ON THE TOPOLOGY OF LINE ARRANGEMENTS

Alex Suciu

Northeastern University

Summer Conference on Hyperplane Arrangements Hokkaido University, Sapporo, Japan August 9, 2016

- An arrangement of hyperplanes is a finite set A of codimension 1 linear subspaces in a finite-dimensional C-vector space V.
- The *intersection lattice*, *L*(*A*), is the poset of all intersections of *A*, ordered by reverse inclusion, and ranked by codimension.
- ► The *complement*, $M(A) = V \setminus \bigcup_{H \in A} H$, is a connected, smooth quasi-projective variety, and also a Stein manifold.
- It has the homotopy type of a minimal CW-complex of dimension dim V. In particular, H.(M(A), Z) is torsion-free.
- The fundamental group π = π₁(M(A)) admits a finite presentation, with generators x_H for each H ∈ A.
- Set $U(\mathcal{A}) = \mathbb{P}(M(\mathcal{A}))$. Then $M(\mathcal{A}) \cong U(\mathcal{A}) \times \mathbb{C}^*$.

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- ▶ For each $H \in A$, let α_H be a linear form s.t. $H = \text{ker}(\alpha_H)$.
- ► Fix an ordering $\mathcal{A} = \{H_1, ..., H_n\}$. Since \mathcal{A} is essential, the linear map $\alpha : V \to \mathbb{C}^n$, $z \mapsto (\alpha_1(z), ..., \alpha_n(z))$ is injective.
- Let \mathcal{B}_n be the 'Boolean arrangement' of coordinate hyperplanes in \mathbb{C}^n , with $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$.
- The map α restricts to an inclusion $\alpha \colon M(\mathcal{A}) \hookrightarrow M(\mathcal{B}_n)$. Thus, $M(\mathcal{A}) = \alpha(V) \cap (\mathbb{C}^*)^n$.
- ► The induced homomorphism, $\alpha_{\sharp} : \pi_1(M(\mathcal{A})) \to \pi_1(M(\mathcal{B}_n))$, coincides with the abelianization map, ab: $\pi \to \pi_{ab} = \mathbb{Z}^n$.

COHOMOLOGY RING

- ▶ The logarithmic 1-form $ω_H = \frac{1}{2\pi i} d \log α_H \in Ω_{dR}(M)$ is a closed form, representing a class $e_H \in H^1(M, \mathbb{Z})$.
- ▶ Let *E* be the \mathbb{Z} -exterior algebra on $\{e_H \mid H \in \mathcal{A}\}$, and let $\partial: E^\bullet \to E^{\bullet-1}$ be the differential given by $\partial(e_H) = 1$.
- The ring $H^{\bullet}(M(\mathcal{A}), \mathbb{Z})$ is isomorphic to the OS-algebra E/I, where

$$I = \mathsf{ideal} \left\{ \partial \left(\prod_{H \in \mathcal{B}} e_H \right) \, \Big| \, \mathcal{B} \subseteq \mathcal{A} \text{ and } \mathsf{codim} \bigcap_{H \in \mathcal{B}} H < |\mathcal{B}| \, \right\}.$$

- ▶ Hence, the map $e_H \mapsto \omega_H$ extends to a cdga quasi-isomorphism, $\omega : (H^{\bullet}(M, \mathbb{R}), d = 0) \longrightarrow \Omega^{\bullet}_{dR}(M)$.
- Therefore, M(A) is formal.
- $M(\mathcal{A})$ is minimally pure (i.e., $H^k(M(\mathcal{A}), \mathbb{Q})$ is pure of weight 2k, for all k), which again implies formality (Dupont 2016).

