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THE MILNOR FIBRATION OF A HOMOGENEOUS POLYNOMIAL

THE MILNOR FIBRATION

Let f P C[z0, . . . , zd ] be a homogeneous polynomial of degree n.

Let V (f ) = tz P Cd+1 | f (z) = 0u and M = Cd+1zV (f ).

The map f : Cd+1 Ñ C restricts to a map f : M Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the (global) Milnor fibration of f .

The typical fiber, F = f´1(1), is homotopic to a finite CW-complex
of dim d . If f is not a proper power, then F is connected.

The monodromy of the fibration: h : F Ñ F , z ÞÑ e2πi/nz.

The algebraic monodromy: hq : Hq(F ,C)Ñ Hq(F ,C).
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THE MILNOR FIBRATION OF A HOMOGENEOUS POLYNOMIAL

If f has an isolated critical point at 0, then F »
Žµ Sd , where

µ = (n´ 1)d+1.

For instance, let f = z3
0 ´ z3

1 . Then F is a thrice-punctured torus
(with h rotation by 120˝), and F »

Ž4 S1:

F

h

F

More generally, if f = zn
0 ´ zn

1 , then F is a Riemann surface of
genus (n´1

2 ) with n punctures, and so F »
Ž(n´1)2

S1.

If the singularity at 0 is non-isolated, though, the Betti numbers
bq(F ) and the algebraic monodromies hq are hard to compute.
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CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite cell complex, and let π = π1(X , x0).

Let k be an algebraically closed field, and let
Hom(π,k˚) = H1(X ,k˚) be the character group of π.

The (degree 1) characteristic varieties of X are the jump loci for
homology with coefficients in rank-1 local systems on X :

Vs(X , k) = tρ P Hom(π,k˚) | dimk H1(X , kρ) ě su.
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CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have ĂS1 = R. Identify π1(S1, ˚) = Z = xty and kZ = k[t˘1].
Then:

C˚(ĂS1,k) : 0 // k[t˘1]
t´1 // k[t˘1] // 0 .

For ρ P Hom(Z, k˚) = k˚, we get

C˚(ĂS1,k)bkZ kρ : 0 // k
ρ´1 // k // 0 ,

which is exact, except for ρ = 1, when H0(S1,k) = H1(S1, k) = k.
Hence: V1(S1, k) = t1u and Vs(S1, k) = H, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify π1(Cztn pointsu) = Fn, and Hom(Fn, k˚) = (k˚)n. Then:

Vs(Cztn pointsu,k) =

$

&

%

(k˚)n if s ă n,
t1u if s = n,
H if s ą n.
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CHARACTERISTIC VARIETIES

Let π : Cd+1zt0u Ñ CPd be the projection map, with fiber C˚.

This map restricts to π : M Ñ U, where U = M/C˚ = CPd
zV (f ).

This map further restricts to a regular, Zn-cover F Ñ U.

Assume f is square-free, and write f = f1 ¨ ¨ ¨ fr , with factors
irreducible and distinct.

Then the cover F Ñ U is classified by the homomorphism
δ : π1(U) � Zn that sends each meridian about V (fi) to deg(fi).

Fix a field k, and let pδ : Hom(Zn, k˚)Ñ Hom(π1(U), k˚) be the
induced homomorphism between character groups.

If char(k) - n, then

dimk H1(F , k) =
ÿ

sě1

ˇ

ˇ

ˇ
Vs(U, k)X im(pδ)

ˇ

ˇ

ˇ
.
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HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

A: A (central) arrangement of hyperplanes in Cd+1.

Intersection lattice: L(A).

Complement: M(A) = C`z
Ť

HPA H.

The Boolean arrangement Bn
Bn: all coordinate hyperplanes zi = 0 in Cn.
L(Bn): lattice of subsets of t0,1un.
M(Bn): complex algebraic torus (C˚)n.

The braid arrangement An (or, reflection arr. of type An´1)
An: all diagonal hyperplanes zi ´ zj = 0 in Cn.
L(An): lattice of partitions of [n] = t1, . . . ,nu.
M(An): configuration space of n ordered points in C (a classifying
space for the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS

‚ ‚

‚

‚

z2 ´ z4 z1 ´ z2

z1 ´ z4

z2 ´ z3

z1 ´ z3 z3 ´ z4

M has the homotopy type of a connected, finite CW-complex of
dimension d + 1. In fact, M admits a minimal cell structure.

In particular, H˚(M,Z) is torsion-free. The Betti numbers
bq(M) := rank Hq(M,Z) are given by the Möbius function of L(A).

