On THE TOPOLOGY OF LINE ARRANGEMENTS

Alex Suciu

Northeastern University

Summer Conference on Hyperplane Arrangements
Hokkaido University, Sapporo, Japan
August 9, 2016

COMPLEMENTS OF HYPERPLANE ARRANGMENTS

- An arrangement of hyperplanes is a finite set \mathcal{A} of codimension 1 linear subspaces in a finite-dimensional \mathbb{C}-vector space V.
- The intersection lattice, $L(\mathcal{A})$, is the poset of all intersections of \mathcal{A}, ordered by reverse inclusion, and ranked by codimension.
- The complement, $M(\mathcal{A})=V \backslash \bigcup_{H \in \mathcal{A}} H$, is a connected, smooth quasi-projective variety, and also a Stein manifold.
- It has the homotopy type of a minimal CW-complex of dimension $\operatorname{dim} V$. In particular, $H_{\bullet}(M(\mathcal{A}), \mathbb{Z})$ is torsion-free.
- The fundamental group $\pi=\pi_{1}(M(\mathcal{A}))$ admits a finite presentation, with generators x_{H} for each $H \in \mathcal{A}$.
- Set $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$. Then $M(\mathcal{A}) \cong U(\mathcal{A}) \times \mathbb{C}^{*}$.

THE ABELIANIZATION MAP

- We may assume that \mathcal{A} is essential, i.e., $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
- For each $H \in \mathcal{A}$, let α_{H} be a linear form s.t. $H=\operatorname{ker}\left(\alpha_{H}\right)$.
- Fix an ordering $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$. Since \mathcal{A} is essential, the linear map $\alpha: V \rightarrow \mathbb{C}^{n}, \quad z \mapsto\left(\alpha_{1}(z), \ldots, \alpha_{n}(z)\right)$ is injective.
- Let \mathcal{B}_{n} be the 'Boolean arrangement' of coordinate hyperplanes in \mathbb{C}^{n}, with $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$.
- The map α restricts to an inclusion $\alpha: M(\mathcal{A}) \hookrightarrow M\left(\mathcal{B}_{n}\right)$. Thus, $M(\mathcal{A})=\alpha(\boldsymbol{V}) \cap\left(\mathbb{C}^{*}\right)^{n}$.
- The induced homomorphism, $\alpha_{\sharp}: \pi_{1}(M(\mathcal{A})) \rightarrow \pi_{1}\left(M\left(\mathcal{B}_{n}\right)\right)$, coincides with the abelianization map, $\mathrm{ab}: \pi \rightarrow \pi_{\mathrm{ab}}=\mathbb{Z}^{n}$.

COHOMOLOGY RING

- The logarithmic 1 -form $\omega_{H}=\frac{1}{2 \pi \mathrm{i}} \mathrm{d} \log \alpha_{H} \in \Omega_{\mathrm{dR}}(M)$ is a closed form, representing a class $e_{H} \in H^{1}(M, \mathbb{Z})$.
- Let E be the \mathbb{Z}-exterior algebra on $\left\{e_{H} \mid H \in \mathcal{A}\right\}$, and let $\partial: E^{\bullet} \rightarrow E^{\bullet-1}$ be the differential given by $\partial\left(e_{H}\right)=1$.
- The ring $H^{\bullet}(M(\mathcal{A}), \mathbb{Z})$ is isomorphic to the OS-algebra E / I, where

$$
I=\text { ideal }\left\{\partial\left(\prod_{H \in \mathcal{B}} e_{H}\right) \mid \mathcal{B} \subseteq \mathcal{A} \text { and } \operatorname{codim} \bigcap_{H \in \mathcal{B}} H<|\mathcal{B}|\right\} .
$$

