\sum_{n>0} \theta_{n+2}(G)t^n$.

THEOREM

Suppose 1 \rightarrow $K \xrightarrow{\iota} G \rightarrow Q \rightarrow$ 1 is an ab-exact sequence of groups, and Q is abelian. Then,

- ▶ The induced map on Alexander invariants, $B(\iota)$: $B(K) \to B(G)$, factors through a $\mathbb{Z}[K_{ab}]$ -linear isomorphism, $B(K) \to B(G)_{\iota}$.
- ▶ If G_{ab} is finitely generated, then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.
- If the sequence is split exact, then ι induces isomorphisms of graded Lie algebras,

$$\operatorname{gr}_{\geqslant 2}(K) \xrightarrow{\cong} \operatorname{gr}_{\geqslant 2}(G) \ \ \text{and} \ \ \operatorname{gr}_{\geqslant 2}(K/K'') \xrightarrow{\cong} \operatorname{gr}_{\geqslant 2}(G/G'').$$

Consequently, if $b_1(G) < \infty$, then $\phi_n(K) = \phi_n(G)$ and $\theta_n(K) = \theta_n(G)$ for all $n \ge 2$.

The rational Alexander invariant

- ▶ Let $B_{\mathbb{Q}}(G) := G'_{\mathbb{Q}}/G''_{\mathbb{Q}}$, viewed as a module over $\mathbb{Z}G_{\mathrm{abf}}$, where $G''_{\mathbb{Q}} = (G'_{\mathbb{Q}})'_{\mathbb{Q}} = \sqrt{\left[G'_{\mathbb{Q}}, G'_{\mathbb{Q}}\right]}$.
- $\qquad \qquad \quad \boldsymbol{I}^n(B_{\mathbb{Q}}(G)\otimes \mathbb{Q}) = \gamma_{n+2}^{\mathbb{Q}}(G/G_{\mathbb{Q}}'')\otimes \mathbb{Q}, \text{ where } I = I_{\mathbb{Q}}(G_{\mathsf{abf}}).$
- ▶ Hence, $\operatorname{gr}_n(B_{\mathbb{Q}}(G) \otimes \mathbb{Q}) \cong \operatorname{gr}_{n+2}(G/G''_{\mathbb{Q}}) \otimes \mathbb{Q}$, for all $n \geq 0$.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an abf-exact sequence and suppose Q is torsion-free abelian. Then,

- ▶ The map ι induces a $\mathbb{Z}[K_{abf}]$ -linear isomorphism, $B_{\mathbb{Q}}(K) \to B_{\mathbb{Q}}(G)_{\iota}$.
- ▶ If G_{abf} is finitely generated, then $\theta_n(K) \leq \theta_n(G)$ for all $n \geq 1$.
- ▶ If the sequence is split exact, then ι induces isos of graded Lie algebras, $\operatorname{gr}_{\geqslant 2}^{\mathbb{Q}}(K) \xrightarrow{\cong} \operatorname{gr}_{\geqslant 2}^{\mathbb{Q}}(G)$ and $\operatorname{gr}_{\geqslant 2}^{\mathbb{Q}}(K/K'') \xrightarrow{\cong} \operatorname{gr}_{\geqslant 2}^{\mathbb{Q}}(G/G'')$.
 - Consequently, if $b_1(G) < \infty$, then $\phi_n(K) = \phi_n(G)$ and $\theta_n(K) = \theta_n(G)$ for all $n \ge 2$.

Characteristic varieties

- Let G be a finitely generated group. Then $\mathbb{T}_G := \operatorname{Hom}(G, \mathbb{C}^*)$ is an algebraic group, with identity 1 the trivial character, $g \mapsto 1$.
- lacktriangle Clearly, $\mathbb{T}_G=\mathbb{T}_{G_{\mathrm{ab}}}$ and $\mathbb{T}_G^0=\mathbb{T}_{G_{\mathrm{abf}}}.$
- ▶ Characteristic varieties: $V_k(G) := \{ \rho \in \mathbb{T}_G \mid \dim H^1(G, \mathbb{C}_\rho) \ge k \}.$
- Set $W_k(G) := V_k(G) \cap \mathbb{T}_G^0$.
- For each $k \ge 1$, we have

$$\mathcal{V}_k(G) = V(\mathsf{ann}(\bigwedge^k B(G) \otimes \mathbb{C}))$$

$$\mathcal{W}_k(G) = V(\operatorname{ann}(\bigwedge^k B_{\mathbb{Q}}(G) \otimes \mathbb{C})),$$

at least away from $1 \in \mathbb{T}_G^0$.