The Orlik–Solomon algebra A = H˚(M,Z) is determined by L(A).
but π1(M) is not.
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MILNOR FIBRATIONS OF ARRANGEMENTS

MILNOR FIBRATIONS OF ARRANGEMENTS

For each H P A, let fH : Cd+1 Ñ C be a linear form with kernel H

Let Q(A) =
ś

HPA fH , a homogeneous polynomial of degree n.

This polynomial defines the Milnor fibration of A, with fiber
F = F (A).

EXAMPLE

Let Bn be the Boolean arrangement, with Q = z1 ¨ ¨ ¨ zn. Then
M(Bn) = (C˚)n and F (Bn) = ker(Q) – (C˚)n´1.

Let A be an arrangement of planes in C3. Its projectivization, Ā, is
an arrangement of lines in CP2.

A flat X P L2(A) has multiplicity q if AX = tH P A | X Ą Hu has
size q, i.e., there are exactly q lines from Ā passing through X̄ .
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MILNOR FIBRATIONS OF ARRANGEMENTS

Question: Are the Betti numbers of F (A) and the characteristic
polynomial of the algebraic monodromy determined by L(A)? Let

∆A(t) := det(h1 ´ t ¨ id). Then b1(F (A)) = deg ∆A.

THEOREM (PAPADIMA–S. 2013)

Suppose all flats X P L2(A) have multiplicity 2 or 3. Then ∆A(t), and
thus b1(F (A)), are combinatorially determined.

We relate the cohomology jump loci of M(A) in characteristic p
with those in characteristic 0.

The bridge between the two goes through the representation
variety HomLie(h(A), sl2).

A key combinatorial ingredient is the notion of multinet.

ALEX SUCIU (NORTHEASTERN) MILNOR FIBRATIONS OF ARRANGEMENTS GEOMETRY COLLOQUIUM 10 / 28



RESONANCE VARIETIES

RESONANCE VARIETIES AND THE βp-INVARIANTS

Let A = H˚(M(A),k) — an algebra that depends only on L(A)
(and the field k).

For each a P A1, we have a2 = 0. Thus, we get a cochain
complex, (A, ¨a) : A0 a // A1 a // A2 // ¨ ¨ ¨

The (degree 1) resonance varieties of A are the cohomology jump
loci of this “Aomoto complex":

Rs(A,k) = ta P A1 | dimk H1(A, ¨a) ě su,

In particular, a P A1 belongs to R1(A,k) iff there is b P A1 not
proportional to a, such that aY b = 0 in A2.
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RESONANCE VARIETIES

Now assume k has characteristic p ą 0.

Let σ =
ř

HPA eH P A1 be the “diagonal" vector, and define

βp(A) = dimk H1(A, ¨σ).

That is, βp(A) = maxts | σ P R1
s(A,k)u.

Clearly, βp(A) depends only on L(A) and p. Moreover,
0 ď βp(A) ď |A| ´ 2.

THEOREM

If L2(A) has no flats of multiplicity 3r with r ą 1, then β3(A) ď 2.

For each m ě 1, there is a matroid Mm with all rank 2 flats of
multiplicity 3, and such that β3(Mm) = m.
M1: pencil of 3 lines. M2: Ceva arrangement.
Mm with m ą 2: not realizable over C.
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THE HOMOLOGY OF THE MILNOR FIBER

THE HOMOLOGY OF THE MILNOR FIBER

The monodromy h : F (A)Ñ F (A) has order n = |A|. Thus,

∆A(t) =
ź

d |n

Φd (t)ed (A),

where Φ1 = t ´ 1, Φ2 = t + 1, Φ3 = t2 + t + 1, Φ4 = t2 + 1, . . .
are the cyclotomic polynomials, and ed (A) P Zě0.

Easy to see: e1(A) = n´ 1. Hence, H1(F (A),C), when viewed
as a module over C[Zn], decomposes as

(C[t ]/(t ´ 1))n´1 ‘
à

1ăd |n
(C[t ]/Φd (t))ed (A).

In particular, b1(F (A)) = n´ 1 +
ř

1ăd |n ϕ(d)ed (A).
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THE HOMOLOGY OF THE MILNOR FIBER

Thus, in degree 1, question (Q1) is equivalent to: are the integers
ed (A) determined by Lď2(A)?

Not all divisors of n appear in the above formulas: If d does not
divide |AX |, for some X P L2(A), then ed (A) = 0 (Libgober).

In particular, if L2(A) has only flats of multiplicity 2 and 3, then
∆A(t) = (t ´ 1)n´1(t2 + t + 1)e3 .

If multiplicity 4 appears, then also get factor of (t + 1)e2 ¨ (t2 + 1)e4 .

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

eps(A) ď βp(A), for all s ě 1.
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THE HOMOLOGY OF THE MILNOR FIBER

THEOREM

Suppose L2(A) has no flats of multiplicity 3r , with r ą 1. Then
e3(A) = β3(A), and thus e3(A) is combinatorially determined.