- Hence, the map $e_{H} \mapsto \omega_{H}$ extends to a cdga quasi-isomorphism, $\omega:\left(H^{\bullet}(M, \mathbb{R}), \mathrm{d}=0\right) \longrightarrow \Omega_{\mathrm{dR}}(M)$.
- Therefore, $M(\mathcal{A})$ is formal.
- $M(\mathcal{A})$ is minimally pure (i.e., $H^{k}(M(\mathcal{A}), \mathbb{Q})$ is pure of weight $2 k$, for all k), which again implies formality (Dupont 2016).
- Let X be a connected, finite-type CW-complex, $\pi=\pi_{1}(X)$.
- Let G be a complex, linear algebraic group.
- The representation variety $\operatorname{Hom}(\pi, G)$ is an affine variety.
- Given a representation $\tau: \pi \rightarrow \mathrm{GL}(V)$, let V_{τ} be the left $\mathbb{C}[\pi]$-module V defined by $g \cdot v=\tau(g) v$.
- The characteristic varieties of X with respect to a rational representation $\iota: G \rightarrow \mathrm{GL}(V)$ are the algebraic subsets

$$
\mathcal{V}_{s}^{i}(X, \iota)=\left\{\rho \in \operatorname{Hom}(\pi, G) \mid \operatorname{dim} H^{i}\left(X, V_{\iota \circ \rho}\right) \geqslant s\right\} .
$$

- When $G=\mathbb{C}^{*}$ and $\iota: \mathbb{C}^{*} \xrightarrow{\simeq} \mathrm{GL}_{1}(\mathbb{C})$, we get the rank 1 characteristic varieties, $\mathcal{V}_{s}^{i}(X)$, sitting inside the character group $\operatorname{Char}(X):=\operatorname{Hom}\left(\pi, \mathbb{C}^{*}\right)$.

JUMP LOCI OF SMOOTH, QUASI-PROJECTIVE VARIETIES

THEOREM (..., ARAPURA, ..., BUDUR-WANG)
If M is a quasi-projective manifold, the varieties $\mathcal{V}_{s}^{i}(M)$ are finite unions of torsion-translates of subtori of $\operatorname{Char}(M)$.

- A holomorphic map $f: M \rightarrow \Sigma$ is admissible if it surjective, its fibers are connected, and Σ is a smooth complex curve.
- The map $f_{\sharp}: \pi_{1}(M) \rightarrow \pi_{1}(\Sigma)$ is also surjective. Thus, the morphism $f^{!}:=f_{\sharp}^{*}: \operatorname{Char}(\Sigma) \rightarrow \operatorname{Char}(M)$ is injective.
- Up to reparametrization at the target, there is a finite set $\mathcal{E}(M)$ of admissible maps with the property that $\chi(\Sigma)<0$.

THEOREM (ARAPURA 1997)
The correspondence $f \sim f^{!}$Char(Σ) defines a bijection between $\mathcal{E}(M)$ and the set of positive-dimensional, irreducible components of $\mathcal{V}_{1}^{1}(M)$ passing through 1.

THEOREM (Kapovich-Millson universality)

PSL_{2}-representation varieties of Artin groups may have arbitrarily bad singularities away from the origin.

THEOREM (Kapovich-Millson 1998)

Let M be a quasi-projective manifold, and G be a reductive algebraic group. If $\rho: \pi_{1}(M) \rightarrow G$ is a representation with finite image, then the germ $\operatorname{Hom}\left(\pi_{1}(M), G\right)_{(\rho)}$ is analytically isomorphic to a quasi-homogeneous cone with generators of weight 1 and 2 and relations of weight 2,3 , and 4 .

THEOREM (CORLETTE-Simpson 08, LORAY-PEREIRA-TOUZET 16) If $\rho: \pi_{1}(M) \rightarrow \mathrm{SL}_{2}(\mathbb{C})$ is not virtually abelian, then there is an orbifold morphism $f: M \rightarrow N$ such that $\tilde{\rho}: \pi_{1}(M) \rightarrow \mathrm{PSL}_{2}(\mathbb{C})$ belongs to $f^{!} \operatorname{Hom}\left(\pi_{1}(N), \mathrm{PSL}_{2}(\mathbb{C})\right)$, where N is either a 1 -dim complex orbifold, or a polydisk Shimura modular orbifold.