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an exact sequence of f.g. groups.

- If the sequence is ab-exact and Q is abelian, then the map $\iota^* : \mathbb{T}_G \to \mathbb{T}_K$ restricts to maps $\iota^* : \mathcal{V}_k(G) \to \mathcal{V}_k(K)$ for all $k \ge 1$; furthermore, $\iota^*: \mathcal{V}_1(G) \to \mathcal{V}_1(K)$ is a surjection.
- ▶ If the sequence is abf-exact and Q is torsion-free abelian, then the map $\iota^* : \mathbb{T}_G^0 \to \mathbb{T}_K^0$ restricts to maps $\iota^* : \mathcal{W}_k(G) \to \mathcal{W}_k(K)$ for all $k \ge 1$; furthermore, $\iota^* : \mathcal{W}_1(G) \to \mathcal{W}_1(K)$ is a surjection.

Holonomy Lie algebra

- ▶ Assume G_{abf} is finitely generated, and let $\mathbb{L} = \text{Lie}(G_{abf})$ be the free Lie algebra on G_{abf} , so that $\mathbb{L}_1 = G_{abf}$ and $\mathbb{L}_2 = G_{abf} \wedge G_{abf}$.
- ▶ The holonomy Lie algebra of G is $\mathfrak{h}(G) := \text{Lie}(G_{abf})/(\text{im}(\cup_G^{\vee}))$, where $\cup_G^{\vee} : H^2(G)^{\vee} \to (H^1(G) \wedge H^1(G))^{\vee} \cong G_{abf} \wedge G_{abf}$.
- ▶ There is a natural epimorphism $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$, which induces epimorphisms $\mathfrak{h}(G)/\mathfrak{h}(G)'' \rightarrow \operatorname{gr}(G/G'')$.
- ▶ Let $\bar{\theta}_n(G) := \text{rank} (\mathfrak{h}(G)/\mathfrak{h}(G)'')_n$. Then: $\bar{\theta}_n(G) \geqslant \theta_n(G)$, $\forall n \geqslant 1$.
- ▶ If $b_1(G) < \infty$, we may also define $\mathfrak{h}(G; \mathbb{Q})$. If G_{abf} is finitely generated, $\mathfrak{h}(G; \mathbb{Q}) = \mathfrak{h}(G) \otimes \mathbb{Q}$.
- ▶ The infinitesimal Alexander invariant is $\mathfrak{B}(G) := \mathfrak{h}(G)'/\mathfrak{h}(G)''$, viewed as a graded module over $\mathsf{Sym}(G_{\mathsf{abf}})$ via $g \cdot \bar{x} = [g, x]$ for $g \in \mathfrak{h}/\mathfrak{h}' = G_{\mathsf{abf}}$ and $x \in \mathfrak{h}'$.
- ▶ If $b_1(G) < \infty$, then $\bar{\theta}_n(G) = \dim_{\mathbb{Q}} \mathfrak{B}_{n-2}(G; \mathbb{Q})$, for all $n \ge 2$.

Resonance varieties

- ▶ Let *G* be a group with $b_1(G) < \infty$. Let $H^* = H^*(G; \mathbb{C})$.
- ▶ For each $a \in H^1$, left-multiplication by a yields a cochain complex,

$$(H, \delta_a) \colon H^0 \xrightarrow{\delta_a^0} H^1 \xrightarrow{\delta_a^1} H^2.$$

▶ The resonance varieties of G:

$$\mathcal{R}_k(G) := \{ a \in H^1 \mid \dim_{\mathbb{C}} H^1(H, \delta_a) \geqslant k \}.$$

