DUALITY AND RESONANCE

Alex Suciu

Northeastern University

Topology Seminar
University of Rochester
November 8, 2017

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field k.
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - $\bullet : A^i \otimes A^j \to A^{i+j}$.
 - $ab = (-1)^{ij}ba$ for all $a \in A^i$, $b \in B^j$.
- We will assume that A is connected ($A^0 = \mathbb{k} \cdot 1$), and locally finite (all the Betti numbers $b_i(A) := \dim_{\mathbb{k}} A^i$ are finite).
- A is a Poincaré duality k-algebra of dimension m if there is a k-linear map $\varepsilon \colon A^m \to k$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_k A^{m-i} \to k$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- Consequently,
 - $b_i(A) = b_{m-i}(A)$, and $A^i = 0$ for i > m.
 - ε is an isomorphism.
 - The maps PD: $A^i o (A^{m-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
 - Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{m-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
 - The *orientation class* is defined as $\omega_A = 1^{\vee}$, so that $\varepsilon(\omega_A) = 1$.

THE ASSOCIATED ALTERNATING FORM

• Associated to a \mathbb{k} -PD_m algebra there is an alternating *m*-form,

$$\mu_A: \bigwedge^m A^1 \to \mathbb{K}, \quad \mu_A(a_1 \wedge \cdots \wedge a_m) = \varepsilon(a_1 \cdots a_m).$$

- Assume now that m=3, and set $n=b_1(A)$. Fix a basis $\{e_1,\ldots,e_n\}$ for A^1 , and let $\{e_1^\vee,\ldots,e_n^\vee\}$ be the PD basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$e_i e_j = \sum_{k=1}^n \mu_{ijk} e_k^{\vee}, \quad e_i e_j^{\vee} = \delta_{ij} \omega,$$

where $\mu_{ijk} = \mu(e_i \wedge e_j \wedge e_k)$.

• Alternatively, let $A_i = (A^i)^*$, and let $e^i \in A_1$ be the (Kronecker) dual of e_i . We may then view μ dually as a trivector,

$$\mu = \sum \mu_{\textit{ijk}} \, \textit{e}^{\textit{i}} \wedge \textit{e}^{\textit{j}} \wedge \textit{e}^{\textit{k}} \in \bigwedge^{3} \textit{A}_{1}$$
 ,

which encodes the algebra structure of A.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If M is a compact, connected, orientable, m-dimensional manifold, then the cohomology ring $A = H^{\bullet}(M, \mathbb{k})$ is a PD_m algebra over \mathbb{k} .
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M,\mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

• If M bounds an oriented 4-manifold W such that the cup-product pairing on $H^2(W, M)$ is non-degenerate (e.g., if M is the link of an isolated surface singularity), then $\mu_M = 0$.

RESONANCE VARIETIES OF GRADED ALGEBRAS

- Let A be a connected, finite-type cga over $k = \mathbb{C}$.
- For each $a \in A^1$, there is a cochain complex of k-vector spaces,

$$(A, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a(b) = a \cdot b$, for $b \in A^i$.

• The resonance varieties of A are the sets

$$\mathcal{R}_s^i(A) = \{ a \in A^1 \mid \dim_{\mathbb{K}} H^i(A, \delta_a) \geqslant s \}.$$

• An element $a \in A^1$ belongs to $\mathcal{R}_s^i(A)$ if and only if

$$\operatorname{rank} \delta_a^{i+1} + \operatorname{rank} \delta_a^i \leq b_i(A) - s.$$

- Fix a \mathbb{k} -basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{x_1, \ldots, x_n\}$ be the dual basis for $A_1 = (A^1)^*$.
- Identify $Sym(A_1)$ with $S = \mathbb{k}[x_1, \dots, x_n]$, the coordinate ring of the affine space A^1 .
- Define a cochain complex of free S-modules, $L(A) := (A^{\bullet} \otimes S, \delta)$,

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta^i(u \otimes s) = \sum_{i=1}^n e_i u \otimes sx_i$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) .
- Hence, $\mathcal{R}_s^i(A)$ is the zero-set of the ideal generated by all minors of size $b_i - s + 1$ of the block-matrix $\delta^{i+1} \oplus \delta^i$.
- In particular, $\mathcal{R}_s^1(A) = V(I_{n-s}(\delta^1))$, the zero-set of the ideal of codimension s minors of δ^1