SL2-REPRESENTATION VARIETIES OF ARRANGEMENTS

- For an arrangement \mathcal{A}, all base curves Σ have genus 0 , by purity of the MHS on $H^{\bullet}(M(\mathcal{A}), \mathbb{Q})$.
- Set $E(\mathcal{A})=\mathcal{E}(M(\mathcal{A})) \cup\{\alpha\}$. Note that all maps $f \in E(\mathcal{A})$ are of the form $f: M(\mathcal{A}) \rightarrow M\left(\mathcal{A}_{f}\right)$, for some arrangement \mathcal{A}_{f}.
- Write $\pi=\pi_{1}(M(\mathcal{A}))$ and $\pi_{f}=\pi_{1}\left(M\left(\mathcal{A}_{f}\right)\right)$

THEOREM (PAPADIMA-S. 2016)
Let $G=\mathrm{SL}_{2}(\mathbb{C})$ and let $\iota: G \rightarrow \mathrm{GL}(V)$ be a rational representation. Then,

$$
\begin{aligned}
\operatorname{Hom}(\pi, G)_{(1)} & =\bigcup_{f \in E(\mathcal{A})} f^{!} \operatorname{Hom}\left(\pi_{f}, G\right)_{(1)} \\
\mathcal{V}_{1}^{1}(\pi, \iota)_{(1)} & =\bigcup_{f \in E(\mathcal{A})} f^{!} \mathcal{V}_{1}^{1}\left(\pi_{f}, \iota\right)_{(1)}
\end{aligned}
$$

The Tangent Cone theorem

- Let X be a connected, finite-type CW-complex, let \mathbb{k} be a field $(\operatorname{char}(\mathbb{k}) \neq 2)$, and set $A=H^{\bullet}(X, \mathbb{k})$.
- For each $a \in A^{1}$, we get a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2}
$$

- The resonance varieties of X are the homogeneous algebraic sets

$$
\mathcal{R}_{s}^{i}(X, \mathbb{k})=\left\{a \in H^{1}(X, \mathbb{k}) \mid \operatorname{dim}_{\mathbb{k}} H^{i}(A, a) \geqslant s\right\} .
$$

THEOREM (DimCA-PAPADIMA-S. 2010, DimCA-PAPADIMA 2014) Let X be a formal space. Then:

- The homomorphism $\exp : H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right)$ induces isos of analytic germs, $\mathcal{R}_{s}^{i}(X, \mathbb{C})_{(0)} \xrightarrow{\simeq} \mathcal{V}_{s}^{i}(X)_{(1)}$.
- All irreducible components of $\mathcal{R}_{s}^{i}(X, \mathbb{C})$ are rationally defined linear subspaces.
- X is an abelian duality space of $\operatorname{dim} n$ if $H^{i}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)=0$ for $i \neq n$ and $B:=H^{n}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)$ is non-zero and torsion-free.
- $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$, for any $\mathbb{Z} \pi_{\mathrm{ab}}$-module A.

THEOREM (Denham-S.-Yuzvinsky 2015/16)
Let X be an abelian duality space of dimension n. Then:

- $\mathcal{V}_{1}^{1}(X) \subseteq \cdots \subseteq \mathcal{V}_{1}^{n}(X)$.
- $b_{1}(X) \geqslant n-1$.
- If $n \geqslant 2$, then $b_{i}(X) \neq 0$, for all $0 \leqslant i \leqslant n$.
- A cyclic, graded E-module $A=E / /$ has the $E P Y$ property if $A^{*}(n)$ is a Koszul module for some integer n.
- If $A=H^{\bullet}(X, \mathbb{k})$ has this property, we say that X has the EPY property over \mathbb{k}.