- ▶ They are homogeneous algebraic subvarieties of the affine space $H^1 \cong \mathbb{C}^{b_1(G)}$. Note: $0 \in \mathcal{R}_k(G)$ iff $b_1(G) \ge k$.
- ▶ $\mathcal{R}_k(G)$ contains every isotropic subspace of H^1 of dimension $\leq k+1$; moreover, $\mathcal{R}_1(G)$ is the union of all isotropic planes in H^1 .
- $\mathcal{R}_k(G) = V(\operatorname{ann}(\bigwedge^k \mathfrak{B}(G; \mathbb{C})), \text{ away from } 0$

THEOREM

Let $1 \to K \xrightarrow{\iota} G \to Q \to 1$ be an exact sequence of f.g. groups. Suppose that either

- ▶ The sequence is split exact, gr(G) is quadratic, Q is abelian, and Q acts trivially on $H_1(K; \mathbb{Q})$.
- ▶ The sequence if ab-exact, G and K are 1-formal, and Q is abelian.
- ► The sequence if abf-exact, G and K are 1-formal, and Q is torsion-free abelian.

Then $\iota^* : H^1(G, \mathbb{C}) \twoheadrightarrow H^1(K, \mathbb{C})$ restricts to maps $\iota^* : \mathcal{R}_k(G) \twoheadrightarrow \mathcal{R}_k(K)$ for all $k \geq 1$; furthermore, $\iota^* : \mathcal{R}_1(G) \twoheadrightarrow \mathcal{R}_1(K)$ is surjective.

COROLLARY

With hypothesis as above, suppose that $\mathcal{R}_1(G) \subseteq \{0\}$. Then

- ▶ $\mathcal{R}_1(K) \subseteq \{0\}$.
- $\bar{\theta}_n(K) \leq \bar{\theta}_n(G)$ for all $n \geq 1$.
- $\bar{\theta}_n(G) = 0$ for $n \gg 0$ and $\bar{\theta}_n(K) = 0$ for $n \gg 0$.

Right-angled Artin groups

- ▶ Let $G_{\Gamma} = \langle v \in V : [v, w] = 1$ if $\{v, w\} \in E \rangle$ be the RAAG associated to a finite (simple) graph $\Gamma = (V, E)$.
- ▶ There is a finite $K(G_{\Gamma}, 1)$ which is formal; thus, G_{Γ} is 1-formal.
- ▶ $H^*(G_{\Gamma}, \mathbb{Z})$ is the exterior Stanley–Reisner ring $\bigwedge (v^* : v \in V)/(v^*w^* : \{v, w\} \notin E)$.
- ▶ (Papadima–S. 2006) $\mathfrak{h}(G_{\Gamma}) = \operatorname{Lie}(V)/([v, w] = 0 \text{ if } \{v, w\} \in E)$ and $\mathfrak{h}(G_{\Gamma}) \xrightarrow{\simeq} \operatorname{gr}(G_{\Gamma}).$
- ▶ (Duchamp–Krob 1992, PS06) Each group $gr_n(G_{\Gamma})$ is torsion-free, of rank ϕ_n given by

$$\prod_{n=1}^{\infty} (1-t^n)^{\phi_n} = P_{\Gamma}(-t),$$

where $P_{\Gamma}(t) = \sum_{k \geq 0} f_k(\Gamma) t^k$ is the clique polynomial of Γ , with $f_k(\Gamma) = \#\{k\text{-cliques in }\Gamma\}$.

- $\blacktriangleright \ \mathfrak{h}_{\Gamma}/\mathfrak{h}_{\Gamma}'' \xrightarrow{\cong} \operatorname{gr}(\textit{G}_{\Gamma}/\textit{G}_{\Gamma}'').$
- ▶ The graded pieces of $gr(G_{\Gamma}/G''_{\Gamma})$ are torsion-free, with ranks θ_n given by

$$\sum_{n=2}^{\infty}\theta_nt^n=Q_{\Gamma}\left(\frac{t}{1-t}\right),$$

where $Q_{\Gamma}(t) = \sum_{j \geq 2} c_j(\Gamma) t^j$ is the "cut polynomial" of Γ , with

$$c_j(\Gamma) = \sum_{W \subset V \colon |W| = j} \tilde{b}_0(\Gamma_W).$$

- ▶ $\mathcal{R}_1(G_{\Gamma})$ is the union of the coordinate subspaces $\mathbb{C}^W \subset \mathbb{C}^V$ for which the induced subgraph Γ_W is disconnected.
- $\mathcal{V}_1(G_{\Gamma})$ is the union of the coordinate subtori $(\mathbb{C}^*)^W \subset (\mathbb{C}^*)^V$ for which the induced subgraph Γ_W is disconnected.