RESONANCE VARIETIES OF PD-ALGEBRAS

- Let A be a PD_m algebra.
- For all $0 \le i \le m$ and all $a \in A^1$, the square

$$(A^{m-i})^* \xrightarrow{(\delta_a^{m-i-1})^*} (A^{m-i-1})^*$$

$$PD \stackrel{\cong}{\longrightarrow} PD \stackrel{\cong}{\longrightarrow} A^{i+1}$$

commutes up to a sign of $(-1)^i$.

Consequently,

$$(H^{i}(A, \delta_{a}))^{*} \cong H^{m-i}(A, \delta_{-a}).$$

• Hence, for all i and s,

$$\mathcal{R}_s^i(A) = \mathcal{R}_s^{m-i}(A).$$

• In particular, $\mathcal{R}_1^m(A) = \{0\}$.

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

- Let A be a PD₃-algebra with $b_1(A) = n > 0$. Then
 - $\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}.$
 - $\mathcal{R}_s^2(A) = \mathcal{R}_s^1(A)$ for $1 \leq s \leq n$.
 - $\mathcal{R}_s^i(A) = \emptyset$, otherwise.
- Write $\mathcal{R}_s(A) = \mathcal{R}_s^1(A)$. Work of Buchsbaum and Eisenbud on Pfaffians of skew-symmetric matrices implies that
 - $\mathcal{R}_{2k}(A) = \mathcal{R}_{2k+1}(A)$ if *n* is even.
 - $\mathcal{R}_{2k-1}(A) = \mathcal{R}_{2k}(A)$ if *n* is odd.
- If μ_A has rank $n \ge 3$, then $\mathcal{R}_{n-2}(A) = \mathcal{R}_{n-1}(A) = \mathcal{R}_n(A) = \{0\}$.
 - Here, the rank of a form $\mu: \bigwedge^3 V \to \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\Lambda^3 W$.
 - The *nullity* of μ is the maximum dimension of a subspace $U \subset V$ such that $\mu(a \land b \land c) = 0$ for all $a, b \in U$ and $c \in V$.

- If $n \ge 4$, then dim $\mathcal{R}_1(A) \ge \text{null}(\mu_A) \ge 2$.
- If *n* is even, then $\mathcal{R}_1(A) = \mathcal{R}_0(A) = A^1$.
- If n = 2g + 1 > 1, then $\mathcal{R}_1(A) \neq A^1$ if and only if μ_A is 'generic' in the sense of Berceanu and Papadima (1994).
- That is, $\exists c \in A^1$ such that the 2-form $\gamma_c \in \bigwedge^2 A_1$ given by $\gamma_c(a \land b) = \mu_A(a \land b \land c)$ has rank 2g, i.e., $\gamma_c^g \neq 0$ in $\bigwedge^{2g} A_1$.
- In that case, $\mathcal{R}_1(A)$ is the hypersurface $\mathsf{Pf}(\mu_A) = 0$, where $\mathsf{pf}(\delta^1(i;i)) = (-1)^{i+1} x_i \, \mathsf{Pf}(\mu_A)$.

EXAMPLE

Let $M = S^1 \times \Sigma_g$, where $g \geqslant 2$. Then $\mu_M = \sum_{i=1}^g a_i b_i c$ is generic, and $\text{Pf}(\mu_M) = x_{2g+1}^{g-1}$. Hence, $\mathcal{R}_1 = \dots = \mathcal{R}_{2g-2} = \{x_{2g+1} = 0\}$ and $\mathcal{R}_{2g-1} = \mathcal{R}_{2g} = \mathcal{R}_{2g+1} = \{0\}$.