PROPAGATION OF RESONANCE

THEOREM (DSY)

Suppose X is a finite, connected CW-complex of dimension n with the EPY property over a field \mathfrak{k}. Then the resonance varieties of X propagate:

$$
\mathcal{R}^{1}(X, \mathbb{k}) \subseteq \cdots \subseteq \mathcal{R}^{n}(X, \mathbb{k})
$$

THEOREM (DSY)

Let \mathcal{A} be an essential arrangement in \mathbb{C}^{n}. Then $M(\mathcal{A})$ is an abelian duality space of dimension n (and also is formal and has the EPY property). Consequently, the characteristic and resonance varieties of $M(\mathcal{A})$ propagate.

- All irreducible components of $\mathcal{R}_{s}^{i}(M(\mathcal{A}), \mathbb{C})$ are linear.
- In general, $\mathcal{R}_{1}^{1}(M(\mathcal{A}), \mathbb{k})$ may have non-linear components.

MULTINETS AND DEGREE 1 RESONANCE

Figure: $(3,2)$-net; $(3,4)$-multinet; non-3-net, reduced $(3,4)$-multinet

THEOREM (FALK, COHEN-S., LibgOber-YuZvinsky, Falk-Yuz)

$$
\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{C})=\bigcup_{\mathcal{B} \subseteq \mathcal{A}} \bigcup_{\substack{\mathcal{N} \text { a } k \text {-multinet on } \mathcal{B} \\ \text { with at least } s+2 \text { parts }}} P_{\mathcal{N}} .
$$

where $P_{\mathcal{N}}$ is the $(k-1)$-dimensional linear subspace spanned by the vectors $u_{2}-u_{1}, \ldots, u_{k}-u_{1}$, where $u_{\alpha}=\sum_{H \in \mathcal{B}_{\alpha}} m_{H} e_{H}$.

Milnor fibration

- Let \mathcal{A} be an arrangement of n hyperplanes in \mathbb{C}^{d+1}. For each $H \in \mathcal{A}$ let α_{H} be a linear form with $\operatorname{ker}\left(\alpha_{H}\right)=H$, and let $Q=\prod_{H \in \mathcal{A}} \alpha_{H}$.
- $Q: \mathbb{C}^{d+1} \rightarrow \mathbb{C}$ restricts to a smooth fibration, $Q: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$. The Milnor fiber of the arrangement is $F(\mathcal{A}):=Q^{-1}(1)$.
- F is a Stein manifold. It has the homotopy type of a finite cell complex of dim d. In general, F is neither formal, nor minimal.
- $F=F(\mathcal{A})$ is the regular, \mathbb{Z}_{n}-cover of $U=U(\mathcal{A})$, classified by the morphism $\pi_{1}(U) \rightarrow \mathbb{Z}_{n}$ taking each loop x_{H} to 1 .

MODULAR INEQUALITIES

- The monodromy diffeo, $h: F \rightarrow F$, is given by $h(z)=e^{2 \pi i / n} z$.
- Let $\Delta(t)$ be the characteristic polynomial of $h_{*}: H_{1}(F, \mathbb{C}) \cup$. Since $h^{n}=$ id, we have

$$
\Delta(t)=\prod_{r \mid n} \Phi_{r}(t)^{e_{r}(\mathcal{A})},
$$

where $\Phi_{r}(t)$ is the r-th cyclotomic polynomial, and $e_{r}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- WLOG, we may assume $d=2$, so that $\overline{\mathcal{A}}=\mathbb{P}(\mathcal{A})$ is an arrangement of lines in $\mathbb{C P}^{2}$.
- If there is no point of $\overline{\mathcal{A}}$ of multiplicity $q \geqslant 3$ such that $r \mid q$, then $e_{r}(\mathcal{A})=0$ (Libgober 2002).
- In particular, if $\overline{\mathcal{A}}$ has only points of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{e_{3}}$. If multiplicity 4 appears, then we also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.
- Let $A=H^{\bullet}(M(\mathcal{A}), \mathbb{k})$, and let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma) .
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010) $e_{p^{m}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $m \geqslant 1$.