A STRATIFICATION OF THE REPRESENTATION VARIETY

- Let X be a connected, finite-type CW-complex, $\pi = \pi_1(X)$.
- Let *G* be a complex, linear algebraic group.
- The *representation variety* $Hom(\pi, G)$ is an affine variety.
- Given a representation $\tau : \pi \to GL(V)$, let V_{τ} be the left $\mathbb{C}[\pi]$ -module *V* defined by $g \cdot v = \tau(g)v$.
- The *characteristic varieties* of X with respect to a rational representation $\iota: G \to GL(V)$ are the algebraic subsets

 $\mathcal{V}^{i}_{s}(X,\iota) = \{ \rho \in \operatorname{Hom}(\pi, G) \mid \dim H^{i}(X, V_{\iota \circ \rho}) \geq s \}.$

When G = C* and ι: C* ≃→ GL₁(C), we get the rank 1 characteristic varieties, Vⁱ_s(X), sitting inside the character group Char(X) := Hom(π, C*).

JUMP LOCI OF SMOOTH, QUASI-PROJECTIVE VARIETIES

THEOREM (..., ARAPURA, ..., BUDUR–WANG)

If *M* is a quasi-projective manifold, the varieties $\mathcal{V}_{s}^{i}(M)$ are finite unions of torsion-translates of subtori of Char(*M*).

- A holomorphic map $f: M \to \Sigma$ is *admissible* if it surjective, its fibers are connected, and Σ is a smooth complex curve.
- The map f_β: π₁(M) → π₁(Σ) is also surjective. Thus, the morphism f[!] := f^{*}_t: Char(Σ) → Char(M) is injective.
- Up to reparametrization at the target, there is a finite set *E(M)* of admissible maps with the property that χ(Σ) < 0.

THEOREM (ARAPURA 1997)

The correspondence $f \rightsquigarrow f^! \operatorname{Char}(\Sigma)$ defines a bijection between $\mathcal{E}(M)$ and the set of positive-dimensional, irreducible components of $\mathcal{V}_1^1(M)$ passing through 1.

THEOREM (KAPOVICH–MILLSON UNIVERSALITY)

PSL₂-representation varieties of Artin groups may have arbitrarily bad singularities away from the origin.

THEOREM (KAPOVICH–MILLSON 1998)

Let *M* be a quasi-projective manifold, and *G* be a reductive algebraic group. If $\rho: \pi_1(M) \to G$ is a representation with finite image, then the germ $\text{Hom}(\pi_1(M), G)_{(\rho)}$ is analytically isomorphic to a quasi-homogeneous cone with generators of weight 1 and 2 and relations of weight 2, 3, and 4.

THEOREM (CORLETTE-SIMPSON 08, LORAY-PEREIRA-TOUZET 16)

If $\rho: \pi_1(M) \to SL_2(\mathbb{C})$ is not virtually abelian, then there is an orbifold morphism $f: M \to N$ such that $\tilde{\rho}: \pi_1(M) \to PSL_2(\mathbb{C})$ belongs to $f^! \operatorname{Hom}(\pi_1(N), PSL_2(\mathbb{C}))$, where N is either a 1-dim complex orbifold, or a polydisk Shimura modular orbifold.

SL₂-REPRESENTATION VARIETIES OF ARRANGEMENTS

- For an arrangement A, all base curves Σ have genus 0, by purity of the MHS on H[•](M(A), Q).
- ► Set $E(A) = \mathcal{E}(M(A)) \cup \{\alpha\}$. Note that all maps $f \in E(A)$ are of the form $f: M(A) \to M(A_f)$, for some arrangement A_f .
- Write $\pi = \pi_1(M(\mathcal{A}))$ and $\pi_f = \pi_1(M(\mathcal{A}_f))$

THEOREM (PAPADIMA–S. 2016)

Let $G = SL_2(\mathbb{C})$ and let $\iota : G \to GL(V)$ be a rational representation. Then,

$$\operatorname{Hom}(\pi, G)_{(1)} = \bigcup_{f \in E(\mathcal{A})} f^! \operatorname{Hom}(\pi_f, G)_{(1)}$$

$$\mathcal{V}_{1}^{1}(\pi,\iota)_{(1)} = \bigcup_{f \in E(\mathcal{A})} f^{!} \mathcal{V}_{1}^{1}(\pi_{f},\iota)_{(1)}$$