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n	μ	\mathcal{R}_1
3	123	0

n	μ	$\mathcal{R}_1 = \mathcal{R}_2$	\mathcal{R}_3
5	125+345	$\{x_5=0\}$	0

n	μ	\mathcal{R}_1	$\mathcal{R}_2 = \mathcal{R}_3$	\mathcal{R}_4	
6	123+456	C ⁶	$\{x_1 = x_2 = x_3 = 0\} \cup \{x_4 = x_5 = x_6 = 0\}$	0	
	123+236+456	C ⁶	$\{x_3 = x_5 = x_6 = 0\}$	0	

n	μ	$\mathcal{R}_1 = \mathcal{R}_2$	$\mathcal{R}_3=\mathcal{R}_4$	\mathcal{R}_5
7	147+257+367	$\{x_7=0\}$	$\{x_7 = 0\}$	0
	456+147+257+367	$\{x_7 = 0\}$	$\{x_4 = x_5 = x_6 = x_7 = 0\}$	0
	123+456+147	$\{x_1=0\} \cup \{x_4=0\}$	$\{x_1 = x_2 = x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$	0
	123+456+147+257	$\{x_1x_4 + x_2x_5 = 0\}$	$\{x_1 = x_2 = x_4 = x_5 = x_7^2 - x_3x_6 = 0\}$	0
	123+456+147+257+367	$\{x_1x_4 + x_2x_5 + x_3x_6 = x_7^2\}$	0	0

n	μ	\mathcal{R}_1	$\mathcal{R}_2=\mathcal{R}_3$	$\mathcal{R}_4=\mathcal{R}_5$
8	147+257+367+358	C8	$\{x_7=0\}$	$\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_7 = 0\}$
	456+147+257+367+358	C ₈	$\{x_5 = x_7 = 0\}$	$\{x_3 = x_4 = x_5 = x_7 = x_1x_8 + x_6^2 = 0\}$
	123+456+147+358	€8	$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = 0\}$	$\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = 0\}$
	123+456+147+257+358		${x_1 = x_5 = 0} \cup {x_3 = x_4 = x_5 = 0}$	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$
	123+456+147+257+367+358	C ₈	$\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = 0\}$
	147+268+358	C ₈	$\{x_1 = x_4 = x_7 = 0\} \cup \{x_8 = 0\}$	$\{x_1 = x_4 = x_7 = x_8 = 0\} \cup \{x_2 = x_3 = x_5 = x_6 = x_8 = 0\}$
	147+257+268+358	C ₈	$L_1 \cup L_2 \cup L_3$	$L_1 \cup L_2$
	456+147+257+268+358	€8	$C_1 \cup C_2$	$L_1 \cup L_2$
	147+257+367+268+358	C ₈	$L_1 \cup L_2 \cup L_3 \cup L_4$	$L'_1 \cup L'_2 \cup L'_3$
	456+147+257+367+268+358	C ₈	$C_1 \cup C_2 \cup C_3$	$L_1 \cup L_2 \cup L_3$
	123+456+147+268+358	C ₈	$C_1 \cup C_2$	L
	123+456+147+257+268+358	C ₈	$\{f_1 = \cdots = f_{20} = 0\}$	0
L	123+456+147+257+367+268+358	€8	$\{g_1 = \cdots = g_{20} = 0\}$	0

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex.
- The fundamental group $\pi = \pi_1(X, x_0)$ is a finitely presented group, with abelianization $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The group-algebra $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^n \times \operatorname{Tors}(\pi_{ab})$, where $n = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

$$\mathcal{V}_{s}^{i}(X) = \{ \rho \in \mathsf{Char}(X) \mid \dim_{\mathbb{C}} H_{i}(X, \mathbb{C}_{\rho}) \geqslant s \}.$$

• Away from 1, we have that $\mathcal{V}_s^1(X) = V(E_s(A_\pi))$, the zero-set of the ideal of codimension s minors of the Alexander matrix of abelianized Fox derivatives of the relators of π .

THE ALEXANDER POLYNOMIAL

- The group-algebra $\mathbb{C}[\pi_{ab}/\operatorname{Tors}(\pi_{ab})]$ is isomorphic to $\Lambda = \mathbb{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$, the coordinate ring of $\operatorname{Char}^0(X) \cong (\mathbb{C}^*)^n$.
- The Alexander polynomial Δ_X is the gcd of $E_1(A_{\pi} \otimes_R \Lambda)$.
- Dimca–Papadima–S. (2011): The zero-set $V(\Delta_X)$ coincides (away from 1) with the union of all codimension 1 irreducible components of $\mathcal{V}_1^1(X) \cap \mathsf{Char}^0(X)$.