THEOREM (PAPADIMA-S. 2014)

- Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.
- If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose $\overline{\mathcal{A}}$ has no points of multiplicity $3 r$ with $r>1$. TFAE:

- \mathcal{A} admits a reduced 3-multinet.
- \mathcal{A} admits a 3-net.
- $\beta_{3}(\mathcal{A}) \neq 0$.

Moreover, the following hold:

- $\beta_{3}(\mathcal{A}) \leqslant 2$.
- $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is determined by $L_{\leqslant 2}(\mathcal{A})$. In particular, if $\overline{\mathcal{A}}$ has only double and triple points, then $\Delta(t)$ is combinatorially determined.

THEOREM (PS)

Suppose \mathcal{A} supports a 4 -net and $\beta_{2}(\mathcal{A}) \leqslant 2$. Then

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A})=2
$$

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for the Milnor fibration of an arrangement \mathcal{A} of rank at least 3 is given by the combinatorial formula

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})}
$$

The conjecture has been verified for several classes of arrangements, such as:

- All sub-arrangements of non-exceptional Coxeter arrangements (Măcinic, Papadima).
- All complex reflection arrangements (Măcinic, Papadima, Popescu, Dimca, Sticlaru).
- Certain types of complexified real arrangements (Yoshinaga, Bailet, Torielli, Settepanella).

THE BOUNDARY MANIFOLD

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{d+1}.
- Let N be a (closed) regular neighborhood of the hypersurface $\cup_{H \in \mathcal{A}} \mathbb{P}(H) \subset \mathbb{C P}^{d}$.
- Let $\bar{U}(\mathcal{A})=\mathbb{C P}^{d} \backslash \operatorname{int}(N)$. Clearly, $\bar{U} \simeq U$.
- The boundary manifold of \mathcal{A} is $\partial \bar{U}=\partial N$. This is a compact, orientable, smooth manifold of dimension $2 d-1$.

Example

- Let \mathcal{A} be a pencil of n hyperplanes in \mathbb{C}^{d+1}. If $n=1$, then $\partial U=S^{2 d-1}$. If $n>1$, then $\partial \bar{U}=\sharp^{n-1} S^{1} \times S^{2(d-1)}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^{3}. Then $\partial \bar{U}=S^{1} \times \Sigma_{n-2}$, where $\Sigma_{g}=\sharp^{9} S^{1} \times S^{1}$.
- When $d=2$, the boundary manifold $\partial \bar{U}$ is a 3-dimensional graph-manifold M_{Γ}, where
- Γ is the incidence graph of \mathcal{A}, with $V(\Gamma)=L_{1}(\mathcal{A}) \cup L_{2}(\mathcal{A})$ and $E(\Gamma)=\{(L, P) \mid P \in L\}$.
- Vertex manifolds $M_{v}=S^{1} \times\left(S^{2} \backslash \bigcup_{\{v, w\} \in E(\Gamma)} D_{V, w}^{2}\right)$ are glued along edge manifolds $M_{e}=S^{1} \times S^{1}$ via flip maps.

THEOREM (JIANG-YAU 1993)

$U(\mathcal{A}) \cong U\left(\mathcal{A}^{\prime}\right) \Rightarrow M_{\Gamma} \cong M_{\Gamma^{\prime}} \Rightarrow \Gamma \cong \Gamma^{\prime} \Rightarrow L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right)$.

THEOREM (COHEN-S. 2008)
$\mathcal{V}_{1}^{1}\left(M_{\Gamma}\right)=\bigcup_{v \in \mathrm{~V}(\Gamma)}: \operatorname{deg}(v) \geqslant 3\left\{\prod_{i \in v} t_{i}=1\right\}$. Moreover, TFAE:

- M_{Γ} is formal.
- $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}\left(M_{\Gamma}\right)\right)=\mathcal{R}_{1}^{1}\left(M_{\Gamma}, \mathbb{C}\right)$.
- \mathcal{A} is a pencil or a near-pencil.

