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COMPLEMENTS OF HYPERPLANE ARRANGMENTS

§ An arrangement of hyperplanes is a finite set A of
codimension 1 linear subspaces in a finite-dimensional
C-vector space V .

§ The intersection lattice, LpAq, is the poset of all intersections of
A, ordered by reverse inclusion, and ranked by codimension.

§ The complement, MpAq “ V z
Ť

HPA H, is a connected, smooth
quasi-projective variety, and also a Stein manifold.

§ It has the homotopy type of a minimal CW-complex of
dimension dim V . In particular, H.pMpAq,Zq is torsion-free.

§ The fundamental group π “ π1pMpAqq admits a finite
presentation, with generators xH for each H P A.

§ Set UpAq “ PpMpAqq. Then MpAq – UpAq ˆ C˚.



THE ABELIANIZATION MAP

§ We may assume that A is essential, i.e.,
Ş

HPA H “ t0u.

§ For each H P A, let αH be a linear form s.t. H “ kerpαHq.

§ Fix an ordering A “ tH1, . . . ,Hnu. Since A is essential, the
linear map α : V Ñ Cn, z ÞÑ pα1pzq, . . . , αnpzqq is injective.

§ Let Bn be the ‘Boolean arrangement’ of coordinate hyperplanes
in Cn, with MpBnq “ pC˚qn.

§ The map α restricts to an inclusion α : MpAq ãÑ MpBnq. Thus,
MpAq “ αpV q X pC˚qn.

§ The induced homomorphism, α7 : π1pMpAqq Ñ π1pMpBnqq,
coincides with the abelianization map, ab : π � πab “ Zn.



COHOMOLOGY RING

§ The logarithmic 1-form ωH “
1

2πi d logαH P ΩdRpMq is a closed
form, representing a class eH P H1pM,Zq.

§ Let E be the Z-exterior algebra on teH | H P Au, and let
B : E‚ Ñ E‚´1 be the differential given by BpeHq “ 1.

§ The ring H.pMpAq,Zq is isomorphic to the OS-algebra E{I,
where

I “ ideal
!

B

´

ź

HPB
eH

¯ ˇ

ˇ

ˇ
B Ď A and codim

č

HPB
H ă |B|

)

.

§ Hence, the map eH ÞÑ ωH extends to a cdga quasi-isomor-
phism, ω : pH.pM,Rq,d “ 0q // Ω.dRpMq .

§ Therefore, MpAq is formal.

§ MpAq is minimally pure (i.e., Hk pMpAq,Qq is pure of weight 2k ,
for all k ), which again implies formality (Dupont 2016).



A STRATIFICATION OF THE REPRESENTATION VARIETY

§ Let X be a connected, finite-type CW-complex, π “ π1pX q.

§ Let G be a complex, linear algebraic group.

§ The representation variety Hompπ,Gq is an affine variety.

§ Given a representation τ : π Ñ GLpV q, let Vτ be the left
Crπs-module V defined by g ¨ v “ τpgqv .

§ The characteristic varieties of X with respect to a rational
representation ι : G Ñ GLpV q are the algebraic subsets

V i
spX , ιq “ tρ P Hompπ,Gq | dim H ipX ,Vι˝ρq ě su.

§ When G “ C˚ and ι : C˚ »ÝÑ GL1pCq, we get the rank 1
characteristic varieties, V i

spX q, sitting inside the character group
CharpX q :“ Hompπ,C˚q.



JUMP LOCI OF SMOOTH, QUASI-PROJECTIVE VARIETIES

THEOREM (. . . , ARAPURA, . . . , BUDUR–WANG)

If M is a quasi-projective manifold, the varieties V i
spMq are finite

unions of torsion-translates of subtori of CharpMq.

§ A holomorphic map f : M Ñ Σ is admissible if it surjective, its
fibers are connected, and Σ is a smooth complex curve.

§ The map f7 : π1pMq Ñ π1pΣq is also surjective. Thus, the
morphism f ! :“ f ˚7 : CharpΣq Ñ CharpMq is injective.

§ Up to reparametrization at the target, there is a finite set EpMq
of admissible maps with the property that χpΣq ă 0.

THEOREM (ARAPURA 1997)

The correspondence f ; f ! CharpΣq defines a bijection
between EpMq and the set of positive-dimensional, irreducible
components of V1

1 pMq passing through 1.



THEOREM (KAPOVICH–MILLSON UNIVERSALITY)

PSL2-representation varieties of Artin groups may have
arbitrarily bad singularities away from the origin.

THEOREM (KAPOVICH–MILLSON 1998)

Let M be a quasi-projective manifold, and G be a reductive
algebraic group. If ρ : π1pMq Ñ G is a representation with finite
image, then the germ Hompπ1pMq,Gqpρq is analytically
isomorphic to a quasi-homogeneous cone with generators of
weight 1 and 2 and relations of weight 2, 3, and 4.