A similar result holds for e2(A) and e4(A), under some additional
hypothesis.

COROLLARY

If Ā is an arrangement of n lines in P2 with only double and triple
points, then ∆A(t) = (t ´ 1)n´1(t2 + t + 1)β3(A) is combinatorially
determined.

COROLLARY (LIBGOBER 2012)

If Ā is an arrangement of n lines in P2 with only double and triple
points, then the question whether ∆A(t) = (t ´ 1)n´1 or not is
combinatorially determined.
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THE HOMOLOGY OF THE MILNOR FIBER

CONJECTURE

Let A be an essential arrangement in C3. Then

∆A(t) = (t ´ 1)|A|´1(t2 + t + 1)β3(A)[(t + 1)(t2 + 1)]β2(A),

where β3(A) P t0,1,2u and β2(A) P t0,2u

Compare this conjecture with

CONJECTURE (YOSHINAGA 2013)
Assume A is a simplicial arrangement. Then

∆A(t) = (t ´ 1)|A|´1(t2 + t + 1)e3(A),

where e3(A) P t0,1u.
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MULTINETS

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k ě 3 subsets
A1, . . . ,Ak , together with an assignment of multiplicities, m : AÑ N,
and a subset X Ď L2(A), called the base locus, such that:

1 There is an integer d such that
ř

HPAα
mH = d , for all α P [k ].

2 If H and H 1 are in different classes, then H XH 1 P X .
3 For each X P X , the sum nX =

ř

HPAα :HĄX mH is independent of α.
4 Each set

(
Ť

HPAα
H
)
zX is connected.

A similar definition can be made for any (rank 3) matroid.

A multinet as above is also called a (k ,d)-multinet, or a k -multinet.

The multinet is reduced if mH = 1, for all H P A.
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MULTINETS

A net is a reduced multinet with nX = 1, for all X P X .
In this case, |Aα| = |A|/k = d , for all α.
Moreover, X̄ has size d2, and is encoded by a (k ´ 2)-tuple of
orthogonal Latin squares.

‚ ‚

‚

‚

2

2

2

A (3,2)-net on the A3 arrangement A (3,4)-multinet on the B3 arrangement
X̄ consists of 4 triple points (nX = 1) X̄ consists of 4 triple points (nX = 1)

and 3 triple points (nX = 2)
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MULTINETS

A (3,3)-net on the Ceva matroid. A (4,3)-net on the Hessian matroid.
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MULTINETS

If A has no flats of multiplicity kr , for some r ą 1, then every
reduced k -multinet is a k -net.

(Kawahara): given any Latin square, there is a matroid M with a
3-net (M1,M2,M3) realizing it, such that each Mα is uniform.

(Yuzvinsky and Pereira–Yuz): If A supports a k -multinet with
|X | ą 1, then k = 3 or 4; if the multinet is not reduced, then k = 3.

(Wakefield & al): The only (4,3)-net in CP2 is the Hessian; there
are no (4,4), (4,5), or (4,6) nets in CP2.

Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.
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MULTINETS

LEMMA

If A supports a 3-net with parts Aα, then:
1 1 ď β3(A) ď β3(Aα) + 1, for all α.
2 If β3(Aα) = 0, for some α, then β3(A) = 1.
3 If β3(Aα) = 1, for some α, then β3(A) = 1 or 2.

All possibilities do occur:
Braid arrangement: has a (3,2)-net from the Latin square of Z2.
β3(Aα) = 0 (@α) and β3(A) = 1.

Pappus arrangement: has a (3,3)-net from the Latin square of Z3.
β3(A1) = β3(A2) = 0, β3(A3) = 1 and β3(A) = 1.

Ceva arrangement: has a (3,3)-net from the Latin square of Z3.
β3(Aα) = 1 (@α) and β3(A) = 2.
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COMPLEX COHOMOLOGY JUMP LOCI

COMPLEX COHOMOLOGY JUMP LOCI

Let A be an arrangement in C3. Work of Arapura, Falk, Cohen–S.,
Libgober–Yuz, Falk–Yuz completely describes the varieties Rs(A,C):

R1(A,C) is a union of linear subspaces in H1(M(A),C) = C|A|.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

Rs(A,C) is the union of those linear subspaces that have
dimension at least s + 1.
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COMPLEX COHOMOLOGY JUMP LOCI

Each flat X P L2(A) of multiplicity k ě 3 gives rise to a local
component of R1(A,C), of dimension k ´ 1.

More generally, every k -multinet on a sub-arrangement B Ď A
gives rise to a component of dimension k ´ 1, and all components
of R1(A,C) arise in this way.

Note: the varieties R1(A,k) with char(k) ą 0 can be more
complicated: components may be non-linear, and they may
intersect non-transversely.