THE TANGENT CONE THEOREM

- Let X be a connected, finite-type CW-complex, let k be a field (char(k) ≠ 2), and set A = H[•](X, k).
- For each $a \in A^1$, we get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

 The resonance varieties of X are the homogeneous algebraic sets

 $\mathcal{R}^{i}_{s}(X, \Bbbk) = \{ a \in H^{1}(X, \Bbbk) \mid \dim_{\Bbbk} H^{i}(A, a) \ge s \}.$

THEOREM (DIMCA–PAPADIMA–S. 2010, DIMCA–PAPADIMA 2014)

Let X be a formal space. Then:

- The homomorphism exp: $H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$ induces isos of analytic germs, $\mathcal{R}^i_s(X, \mathbb{C})_{(0)} \xrightarrow{\simeq} \mathcal{V}^i_s(X)_{(1)}$.
- All irreducible components of Rⁱ_s(X, ℂ) are rationally defined linear subspaces.

ABELIAN DUALITY AND PROPAGATION OF JUMP LOCI

- X is an *abelian duality space* of dim *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $B := H^n(X, \mathbb{Z}\pi_{ab})$ is non-zero and torsion-free.
- $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$, for any $\mathbb{Z}\pi_{ab}$ -module A.

THEOREM (DENHAM–S.–YUZVINSKY 2015/16)

Let X be an abelian duality space of dimension n. Then:

- $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X).$
- $b_1(X) \ge n-1$.
- If $n \ge 2$, then $b_i(X) \ne 0$, for all $0 \le i \le n$.
- A cyclic, graded *E*-module A = E/I has the *EPY* property if $A^*(n)$ is a Koszul module for some integer *n*.
- If A = H[•](X, k) has this property, we say that X has the EPY property over k.

THEOREM (DSY)

Suppose X is a finite, connected CW-complex of dimension n with the EPY property over a field \Bbbk . Then the resonance varieties of X propagate:

 $\mathcal{R}^1(\mathbf{X}, \mathbb{k}) \subseteq \cdots \subseteq \mathcal{R}^n(\mathbf{X}, \mathbb{k}).$

THEOREM (DSY)

Let \mathcal{A} be an essential arrangement in \mathbb{C}^n . Then $M(\mathcal{A})$ is an abelian duality space of dimension n (and also is formal and has the EPY property). Consequently, the characteristic and resonance varieties of $M(\mathcal{A})$ propagate.

- All irreducible components of $\mathcal{R}^i_{s}(M(\mathcal{A}), \mathbb{C})$ are linear.
- In general, $\mathcal{R}^1(M(\mathcal{A}), \Bbbk)$ may have non-linear components.

MULTINETS AND DEGREE 1 RESONANCE

FIGURE: (3, 2)-net; (3, 4)-multinet; non-3-net, reduced (3, 4)-multinet

THEOREM (FALK, COHEN-S., LIBGOBER-YUZVINSKY, Falk-Yuz)

$$\mathcal{R}^{1}_{s}(M(\mathcal{A}),\mathbb{C}) = \bigcup_{\mathcal{B}\subseteq\mathcal{A}} \bigcup_{\substack{\mathcal{N} \text{ a } k \text{-multinet on } \mathcal{B} \\ \text{with at least } s + 2 \text{ parts}}} P_{\mathcal{N}}$$

where P_N is the (k - 1)-dimensional linear subspace spanned by the vectors $u_2 - u_1, \ldots, u_k - u_1$, where $u_{\alpha} = \sum_{H \in B_{\alpha}} m_H e_H$.

MILNOR FIBRATION

- ► Let \mathcal{A} be an arrangement of *n* hyperplanes in \mathbb{C}^{d+1} . For each $H \in \mathcal{A}$ let α_H be a linear form with ker $(\alpha_H) = H$, and let $Q = \prod_{H \in \mathcal{A}} \alpha_H$.
- $Q: \mathbb{C}^{d+1} \to \mathbb{C}$ restricts to a smooth fibration, $Q: M(\mathcal{A}) \to \mathbb{C}^*$. The *Milnor fiber* of the arrangement is $F(\mathcal{A}) := Q^{-1}(1)$.
- F is a Stein manifold. It has the homotopy type of a finite cell complex of dim d. In general, F is neither formal, nor minimal.
- ► F = F(A) is the regular, \mathbb{Z}_n -cover of U = U(A), classified by the morphism $\pi_1(U) \rightarrow \mathbb{Z}_n$ taking each loop x_H to 1.