THEOREM (CORLETTE-SIMPSON 08, LORAY-PEREIRA-TOUZET 16)

If ρ : π1pMq Ñ SL2pCq is not virtually abelian, then there is an
orbifold morphism f : M Ñ N such that ρ̃ : π1pMq Ñ PSL2pCq
belongs to f ! Hompπ1pNq,PSL2pCqq, where N is either a 1-dim
complex orbifold, or a polydisk Shimura modular orbifold.



SL2-REPRESENTATION VARIETIES OF ARRANGEMENTS

§ For an arrangement A, all base curves Σ have genus 0, by
purity of the MHS on H.pMpAq,Qq.

§ Set EpAq “ EpMpAqq Y tαu. Note that all maps f P EpAq are of
the form f : MpAq Ñ MpAf q, for some arrangement Af .

§ Write π “ π1pMpAqq and πf “ π1pMpAf qq

THEOREM (PAPADIMA–S. 2016)

Let G “ SL2pCq and let ι : G Ñ GLpV q be a rational
representation. Then,

Hompπ,Gqp1q “
ď

fPEpAq
f ! Hompπf ,Gqp1q

V1
1 pπ, ιqp1q “

ď

fPEpAq
f !V1

1 pπf , ιqp1q



THE TANGENT CONE THEOREM

§ Let X be a connected, finite-type CW-complex, let k be a field
(charpkq ‰ 2), and set A “ H.pX , kq.

§ For each a P A1, we get a cochain complex

pA, ¨aq : A0 a // A1 a // A2 // ¨ ¨ ¨

§ The resonance varieties of X are the homogeneous algebraic
sets

Ri
spX , kq “ ta P H1pX ,kq | dimk H ipA,aq ě su.

THEOREM (DIMCA–PAPADIMA–S. 2010, DIMCA–PAPADIMA 2014)

Let X be a formal space. Then:
§ The homomorphism exp : H1pX ,Cq Ñ H1pX ,C˚q induces

isos of analytic germs, Ri
spX ,Cqp0q »ÝÑ V i

spX qp1q.
§ All irreducible components of Ri

spX ,Cq are rationally defined
linear subspaces.



ABELIAN DUALITY AND PROPAGATION OF JUMP LOCI

§ X is an abelian duality space of dim n if H ipX ,Zπabq “ 0 for
i ‰ n and B :“ HnpX ,Zπabq is non-zero and torsion-free.

§ H ipX ,Aq – Hn´ipX ,B b Aq, for any Zπab-module A.

THEOREM (DENHAM–S.–YUZVINSKY 2015/16)

Let X be an abelian duality space of dimension n. Then:
§ V1

1 pX q Ď ¨ ¨ ¨ Ď Vn
1 pX q.

§ b1pX q ě n ´ 1.
§ If n ě 2, then bipX q ‰ 0, for all 0 ď i ď n.

§ A cyclic, graded E-module A “ E{I has the EPY property if
A˚pnq is a Koszul module for some integer n.

§ If A “ H.pX ,kq has this property, we say that X has the EPY
property over k.



PROPAGATION OF RESONANCE

THEOREM (DSY)

Suppose X is a finite, connected CW-complex of dimension n
with the EPY property over a field k. Then the resonance
varieties of X propagate:

R1pX , kq Ď ¨ ¨ ¨ Ď RnpX ,kq.

THEOREM (DSY)

Let A be an essential arrangement in Cn. Then MpAq is an
abelian duality space of dimension n (and also is formal and
has the EPY property). Consequently, the characteristic and
resonance varieties of MpAq propagate.

§ All irreducible components of Ri
spMpAq,Cq are linear.

§ In general, R1
1pMpAq, kq may have non-linear components.



MULTINETS AND DEGREE 1 RESONANCE
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FIGURE: p3,2q-net; p3,4q-multinet; non-3-net, reduced p3,4q-multinet

THEOREM (FALK, COHEN–S., LIBGOBER–YUZVINSKY, Falk–Yuz)

R1
spMpAq,Cq “

ď

BĎA

ď

N a k-multinet on B
with at least s ` 2 parts

PN .

where PN is the pk ´ 1q-dimensional linear subspace spanned
by the vectors u2 ´ u1, . . . ,uk ´ u1, where uα “

ř

HPBα
mHeH .



MILNOR FIBRATION

A

F

h

F

§ Let A be an arrangement of n hyperplanes in Cd`1. For each
H P A let αH be a linear form with kerpαHq “ H, and let
Q “

ś

HPA αH .

§ Q : Cd`1 Ñ C restricts to a smooth fibration, Q : MpAq Ñ C˚.
The Milnor fiber of the arrangement is F pAq :“ Q´1p1q.