EXAMPLE

Let K be a knot in S^3 . Its complement, X, is a homology circle. The Alexander polynomial, $\Delta = \Delta_X$, satisfies $\Delta(1) = \pm 1$, and so $1 \notin V(\Delta)$. On the other hand, $\mathcal{V}_1^1(X) = V(\Delta) \cup \{1\}$.

TANGENT CONES AND EXPONENTIAL MAPS

- The map $\exp : \mathbb{C}^n \to (\mathbb{C}^*)^n$, $(z_1, \ldots, z_n) \mapsto (e^{z_1}, \ldots, e^{z_n})$ is a homomorphism taking 0 to 1.
- For a Zariski-closed subset W = V(I) inside $(\mathbb{C}^*)^n$, define:
 - The tangent cone at 1 to W as $TC_1(W) = V(in(I))$.
 - The exponential tangent cone at 1 to W as

$$\tau_1(\mathbf{W}) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in \mathbf{W}, \ \forall \lambda \in \mathbb{C} \}$$

- These sets are homogeneous subvarieties of \mathbb{C}^n , which depend only on the analytic germ of W at 1.
- Both commute with finite unions and arbitrary intersections.
- $\tau_1(W) \subseteq \mathsf{TC}_1(W)$.
 - if all irred components of W are subtori.
 - ≠ in general.
- $\tau_1(W)$ is a finite union of rationally defined subspaces.

THE TANGENT CONE THEOREM

- The resonance varieties of a space X are the jump loci $\mathcal{R}^i_s(X) \subset H^1(X,\mathbb{C}) = \mathbb{C}^n$ associated to the algebra $A = H^*(X,\mathbb{C})$.
- We also have the characteristic varieties $\mathcal{V}_s^i(X) \subset \operatorname{Char}(X)$.
- (Libgober 2002)

$$\mathsf{TC}_1(\mathcal{V}^i_{s}(X)) \subseteq \mathcal{R}^i_{s}(X).$$

Thus,

$$\tau_1(\mathcal{V}_s^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}_s^i(X)) \subseteq \mathcal{R}_s^i(X).$$

• (DPS 2009/DP 2014) If X is formal, then

$$au_1(\mathcal{V}_s^i(X)) = \mathsf{TC}_1(\mathcal{V}_s^i(X)) = \mathcal{R}_s^i(X).$$

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

- Let *M* be a closed, orientable, 3-dimensional manifold.
- ullet C. McMullen (2000): Let / be the augmentation ideal of Λ . Then

$$E_1(M) = \begin{cases} (\Delta_M) & \text{if } b_1(M) \leqslant 1, \\ I^2 \cdot (\Delta_M) & \text{if } b_1(M) \geqslant 2. \end{cases}$$

- It follows that $\mathcal{V}_1^1(M) \cap \mathsf{Char}^0(M) = V(\Delta_M)$, at least away from 1.
- Using the previous discussion, as well as work of Turaev (2002), we obtain:

THEOREM

Suppose $b_1(M)$ is odd and μ_M is generic. Then

$$\mathsf{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M).$$

- If b₁(M) is even, the conclusion of the theorem may or may not hold:
 - Let $M = S^1 \times S^2 \# S^1 \times S^2$; then $\mathcal{V}_1^1(M) = \operatorname{Char}(M) = (\mathbb{C}^*)^2$, and so $\operatorname{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) = \mathbb{C}^2$.
 - Let M be the Heisenberg nilmanifold; then $TC_1(\mathcal{V}_1^1(M)) = \{0\}$, whereas $\mathcal{R}_1^1(M) = \mathbb{C}^2$.
- If M is not formal, the first half of the Tangent Cone theorem may fail to hold, i.e., $\tau_1(\mathcal{V}_1^1(M)) \nsubseteq \mathsf{TC}_1(\mathcal{V}_1^1(M))$.
 - Let M be a closed, orientable 3-manifold with $b_1=7$ and $\mu=e_1e_3e_5+e_1e_4e_7+e_2e_5e_7+e_3e_6e_7+e_4e_5e_6$. Then μ is generic and $\mathrm{Pf}(\mu)=(x_5^2+x_7^2)^2$. Hence, $\mathcal{R}_1^1(M)=\{x_5^2+x_7^2=0\}$ splits as a union of two hyperplanes over \mathbb{C} , but not over \mathbb{Q} .