MODULAR INEQUALITIES

- The monodromy diffeo, $h: F \to F$, is given by $h(z) = e^{2\pi i/n} z$.
- Let $\Delta(t)$ be the characteristic polynomial of $h_*: H_1(F, \mathbb{C}) \bigcirc$. Since $h^n = id$, we have

$$\Delta(t) = \prod_{r|n} \Phi_r(t)^{e_r(\mathcal{A})},$$

where $\Phi_r(t)$ is the *r*-th cyclotomic polynomial, and $e_r(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- WLOG, we may assume *d* = 2, so that *A* = P(A) is an arrangement of lines in CP².
- If there is no point of \overline{A} of multiplicity $q \ge 3$ such that $r \mid q$, then $e_r(A) = 0$ (Libgober 2002).
- ▶ In particular, if \overline{A} has only points of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$. If multiplicity 4 appears, then we also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

- Let $A = H^{\bullet}(M(A), \mathbb{k})$, and let $\sigma = \sum_{H \in A} e_H \in A^1$.
- Assume k has characteristic p > 0, and define

 $\beta_{p}(\mathcal{A}) = \dim_{\mathbb{k}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_p(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^1_s(\mathcal{A}, \Bbbk)\}.$

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^m}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $m \geq 1$.

THEOREM (PAPADIMA–S. 2014)

- Suppose A admits a *k*-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \ge k 2$, otherwise.
- If A admits a reduced k-multinet, then $e_k(A) \ge k 2$.

THEOREM (PAPADIMA-S. 2014)

Suppose \overline{A} has no points of multiplicity 3r with r > 1. TFAE:

- *A* admits a reduced 3-multinet.
- A admits a 3-net.
- $\beta_3(\mathcal{A}) \neq 0.$

Moreover, the following hold:

- $\beta_3(\mathcal{A}) \leq 2.$
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is determined by $L_{\leq 2}(A)$.

In particular, if \overline{A} has only double and triple points, then $\Delta(t)$ is combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for the Milnor fibration of an arrangement \mathcal{A} of rank at least 3 is given by the combinatorial formula

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements, such as:

- All sub-arrangements of non-exceptional Coxeter arrangements (Măcinic, Papadima).
- All complex reflection arrangements (Măcinic, Papadima, Popescu, Dimca, Sticlaru).
- Certain types of complexified real arrangements (Yoshinaga, Bailet, Torielli, Settepanella).

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{d+1} .
- Let *N* be a (closed) regular neighborhood of the hypersurface $\bigcup_{H \in \mathcal{A}} \mathbb{P}(H) \subset \mathbb{CP}^d$.
- Let $\overline{U}(\mathcal{A}) = \mathbb{CP}^d \setminus \operatorname{int}(N)$. Clearly, $\overline{U} \simeq U$.
- ▶ The boundary manifold of A is $\partial \overline{U} = \partial N$. This is a compact, orientable, smooth manifold of dimension 2d 1.

EXAMPLE

- ▶ Let \mathcal{A} be a pencil of *n* hyperplanes in \mathbb{C}^{d+1} . If n = 1, then $\partial \overline{U} = S^{2d-1}$. If n > 1, then $\partial \overline{U} = \sharp^{n-1}S^1 \times S^{2(d-1)}$.
- Let \mathcal{A} be a near-pencil of *n* planes in \mathbb{C}^3 . Then $\partial \overline{U} = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$.

- When d = 2, the boundary manifold $\partial \overline{U}$ is a 3-dimensional graph-manifold M_{Γ} , where
 - Γ is the incidence graph of \mathcal{A} , with $V(\Gamma) = L_1(\mathcal{A}) \cup L_2(\mathcal{A})$ and $E(\Gamma) = \{(L, P) \mid P \in L\}.$
 - Vertex manifolds M_v = S¹ × (S²\U_{{v,w}∈E(Γ)} D²_{v,w}) are glued along edge manifolds M_e = S¹ × S¹ via flip maps.