BESTVINA-BRADY GROUPS

- ► The Bestvina–Brady group associated to Γ is defined as $N_{\Gamma} = \ker(\pi \colon G_{\Gamma} \to \mathbb{Z})$, where $\pi(v) = 1$, for each $v \in V(\Gamma)$.
- ▶ (Meier–Van Wyck 1995) N_{Γ} is finitely generated iff Γ is connected.
- ▶ (Bestvina–Brady 1997) N_{Γ} is finitely presented iff the flag complex Δ_{Γ} is simply connected.
- (BB97) A counterexample to either the Eilenberg–Ganea conjecture or the Whitehead asphericity conjecture can be constructed from these groups.
- The cohomology ring H*(N_Γ, Z) was computed in (Papadima–S. 2007) and (Leary–Saadetoğlu 2011).

THEOREM (PAPADIMA-S. 2007/2009, S. 2021)

Suppose [□] is connected. Then

- ▶ 1 → $N_{\Gamma} \stackrel{\iota}{\to} G_{\Gamma} \stackrel{\pi}{\to} \mathbb{Z} \to 1$ is a split, ab-exact sequence.
- ▶ $\operatorname{gr}_{\geq 2}(N_{\Gamma}) \cong \operatorname{gr}_{\geq 2}(G_{\Gamma}).$
- $ightharpoonup \operatorname{gr}_{\geq 2}(N_{\Gamma}/N_{\Gamma}'') \cong \operatorname{gr}_{\geq 2}(G_{\Gamma}/G_{\Gamma}'').$
- $\phi_k(N_{\Gamma}) = \phi_k(G_{\Gamma})$ and $\theta_k(N_{\Gamma}) = \theta_k(G_{\Gamma})$ for all $k \ge 2$.
- ▶ The map ι^* : $H^1(G_{\Gamma}, \mathbb{C}^*) \to H^1(N_{\Gamma}, \mathbb{C}^*)$ restricts to a surjection. $\iota^* : \mathcal{V}_1(G_{\Gamma}) \to \mathcal{V}_1(N_{\Gamma}).$
- ▶ The map $\iota^*: H^1(G_{\Gamma}, \mathbb{C}) \to H^1(N_{\Gamma}, \mathbb{C})$ restricts to a surjection, $\iota^* : \mathcal{R}_1(G_{\Gamma}) \to \mathcal{R}_1(N_{\Gamma}).$

The complement of a hyperplane arrangement

- ▶ Let \mathcal{A} be a central arrangement of m hyperplanes in \mathbb{C}^d . For each $H \in \mathcal{A}$ let α_H be a linear form with $\ker(\alpha_H) = H$; set $f = \prod_{H \in \mathcal{A}} \alpha_H$.
- ▶ The complement, $M(A) := \mathbb{C}^d \setminus \bigcup_{H \in A} H$, is a Stein manifold, and so it has the homotopy type of a (connected) d-dimensional CW-complex.
- ▶ In fact, M = M(A) has a minimal cell structure. Consequently, $H_*(M, \mathbb{Z})$ is torsion-free (and finitely generated).
- ▶ In particular, $H_1(M, \mathbb{Z}) = \mathbb{Z}^m$, generated by meridians $\{x_H\}_{H \in \mathcal{A}}$.
- ▶ The cohomology ring $H^*(M, \mathbb{Z})$ is determined solely by the intersection lattice, L(A).
- ▶ *M* is \mathbb{Q} -formal, but not \mathbb{Z}_p -formal, in general.