PROPAGATION OF JUMP LOCI

• We say that the resonance varieties of a graded algebra $A = \bigoplus_{i=0}^{n} A^{i}$ propagate if

$$\mathcal{R}_1^1(A) \subseteq \cdots \subseteq \mathcal{R}_1^n(A)$$
.

 Likewise, the characteristic varieties of an *n*-dimensional CW-complex *X* propagate if

$$\mathcal{V}^1(X) \subseteq \cdots \subseteq \mathcal{V}^n(X)$$
.

• (Eisenbud–Popescu–Yuzvinsky 2003) If *X* is the complement of a hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DENHAM-S.-YUZVINSKY 2016/17, GENERALIZING EPY)

Suppose the k-dual of a graded algebra A has a linear free resolution over $E = \bigwedge A^1$. Then the resonance varieties of A propagate.

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we turn to a notion due to Bieri and Eckmann (1978).

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce in (DSY17) an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an abelian duality space of dimension n if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho \colon \pi_1(X) \to \mathbb{C}^*$ satisfies $H^i(X, \mathbb{C}_{\rho}) \neq 0$, then $H^j(X, \mathbb{C}_{\rho}) \neq 0$, for all $i \leq j \leq n$.

COROLLARY (DSY)

Let X be an abelian duality space of dimension n. Then:

- The characteristic varieties propagate: $V_1^1(X) \subseteq \cdots \subseteq V_1^n(X)$.
- $b_1(X) \ge n-1$.
- If $n \ge 2$, then $b_i(X) \ne 0$, for all $0 \le i \le n$.

Proposition (DSY)

Let M be a closed, orientable 3-manifold. If $b_1(M)$ is even and non-zero, then the resonance varieties of M do not propagate.

EXAMPLE

- Let *M* be the 3-dimensional Heisenberg nilmanifold.
- Characteristic varieties propagate: $V_1^i(M) = \{1\}$ for $i \leq 3$.
- Resonance does not propagate: $\mathcal{R}_1^1(M) = \mathbb{k}^2$, $\mathcal{R}_1^3(M) = 0$.

TORIC COMPLEXES

- Let L be a simplicial complex on vertex set $V = \{v_1, \dots, v_m\}$.
- Define $T_L = \mathcal{Z}_L(S^1, *)$ to be the subcomplex of T^m obtained by deleting the cells corresponding to the missing simplices of L.
- T_L is a finite, connected CW-complex, and dim $T_L = \dim L + 1$.
- T_L is formal. (Notbohm–Ray 2005).
- (Kim–Roush 1980, Charney–Davis 1995) The cohomology algebra H*(T_L, k) is the exterior Stanley–Reisner ring

$$\mathbb{k}\langle L\rangle = \bigwedge V^*/(v_\sigma^* \mid \sigma \notin L),$$

where $\mathbb{k} = \mathbb{Z}$ or a field, V is the free \mathbb{k} -module on V, and $V^* = \operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, while $v_{\sigma}^* = v_{i_1}^* \cdots v_{i_s}^*$ for $\sigma = \{i_1, \dots, i_s\}$.

• If $H^*(T_K, \mathbb{Z}) \cong H^*(T_L, \mathbb{Z})$, then $K \cong L$. (Stretch 2017)

RIGHT ANGLED ARTIN GROUPS

• The fundamental group $\pi_{\Gamma} := \pi_1(T_L, *)$ is the RAAG associated to the graph $\Gamma := L^{(1)} = (V, E)$,

$$\pi_{\Gamma} = \langle \mathbf{v} \in \mathbf{V} \mid [\mathbf{v}, \mathbf{w}] = 1 \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathbf{E} \rangle.$$