THEOREM (JIANG-YAU 1993)

 $U(\mathcal{A}) \cong U(\mathcal{A}') \ \Rightarrow \ M_{\Gamma} \cong M_{\Gamma'} \ \Rightarrow \ \Gamma \cong \Gamma' \ \Rightarrow \ L(\mathcal{A}) \cong L(\mathcal{A}').$

THEOREM (COHEN-S. 2008)

 $\mathcal{V}_1^1(M_{\Gamma}) = \bigcup_{v \in V(\Gamma) : \deg(v) \ge 3} \{\prod_{i \in v} t_i = 1\}.$ Moreover, TFAE:

- M_{Γ} is formal.
- $\operatorname{TC}_1(\mathcal{V}_1^1(M_{\Gamma})) = \mathcal{R}_1^1(M_{\Gamma}, \mathbb{C}).$
- A is a pencil or a near-pencil.

DEFINITION (AGOL, KOBERDA-S.)

A finitely generated group *G* is *residually finite rationally p* for some prime *p* if there is a sequence of subgroups $G = G_0 > \cdots > G_i > G_{i+1} > \cdots$ such that $\bigcap_{i>0} G_i = \{1\}$, and, for each *i*,

- $G_{i+1} \lhd G_i;$
- G_i/G_{i+1} is an elementary abelian *p*-group;
- $\ker(G_i \to H_1(G_i, \mathbb{Q}))$ is a subgroup of G_{i+1} .
- G RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite & residually nilpotent.
- $G \operatorname{RFR}_p \Rightarrow \text{torsion-free.}$
- G finitely presented & $RFR_p \Rightarrow$ has solvable word problem.
- The class of RFRp groups is closed under taking subgroups, finite direct products, and finite free products.

- Finitely generated free groups F_n , surface groups $\pi_1(\Sigma_g)$, and right-angled Artin groups A_{Γ} are RFR*p*, for all *p*.
- Finite groups and non-abelian nilpotent groups are not RFRp, for any p.

THEOREM (KOBERDA–S. 2016)

If **G** is a finitely presented group which is RFRp for infinitely many primes **p**, then either **G** is abelian or **G** is large (i.e., it virtually surjects onto a non-abelian free group).

THEOREM (KS)

Let M_{Γ} be the boundary manifold of a line arrangement in \mathbb{C}^2 . Then $\pi_1(M_{\Gamma})$ is RFRp, for all primes p.

CONJECTURE (KS)

Let $\pi = \pi_1(M(\mathcal{A}))$ be an arrangement group. Then π is RFR*p*, for all *p*. (In particular, π is torsion-free and residually finite.)

The boundary of the Milnor Fiber

- ▶ For an arrangement \mathcal{A} in \mathbb{C}^{d+1} , let $\overline{\mathcal{F}}(\mathcal{A}) = \mathcal{F}(\mathcal{A}) \cap D^{2(d+1)}$ be the *closed Milnor fiber* of \mathcal{A} . Clearly, $\mathcal{F} \simeq \overline{\mathcal{F}}$.
- ► The *boundary of the Milnor fiber* of A is the compact, smooth, orientable, (2d 1)-manifold $\partial \overline{F} = F \cap S^{2d+1}$.
- ▶ The pair $(\overline{F}, \partial \overline{F})$ is (d 1)-connected. In particular, if $d \ge 2$, then $\partial \overline{F}$ is connected, and $\pi_1(\partial \overline{F}) \rightarrow \pi_1(\overline{F})$ is surjective.

EXAMPLE

• Let \mathcal{B}_n be the Boolean arrangement in \mathbb{C}^n . Recall $F = (\mathbb{C}^*)^{n-1}$. Hence, $\overline{F} = T^{n-1} \times D^{n-1}$ & and so $\partial \overline{F} = T^{n-1} \times S^{n-2}$.