THEOREM

Suppose L2(A) has no flats of multiplicity 3r , with r ą 1. Then
R1(A,C) has at least (3β3(A) ´ 1)/2 essential components, all
corresponding to 3-nets.
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COMPLEX COHOMOLOGY JUMP LOCI

Work of Arapura, Libgober, Cohen–S., S., Libgober–Yuz, Falk–Yuz,
Dimca, Dimca–Papadima–S., Artal–Cogolludo–Matei, Budur–Wang ...
provides a fairly explicit description of the varieties Vs(A,C):

Each variety Vs(A,C) is a finite union of torsion-translates of
algebraic subtori of (C˚)n.

If a linear subspace L Ă Cn is a component of Rs(A,C), then the
algebraic torus T = exp(L) is a component of Vs(A,C).

Moreover, T = f ˚(H1(S,C˚)), where f : M(A)Ñ S is an orbifold
fibration, with base S = CP1

ztk pointsu, for some k ě 3.

All components of Vs(A,C) passing through the origin 1 P (C˚)n

arise in this way (and thus, are combinatorially determined).

THEOREM

If A admits a reduced k-multinet, then ek (A) ě k ´ 2.
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MAIN THEOREM

MAIN THEOREM

THEOREM

Suppose L2(A) has no flats of multiplicity 3r with r ą 1. Then TFAE:

1 Lď2(A) admits a reduced 3-multinet.

2 Lď2(A) admits a 3-net.

3 β3(A) ‰ 0.

4 e3(A) ‰ 0.
Moreover, β3(A) ď 2 and β3(A) = e3(A).

(2) ñ (1): obvious.
(1) ñ (4): by above theorem.
(4) ñ (3): by modular bound ep(A) ď βp(A).
(3) ñ (2): use flat, sl2-valued connections on the OS-algebra.
β3(A) ď 2: a previous theorem.
Last assertion: put things together.
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MAIN THEOREM

Some ingredients in the proof:
Let A be a graded, graded-commutative algebra over C. Assume
dim Ai ă 8 and A0 = C.

Let g be a finite-dimensional Lie algebra over C. On Ab g, set
[ab x ,bb y ] = abb [x , y ].

Define the space of flat, g-valued connections on A as

F (A, g) = tω P A1 b g | [ω,ω] = 0u.

Alternatively, define the holonomy Lie algebra of A as

h(A) = Lie(A1)/(im(∇)).

where ∇ : A2 Ñ A1 ^A1 is the dual to the multiplication map.

Then, the canonical isomorphism A1 b g – HomC(A1, g) restricts
to a functorial isomorphism

F (A, g) – HomLie(h(A), g).
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MAIN THEOREM

Given a linear subspace P Ă A1, define a sub-algebra AP Ă Aď2 by
setting A1

P = P, A2
P = A2 and restricting the multiplication map.

THEOREM (MACINIC, PAPADIMA, POPESCU, S. 2013)

Suppose R1(A) =
Ť

PPP P, where P is a finite collection of linear
subspaces of A1, intersecting pairwise only at 0. Then:

1 F (AP , g)XF (AP1 , g) = t0u, for all distinct subspaces P,P 1 P P .

2 F (A, g) Ě F (1)(A, g)Y
Ť

PPP F (AP , g).

3 If g = sl2, then the above inclusion holds as an equality.

Given a vector space V , and a finite set I, let

HI(V ) =
 

x = (xi) P V I |
ÿ

iPI

xi = 0
(

.

View each x P V I as a map x : I Ñ V . For a fixed τ P IA, we obtain
a linear “evaluation" map,

evτ : V I Ñ VA, evτ(x)u = xτ(u), for u P A.

ALEX SUCIU (NORTHEASTERN) MILNOR FIBRATIONS OF ARRANGEMENTS GEOMETRY COLLOQUIUM 27 / 28



MAIN THEOREM

THEOREM

Suppose L2(A) does not have flats of multiplicity 3r , for any r ą 1.
Suppose β3(A) ‰ 0, i.e., there is τ P H1(M(A),F3) non-constant,
such that τY σ = 0. Then:

1 The evaluation map evτ : gF3 Ñ gA defines an algebraic map

evτ : HF3(g)Ñ HomLie(h(A), g),

taking regular elements to regular elements.
2 There is an integer k ě 3 and a k-multinet N = N (τ) on A,

unique up to the natural Σk -action, with associated admissible
map fN : M(A)Ñ S = CP1

ztk pointsu, such that evτ(HF3(sl2)) is
contained in the image of

(f ˚N )! : HomLie(h(S), sl2)Ñ HomLie(h(A), sl2).

With some more work, it can be shown that this 3-multinet is a 3-net.
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