- If $\Gamma = \overline{K}_n$ then $G_{\Gamma} = F_n$, while if $\Gamma = K_n$, then $G_{\Gamma} = \mathbb{Z}^n$.
- If $\Gamma = \Gamma' \coprod \Gamma''$, then $G_{\Gamma} = G_{\Gamma'} * G_{\Gamma''}$.
- If $\Gamma = \Gamma' * \Gamma''$, then $G_{\Gamma} = G_{\Gamma'} \times G_{\Gamma''}$.
- $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- (Kim-Makar-Limanov-Neggers-Roush 1980, Droms 1987)

$$\Gamma \cong \Gamma' \Longleftrightarrow \pi_{\Gamma} \cong \pi_{\Gamma'}.$$

Identify $H^1(T_L, \mathbb{C})$ with \mathbb{C}^V , the \mathbb{C} -vector space with basis $\{v \mid v \in V\}$.

THEOREM (PAPADIMA-S. 2010)

$$\mathcal{R}_s^i(\mathcal{T}_L) = \bigcup_{\substack{W \subseteq V \\ \sum_{\sigma \in L_{V \setminus W}} \dim \widetilde{H}_{i-1-|\sigma|}(\mathsf{lk}_{L_W}(\sigma), \mathbb{C}) \geqslant s}} \mathbb{C}^W,$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular (PS06):

$$\mathcal{R}^1_1(\textit{G}_{\Gamma}) = \bigcup_{\substack{W \subseteq V \\ \Gamma_W \text{ disconnected}}} \mathbb{C}^W$$

Similar formula holds for $\mathcal{V}_s^i(T_L)$, with \mathbb{C}^W replaced by $(\mathbb{C}^*)^W$.

THE COHEN-MACAULAY PROPERTY

A simplicial complex L is Cohen–Macaulay if for each simplex $\sigma \in L$, the reduced cohomology of $lk(\sigma)$ is concentrated in degree $\dim L - |\sigma|$ and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A RAAG π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY17)

A toric complex T_L is an abelian duality space (of dimension dim L+1) if and only if L is Cohen-Macaulay, in which case both the resonance and characteristic varieties of T_L propagate.

BESTVINA-BRADY GROUPS

- The Bestvina–Brady group associated to a graph Γ is defined as $N_{\Gamma} = \ker(\varphi \colon \pi_{\Gamma} \to \mathbb{Z})$, where $\varphi(v) = 1$, for each $v \in V(\Gamma)$.
- A counterexample to either the Eilenberg

 Ganea conjecture or the Whitehead conjecture can be constructed from these groups.
- The cohomology ring $H^*(N_{\Gamma}, \mathbb{Z})$ was computed by Papadima–S. (2007) and Leary–Saadetoğlu (2011).
- The jump loci $\mathcal{R}_1^1(N_{\Gamma})$ and $\mathcal{V}_1^1(N_{\Gamma})$ were computed in PS07.

THEOREM (DAVIS-OKUN 2012)

Suppose Δ_{Γ} is acyclic. Then N_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay.

THEOREM (DSY17)

 N_{Γ} is an abelian duality group if and only if Δ_{Γ} is acyclic and Cohen–Macaulay.

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- Components of $Y \setminus U$ form an arrangement of hypersurfaces A;
- ② For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then:

- U is both a duality space and an abelian duality space of dimension n.
- ② If A is a finite-dimensional representation of $\pi = \pi_1(U)$, and if $A^{\gamma_g} = 0$ for all g in a building set \mathcal{G}_X , for some $X \in L(\mathcal{A})$, then $H^i(U,A) = 0$ for all $i \neq n$.
- **1** The ℓ_2 -Betti numbers of U vanish for all $i \neq n$.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

- An affine-linear arrangement in \mathbb{C}^n , or a hyperplane arrangement in \mathbb{CP}^n ;
- A non-empty elliptic arrangement in Eⁿ;
- **3** A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n-r, n+r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Davis and Settepanella (2013), Esterov and Takeuchi (2014).

REFERENCES

- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- G. Denham, A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum of Mathematics, Sigma 6 (2018), e6, 20 pages.
- A.I. Suciu, *Poincaré duality and resonance varieties*, Proc. Roy. Soc. Edinburgh Sect. A (2019), arXiv:1809.01801.
- A.I. Suciu, Cohomology jump loci of 3-manifolds, arXiv:1901.01419.