The RFRp PROPERTY

Definition (Agol, Koberda-S.)

A finitely generated group G is residually finite rationally p for some prime p if there is a sequence of subgroups $G=G_{0}>\ldots$
$>G_{i}>G_{i+1}>\cdots$ such that $\bigcap_{i \geqslant 0} G_{i}=\{1\}$, and, for each i,

- $G_{i+1} \triangleleft G_{i}$;
- G_{i} / G_{i+1} is an elementary abelian p-group;
- $\operatorname{ker}\left(G_{i} \rightarrow H_{1}\left(G_{i}, \mathbb{Q}\right)\right)$ is a subgroup of G_{i+1}.
- G RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite \& residually nilpotent.
- G RFR $p \Rightarrow$ torsion-free.
- G finitely presented \& RFRp \Rightarrow has solvable word problem.
- The class of RFRp groups is closed under taking subgroups, finite direct products, and finite free products.
- Finitely generated free groups F_{n}, surface groups $\pi_{1}\left(\Sigma_{g}\right)$, and right-angled Artin groups A_{Γ} are RFRp, for all p.
- Finite groups and non-abelian nilpotent groups are not RFRp, for any p.

THEOREM (Koberda-S. 2016)
If G is a finitely presented group which is RFRp for infinitely many primes p, then either G is abelian or G is large (i.e., it virtually surjects onto a non-abelian free group).

THEOREM (KS)

Let M_{Γ} be the boundary manifold of a line arrangement in \mathbb{C}^{2}. Then $\pi_{1}\left(M_{\Gamma}\right)$ is RFRp, for all primes p.

CONJECTURE (KS)

Let $\pi=\pi_{1}(M(\mathcal{A})$ be an arrangement group. Then π is RFRp, for all p. (In particular, π is torsion-free and residually finite.)

The boundary of the Milnor fiber

- For an arrangement \mathcal{A} in \mathbb{C}^{d+1}, let $\bar{F}(\mathcal{A})=F(\mathcal{A}) \cap D^{2(d+1)}$ be the closed Milnor fiber of \mathcal{A}. Clearly, $F \simeq \bar{F}$.
- The boundary of the Milnor fiber of \mathcal{A} is the compact, smooth, orientable, $(2 d-1)$-manifold $\partial \bar{F}=F \cap S^{2 d+1}$.
- The pair $(\bar{F}, \partial \bar{F})$ is $(d-1)$-connected. In particular, if $d \geqslant 2$, then $\partial \bar{F}$ is connected, and $\pi_{1}(\partial \bar{F}) \rightarrow \pi_{1}(\bar{F})$ is surjective.

EXAMPLE

- Let \mathcal{B}_{n} be the Boolean arrangement in \mathbb{C}^{n}. Recall $F=\left(\mathbb{C}^{*}\right)^{n-1}$. Hence, $\bar{F}=T^{n-1} \times D^{n-1} \&$ and so $\partial \bar{F}=T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^{3}. Then $\partial \bar{F}=S^{1} \times \Sigma_{n-2}$.

The Hopf fibration $\pi: \mathbb{C}^{d+1} \backslash\{0\} \rightarrow \mathbb{C P}^{d}$ restricts to regular, cyclic n-fold covers, $\pi: \bar{F} \rightarrow \bar{U}$ and $\pi: \partial \bar{F} \rightarrow \partial \bar{U}$, which fit into

Assume now that $d=2$. The fundamental group of $\partial \bar{U}=M_{\Gamma}$ has generators \bar{x}_{H} for $H \in \mathcal{A}$ and generators y_{c} corresponding to the cycles of Γ.

PROPOSITION (S. 2014)

The \mathbb{Z}_{n}-cover $\pi: \partial \bar{F} \rightarrow \partial \bar{U}$ is classified by the homomorphism $\pi_{1}(\partial \bar{U}) \rightarrow \mathbb{Z}_{n}$ given by $x_{H} \mapsto 1$ and $y_{c} \mapsto 0$.