Fundamental groups of arrangements

- ► For an arrangement A, the group $G = \pi_1(M(A))$ admits a finite presentation, with generators $\{x_H\}_{H \in A}$ and commutator-relators.
- $V_k(M)$ is a finite union of torsion-translated subtori of $\mathbb{T}_G = (\mathbb{C}^*)^m$.
- ▶ $G/\gamma_2(G)$ and $G/\gamma_3(G)$ are determined by $L_{\leq 2}(A)$.
- ▶ $G/\gamma_4(G)$ —and thus G—is not necessarily determined by $L_{\leq 2}(A)$.
- ▶ [Porter–S. 2020] Suppose \mathcal{A} is decomposable, i.e., $\operatorname{gr}_3(G)$ is as predicted by $\mu \colon L_2(\mathcal{A}) \to \mathbb{Z}$. Then *all* nilpotent quotients are combinatorially determined.
- Since M is formal, G is 1-formal, i.e., its pronilpotent completion, m(G), is quadratic.
- ▶ Hence, $gr(G) \otimes \mathbb{Q} = gr(\mathfrak{m}(G))$ is determined by $L_{\leq 2}(A)$.

▶ The holonomy Lie algebra of G = G(A) is determined by $L_{\leq 2}(A)$,

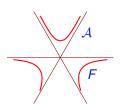
$$\mathfrak{h}(\textit{G}) = \mathsf{Lie}(\textit{x}_{\textit{H}}: \textit{H} \in \mathcal{A}) \Big/ \mathsf{ideal} \, \Big\{ \Big[\textit{x}_{\textit{H}}, \sum_{\textit{K} \in \mathcal{A}, \, \textit{K} \supset \textit{Y}} \textit{x}_{\textit{K}} \Big] \, : \, \frac{\textit{H} \in \mathcal{A}, \textit{Y} \in \textit{L}_{2}(\mathcal{A})}{\textit{H} \supset \textit{Y}} \, \Big\}.$$

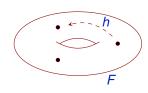
- ▶ Then $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$ (since *G* is 1-formal).
- An explicit combinatorial formula is lacking in general for the LCS ranks $\phi_n(G)$, although such formulas are known when
 - ∘ \mathcal{A} is supersolvable $\Rightarrow H^*(M, \mathbb{Q})$ is Koszul
 - A is decomposable
 - \circ $\mathcal A$ is a graphic arrangement

and in some more cases just for $\phi_3(G)$.

- ▶ $\operatorname{gr}_n(G)$ may have torsion (at least for $n \ge 4$), but the torsion is not necessarily determined by $L_{\le 2}(A)$.
- ► The map $\mathfrak{h}_3(G) \to \operatorname{gr}_3(G)$ is an isomorphism [Porter–S.], but it is not known whether $\mathfrak{h}_3(G)$ is torsion-free.
- ▶ (Papadima–S. 2004) The Chen ranks $\theta_n(G)$ are determined by $L_{\leq 2}(A)$.

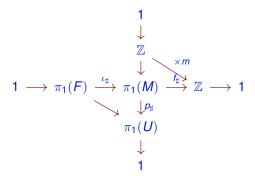
The Milnor fibration





- ▶ The map $f: \mathbb{C}^d \to \mathbb{C}$ restricts to a smooth fibration, $f: M \to \mathbb{C}^*$, called the *Milnor fibration* of A.
- ► The *Milnor fiber* is $F(A) := f^{-1}(1)$. The monodromy, $h: F \to F$, is given by $h(z) = e^{2\pi i/m}z$, where m = |A|.
- ▶ F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension d-1 (connected if d>1).
- ▶ MHS on F may not be pure; $\pi_1(F)$ may be non-1-formal [Zuber].
- ▶ $H_1(F,\mathbb{Z})$ may have torsion [Yoshinaga].

- ▶ *F* is the regular, \mathbb{Z}_m -cover of $U = \mathbb{P}(M)$, classified by the epimorphism $\pi_1(U) \twoheadrightarrow \mathbb{Z}_m$, $x_H \mapsto 1$.
- ▶ To study $\pi_1(F)$, we may assume w.l.o.g. that d = 3.
- ▶ Let ι : $F \hookrightarrow M$ be the inclusion. Induced maps on π_1 :



▶ $b_1(F) \ge m-1$, and may be computed from $\mathcal{V}_k^1(U)$. Combinatorial formulas are known in some cases (e.g., if $\mathbb{P}(A)$ has only double or triple points [Papadima–S. 2017]), but not in general.