§ F is a Stein manifold. It has the homotopy type of a finite cell
complex of dim d . In general, F is neither formal, nor minimal.

§ F “ F pAq is the regular, Zn-cover of U “ UpAq, classified by
the morphism π1pUq� Zn taking each loop xH to 1.



MODULAR INEQUALITIES

§ The monodromy diffeo, h : F Ñ F , is given by hpzq “ e2πi{nz.

§ Let ∆ptq be the characteristic polynomial of h˚ : H1pF ,Cq".
Since hn “ id, we have

∆ptq “
ź

r |n

Φr ptqer pAq,

where Φr ptq is the r -th cyclotomic polynomial, and er pAq P Zě0.

§ WLOG, we may assume d “ 2, so that Ā “ PpAq is an
arrangement of lines in CP2.

§ If there is no point of Ā of multiplicity q ě 3 such that r | q, then
er pAq “ 0 (Libgober 2002).

§ In particular, if Ā has only points of multiplicity 2 and 3, then
∆ptq “ pt ´ 1qn´1pt2 ` t ` 1qe3 . If multiplicity 4 appears, then we
also get factor of pt ` 1qe2 ¨ pt2 ` 1qe4 .



§ Let A “ H.pMpAq,kq, and let σ “
ř

HPA eH P A1.

§ Assume k has characteristic p ą 0, and define

βppAq “ dimk H1pA, ¨σq.

That is, βppAq “ maxts | σ P R1
spA,kqu.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

epmpAq ď βppAq, for all m ě 1.

THEOREM (PAPADIMA–S. 2014)

§ Suppose A admits a k-net. Then βppAq “ 0 if p - k and
βppAq ě k ´ 2, otherwise.

§ If A admits a reduced k-multinet, then ek pAq ě k ´ 2.



COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA–S. 2014)

Suppose Ā has no points of multiplicity 3r with r ą 1. TFAE:
§ A admits a reduced 3-multinet.
§ A admits a 3-net.
§ β3pAq ‰ 0.

Moreover, the following hold:
§ β3pAq ď 2.
§ e3pAq “ β3pAq, and thus e3pAq is determined by Lď2pAq.

In particular, if Ā has only double and triple points, then ∆ptq is
combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and β2pAq ď 2. Then
e2pAq “ e4pAq “ β2pAq “ 2.



CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic
monodromy for the Milnor fibration of an arrangement A of rank
at least 3 is given by the combinatorial formula

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

The conjecture has been verified for several classes of
arrangements, such as:

§ All sub-arrangements of non-exceptional Coxeter arrangements
(Măcinic, Papadima).

§ All complex reflection arrangements (Măcinic, Papadima,
Popescu, Dimca, Sticlaru).

§ Certain types of complexified real arrangements (Yoshinaga,
Bailet, Torielli, Settepanella).



THE BOUNDARY MANIFOLD

§ Let A be a (central) arrangement of hyperplanes in Cd`1.

§ Let N be a (closed) regular neighborhood of the hypersurface
Ť

HPA PpHq Ă CPd .

§ Let UpAq “ CPdz intpNq. Clearly, U » U.

§ The boundary manifold of A is BU “ BN. This is a compact,
orientable, smooth manifold of dimension 2d ´ 1.

EXAMPLE

§ Let A be a pencil of n hyperplanes in Cd`1. If n “ 1, then
BU “ S2d´1. If n ą 1, then BU “ 7n´1S1 ˆ S2pd´1q.

§ Let A be a near-pencil of n planes in C3. Then
BU “ S1 ˆ Σn´2, where Σg “ 7

gS1 ˆ S1.



§ When d “ 2, the boundary manifold BU is a 3-dimensional
graph-manifold MΓ, where

§ Γ is the incidence graph of A, with V pΓq “ L1pAq Y L2pAq and
EpΓq “ tpL,Pq | P P Lu.

§ Vertex manifolds Mv “ S1 ˆ
`

S2z
Ť

tv ,wuPEpΓq D2
v ,w

˘

are glued
along edge manifolds Me “ S1 ˆ S1 via flip maps.

THEOREM (JIANG–YAU 1993)

UpAq – UpA1q ñ MΓ – MΓ1 ñ Γ – Γ1 ñ LpAq – LpA1q.

THEOREM (COHEN–S. 2008)

V1
1 pMΓq “

Ť

vPVpΓq : degpvqě3 t
ś

iPv ti “ 1u. Moreover, TFAE:
§ MΓ is formal.
§ TC1pV1

1 pMΓqq “ R1
1pMΓ,Cq.

§ A is a pencil or a near-pencil.



THE RFRp PROPERTY

DEFINITION (AGOL, KOBERDA–S.)