• Let \mathcal{A} be a near-pencil of *n* planes in \mathbb{C}^3 . Then $\partial \overline{F} = S^1 \times \Sigma_{n-2}$.

The Hopf fibration $\pi : \mathbb{C}^{d+1} \setminus \{0\} \to \mathbb{CP}^d$ restricts to regular, cyclic *n*-fold covers, $\pi : \overline{F} \to \overline{U}$ and $\pi : \partial \overline{F} \to \partial \overline{U}$, which fit into

Assume now that d = 2. The fundamental group of $\partial \overline{U} = M_{\Gamma}$ has generators \overline{x}_H for $H \in A$ and generators y_c corresponding to the cycles of Γ .

PROPOSITION (S. 2014)

The \mathbb{Z}_n -cover $\pi: \partial \overline{F} \to \partial \overline{U}$ is classified by the homomorphism $\pi_1(\partial \overline{U}) \twoheadrightarrow \mathbb{Z}_n$ given by $x_H \mapsto 1$ and $y_c \mapsto 0$.

THEOREM (NÉMETHI–SZILARD 2012)

The characteristic polynomial of h_* : $H_1(\partial \overline{F}, \mathbb{C}) \bigcirc$ is given by

$$\delta(t) = \prod_{X \in L_2(\mathcal{A})} (t-1)(t^{\operatorname{gcd}(|\mathcal{A}_X|,|\mathcal{A}|)}-1)^{|\mathcal{A}_X|-2}.$$

A PAIR OF ARRANGEMENTS

- Let \mathcal{A} and \mathcal{A}' be the above pair of arrangements. Both have 2 triple points and 9 double points, yet $L(\mathcal{A}) \ncong L(\mathcal{A}')$.
- As noted by Rose and Terao, the respective OS-algebras are isomorphic. In fact, as shown by Falk, U(A) ≃ U(A').
- Since L(A) ≇ L(A'), the corresponding boundary manifolds, ∂U
 and ∂U
 ', are not homotopy equivalent.
- In fact, V¹₁(∂U) consists of 7 codimension-1 subtori in (C*)¹³, while V¹₁(∂U) consists of 8 such subtori.

 The corresponding Milnor fibers, F and F', have the same characteristic polynomial of the algebraic monodromy,

$$\Delta = \Delta' = (t-1)^5.$$

Likewise for the boundaries of the Milnor fibers,

$$\delta = \delta' = (t-1)^{13}(t^2 + t + 1)^2.$$

 The characteristic varieties V¹₁(F) and V¹₁(F') consist of two 2-dimensional subtori of (ℂ*)⁵. On the other hand,

$$\begin{aligned} \mathcal{V}_2^1(F) &= \{\mathbf{1}, (1, \omega, \omega, 1, 1), (1, \omega^2, \omega^2, 1, 1)\}, \\ \mathcal{V}_2^1(F') &= \{\mathbf{1}\}. \end{aligned}$$

• Thus, $\pi_1(F) \ncong \pi_1(F')$.

Conjecture

Let \mathcal{A} and \mathcal{A}' be two central arrangements in \mathbb{C}^3 . Then

 $F(\mathcal{A}) \cong F(\mathcal{A}') \Rightarrow L(\mathcal{A}) \cong L(\mathcal{A}').$

References

- G. Denham, A. Suciu, S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- G. Denham, A. Suciu, S. Yuzvinsky, *Abelian duality and propagation of resonance*, arxiv:1512.07702.
- T. Koberda, A. Suciu, *Residually finite rationally p groups*, arxiv:1604.02010.
- S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.
- S. Papadima, A. Suciu, *Naturality properties and comparison results for topological and infinitesimal embedded jump loci*, arxiv:1609.02768

A. Suciu, *Hyperplane arrangements and Milnor fibrations*, Ann. Fac. Sci. Toulouse Math. **23** (2014), no. 2, 417–481.

A. Suciu, On the topology of Milnor fibrations of hyperplane arrangements, arxiv:1607.06340 (to appear).