TRIVIAL ALGEBRAIC MONODROMY

THEOREM (S. 2021)

Suppose $h_*: H_1(F; \mathbb{Z}) \to H_1(F; \mathbb{Z})$ is the identity. Then

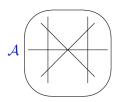
- $\operatorname{gr}_{\geqslant 2}(\pi_1(F)) \cong \operatorname{gr}_{\geqslant 2}(G)$.
- $\bullet \ \operatorname{gr}_{\geqslant 2}(\pi_1(F)/\pi_1(F)'') \cong \operatorname{gr}_{\geqslant 2}(G/G'').$

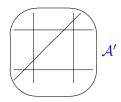
THEOREM (S. 2021)

Suppose $h_* \colon H_1(F,\mathbb{Q}) \to H_1(F,\mathbb{Q})$ is the identity. Then

- $\bullet \ \operatorname{\mathsf{gr}}_{\geqslant 2}(\pi_1(F)) \otimes \mathbb{Q} \cong \operatorname{\mathsf{gr}}_{\geqslant 2}(G) \otimes \mathbb{Q}.$
- $\operatorname{gr}_{\geqslant 2}(\pi_1(F)/\pi_1(F)'') \otimes \mathbb{Q} \cong \operatorname{gr}_{\geqslant 2}(G/G'') \otimes \mathbb{Q}.$
- $\phi_k(\pi_1(F)) = \phi_k(G)$ and $\theta_k(\pi_1(F)) = \theta_k(G)$ for all $k \ge 2$.

Falk's pair of arrangements





- ▶ Both \mathcal{A} and \mathcal{A}' have 2 triple points and 9 double points, yet $L(\mathcal{A}) \ncong L(\mathcal{A}')$. Nevertheless, $M(\mathcal{A}) \simeq M(\mathcal{A}')$.
- ▶ $V_1(M)$ and $V_1(M')$ consist of two 2-dimensional subtori of $(\mathbb{C}^*)^6$, corresponding to the triple points; $V_2(M) = V_2(M') = \{1\}$.
- ▶ Both Milnor fibrations have trivial Z-monodromy.
- ▶ $V_1(F)$ and $V_1(F')$ consist of two 2-dimensional subtori of $(\mathbb{C}^*)^5$.
- (S. 2017) $\pi_1(F) \not\cong \pi_1(F')$.
- ▶ The difference is picked by the depth-2 characteristic varieties: $V_2(F) \cong \mathbb{Z}_3$, yet $V_2(F') = \{1\}$

Yoshinaga's icosidodecahedral arrangement

- ▶ The icosidodecahedron is the convex hull of 30 vertices given by the even permutations of $(0,0,\pm 1)$ and $\frac{1}{2}(\pm 1,\pm \phi,\pm \phi^2)$, where $\phi=(1+\sqrt{5})/2$.
- ▶ It gives rise to an arrangement of 16 hyperplanes in \mathbb{R}^3 , whose complexification is the icosidodecahedral arrangement \mathcal{A} in \mathbb{C}^3 .
- ▶ M(A) is a K(G, 1).
- ▶ $H_1(F, \mathbb{Z}) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$. Thus, the algebraic monodromy of the Milnor fibration is trivial over \mathbb{Q} and \mathbb{Z}_p (p > 2), but not over \mathbb{Z} .
- ▶ Hence, $gr(\pi_1(F)) \cong gr(\pi_1(U))$, away from the prime 2. Moreover,
 - $\circ \operatorname{gr}_1(\pi_1(F)) = \mathbb{Z}^{15} \oplus \mathbb{Z}_2$
 - $\circ \operatorname{gr}_2(\pi_1(F)) = \mathbb{Z}^{45} \oplus \mathbb{Z}_2^7$
 - $\circ \operatorname{gr}_{3}(\pi_{1}(F)) = \mathbb{Z}^{250} \oplus \mathbb{Z}_{2}^{43}$
 - $\circ \ \text{gr}_4(\pi_1(F)) = \mathbb{Z}^{1,405} \oplus \mathbb{Z}_2^? \ \text{ and } \ \mathfrak{h}_4(\pi_1(F)) = \mathbb{Z}^{1,405} \oplus \mathbb{Z}_2^{20}.$

REFERENCES

- Alexander I. Suciu, Lower central series and split extensions, arXiv:2105.14129.
- Alexander I. Suciu, *Alexander invariants and cohomology jump loci in group extensions*, Annali della Scuola Normale Superiore di Pisa (doi), arXiv:2107.05148.