THEOREM (NÉMETHI-SZILARD 2012)

The characteristic polynomial of $h_{*}: H_{1}(\partial \bar{F}, \mathbb{C}) \circlearrowleft$ is given by

$$
\delta(t)=\prod_{X \in L_{2}(\mathcal{A})}(t-1)\left(t^{\operatorname{gcd}\left(\left|\mathcal{A}_{X}\right|,|\mathcal{A}|\right)}-1\right)^{\left|\mathcal{A}_{X}\right|-2}
$$

A PAIR OF ARRANGEMENTS

- Let \mathcal{A} and \mathcal{A}^{\prime} be the above pair of arrangements. Both have 2 triple points and 9 double points, yet $L(\mathcal{A}) \not \equiv L\left(\mathcal{A}^{\prime}\right)$.
- As noted by Rose and Terao, the respective OS-algebras are isomorphic. In fact, as shown by Falk, $U(\mathcal{A}) \simeq U\left(\mathcal{A}^{\prime}\right)$.
- Since $L(\mathcal{A}) \not \equiv L\left(\mathcal{A}^{\prime}\right)$, the corresponding boundary manifolds, $\partial \bar{U}$ and $\partial \bar{U}^{\prime}$, are not homotopy equivalent.
- In fact, $\mathcal{V}_{1}^{1}(\partial \bar{U})$ consists of 7 codimension-1 subtori in $\left(\mathbb{C}^{*}\right)^{13}$, while $\mathcal{V}_{1}^{1}\left(\partial \bar{U}^{\prime}\right)$ consists of 8 such subtori.
- The corresponding Milnor fibers, F and F^{\prime}, have the same characteristic polynomial of the algebraic monodromy,

$$
\Delta=\Delta^{\prime}=(t-1)^{5}
$$

- Likewise for the boundaries of the Milnor fibers,

$$
\delta=\delta^{\prime}=(t-1)^{13}\left(t^{2}+t+1\right)^{2}
$$

- The characteristic varieties $\mathcal{V}_{1}^{1}(F)$ and $\mathcal{V}_{1}^{1}\left(F^{\prime}\right)$ consist of two 2-dimensional subtori of $\left(\mathbb{C}^{*}\right)^{5}$. On the other hand,

$$
\begin{aligned}
\mathcal{V}_{2}^{1}(F) & =\left\{\mathbf{1},(1, \omega, \omega, 1,1),\left(1, \omega^{2}, \omega^{2}, 1,1\right)\right\} \\
\mathcal{V}_{2}^{1}\left(F^{\prime}\right) & =\{\mathbf{1}\}
\end{aligned}
$$

- Thus, $\pi_{1}(F) \not \equiv \pi_{1}\left(F^{\prime}\right)$.

CONJECTURE
Let \mathcal{A} and \mathcal{A}^{\prime} be two central arrangements in \mathbb{C}^{3}. Then

$$
F(\mathcal{A}) \cong F\left(\mathcal{A}^{\prime}\right) \Rightarrow L(\mathcal{A}) \cong L\left(\mathcal{A}^{\prime}\right)
$$

REFERENCES

R G. Denham, A. Suciu, S. Yuzvinsky, Combinatorial covers and vanishing of cohomology, Selecta Math. 22 (2016), no. 2, 561-594.
R. Denham, A. Suciu, S. Yuzvinsky, Abelian duality and propagation of resonance, arxiv:1512.07702.
T. Koberda, A. Suciu, Residually finite rationally p groups, arxiv:1604.02010.

R S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.

T- S. Papadima, A. Suciu, Naturality properties and comparison results for topological and infinitesimal embedded jump loci, arxiv:1609.02768
A. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417-481.

R A. Suciu, On the topology of Milnor fibrations of hyperplane arrangements, arxiv:1607.06340 (to appear).