A finitely generated group G is residually finite rationally p for
some prime p if there is a sequence of subgroups G “ G0 ą ¨ ¨ ¨

ą Gi ą Gi`1 ą ¨ ¨ ¨ such that
Ş

iě0 Gi “ t1u, and, for each i ,
§ Gi`1 ŸGi ;
§ Gi{Gi`1 is an elementary abelian p-group;
§ kerpGi Ñ H1pGi ,Qqq is a subgroup of Gi`1.

§ G RFRp ñ residually p ñ residually finite & residually
nilpotent.

§ G RFRp ñ torsion-free.

§ G finitely presented & RFRp ñ has solvable word problem.

§ The class of RFRp groups is closed under taking subgroups,
finite direct products, and finite free products.



§ Finitely generated free groups Fn, surface groups π1pΣgq, and
right-angled Artin groups AΓ are RFRp, for all p.

§ Finite groups and non-abelian nilpotent groups are not RFRp,
for any p.

THEOREM (KOBERDA–S. 2016)

If G is a finitely presented group which is RFRp for infinitely
many primes p, then either G is abelian or G is large (i.e., it
virtually surjects onto a non-abelian free group).

THEOREM (KS)

Let MΓ be the boundary manifold of a line arrangement in C2.
Then π1pMΓq is RFRp, for all primes p.

CONJECTURE (KS)

Let π “ π1pMpAq be an arrangement group. Then π is RFRp,
for all p. (In particular, π is torsion-free and residually finite.)



THE BOUNDARY OF THE MILNOR FIBER

§ For an arrangement A in Cd`1, let F pAq “ F pAq X D2pd`1q be
the closed Milnor fiber of A. Clearly, F » F .

§ The boundary of the Milnor fiber of A is the compact, smooth,
orientable, p2d ´ 1q-manifold BF “ F X S2d`1.

§ The pair pF , BF q is pd ´ 1q-connected. In particular, if d ě 2,
then BF is connected, and π1pBF q Ñ π1pF q is surjective.



EXAMPLE

§ Let Bn be the Boolean arrangement in Cn. Recall
F “ pC˚qn´1. Hence, F “ T n´1 ˆ Dn´1 & and so
BF “ T n´1 ˆ Sn´2.

§ Let A be a near-pencil of n planes in C3. Then
BF “ S1 ˆ Σn´2.

The Hopf fibration π : Cd`1zt0u Ñ CPd restricts to regular,
cyclic n-fold covers, π : F Ñ U and π : BF Ñ BU, which fit into

Zn

��

Zn

��

Zn //

��

C˚

��

C˚

��
BF

π
��

// F

π
��

» // F

π

��

// M //

π

��

Cd`1zt0u

π
��

BU // U » // U U // CPd



Assume now that d “ 2. The fundamental group of BU “ MΓ

has generators xH for H P A and generators yc corresponding
to the cycles of Γ.

PROPOSITION (S. 2014)

The Zn-cover π : BF Ñ BU is classified by the homomorphism
π1pBUq� Zn given by xH ÞÑ 1 and yc ÞÑ 0.

THEOREM (NÉMETHI–SZILARD 2012)

The characteristic polynomial of h˚ : H1pBF ,Cq" is given by

δptq “
ź

XPL2pAq
pt ´ 1qptgcdp|AX |,|A|q ´ 1q|AX |´2.



A PAIR OF ARRANGEMENTS' $

& %�
�
�
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�
�
�
�
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§ Let A and A1 be the above pair of arrangements. Both have 2
triple points and 9 double points, yet LpAq fl LpA1q.

§ As noted by Rose and Terao, the respective OS-algebras are
isomorphic. In fact, as shown by Falk, UpAq » UpA1q.

§ Since LpAq fl LpA1q, the corresponding boundary manifolds, BU
and BU

1
, are not homotopy equivalent.

§ In fact, V1
1 pBUq consists of 7 codimension-1 subtori in pC˚q13,

while V1
1 pBU

1
q consists of 8 such subtori.



§ The corresponding Milnor fibers, F and F 1, have the same
characteristic polynomial of the algebraic monodromy,

∆ “ ∆1 “ pt ´ 1q5.

§ Likewise for the boundaries of the Milnor fibers,

δ “ δ1 “ pt ´ 1q13pt2 ` t ` 1q2.

§ The characteristic varieties V1
1 pF q and V1

1 pF
1q consist of two

2-dimensional subtori of pC˚q5. On the other hand,

V1
2 pF q “ t1, p1, ω, ω,1,1q, p1, ω

2, ω2,1,1qu,

V1
2 pF

1q “ t1u.

§ Thus, π1pF q fl π1pF 1q.

CONJECTURE

Let A and A1 be two central arrangements in C3. Then

F pAq – F pA1q ñ LpAq – LpA1q.
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