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POINCARE DUALITY ALGEBRAS

o Let A be a graded, graded-commutative algebra over a field k.
o A=@;=A, where A’ are k-vector spaces.
o AQA - AT
o ab= (—1)ipaforallac A, be B.

o We will assume that A is connected (AO = k- 1), and locally finite
(all the Betti numbers b;(A) := dimy A’ are finite).

e Ais a Poincaré duality k-algebra of dimension m if there is a
k-linear map ¢: A™ — k (called an orientation) such that all the
bilinear forms A'®x A" — k, a® b — ¢(ab) are non-singular.

@ Consequently,

bi(A) = by_i(A), and A’ = 0 for i > m.

¢ is an isomorphism.

The maps PD: A" — (A™=/)* PD(a)(b) = ¢(ab) are isomorphisms.
Each a€ A’ has a Poincaré dual, a¥ € A"/, such that e(aa" ) = 1.
The orientation class is defined as ws = 1V, so that e(w4) = 1.
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THE ASSOCIATED ALTERNATING FORM
THE ASSOCIATED ALTERNATING FORM

e Associated to a k-PD, algebra there is an alternating m-form,
HA: /\mA1 -k, yA(a1 Aceonam) =¢(ar--am).

e Assume now that m = 3, and set n = b;(A). Fix a basis

{e1,..., en} for A', and let {ey, ..., ey } be the PD basis for A2.

e The multiplication in A, then is given on basis elements by
k=1

where i = (e A € A e).

e Alternatively, let A; = (A)*, and let &' € A; be the (Kronecker)
dual of e;. We may then view u dually as a trivector,

V:Zy/jkei/\ e//\ eke/\3A1,
which encodes the algebra structure of A.
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POINCARE DUALITY IN ORIENTABLE MANIFOLDS
POINCARE DUALITY IN ORIENTABLE MANIFOLDS

e If M is a compact, connected, orientable, m-dimensional manifold,
then the cohomology ring A = H*(M, k) is a PD, algebra over k.

e Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form yu € /\3 V*, there is a closed 3-manifold M
with H'(M, Q) = V and cup-product form py = u.

@ Such a 3-manifold can be constructed via “Borromean surgery."

e If M bounds an oriented 4-manifold W such that the cup-product
pairing on H?(W, M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then iy = 0.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

RESONANCE VARIETIES OF GRADED ALGEBRAS

e Let A be a connected, finite-type cga over k = C.
e For each ae A', there is a cochain complex of k-vector spaces,

0 1 2
(A d5): A° a Al a A2 %a o

with differentials 6,(b) = a- b, for b e A’
@ The resonance varieties of A are the sets

RL(A) = {ae A | dim H'(A, 6,) = s}.

e Anelement ae A' belongs to RL(A) if and only if

rank 6551 + rank 85, < bi(A) — s.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

e Fix a k-basis {e1,..., ey} for A', and let {x4, ..., x,} be the dual
basis for A} = (A")*.

e Identify Sym(A¢) with S =k|[xq, ..., Xn|, the coordinate ring of the
affine space A'.

e Define a cochain complex of free S-modules, L(A) := (A*® S, 9),

--*>A’®S A'+1®S Al+2®s
where &'(u®s) =3 u® sx;.
e The specialization of (A® S, ¢) at ae A' coincides with (A, 5,).

e Hence, RL(A) is the zero-set of the ideal generated by all minors
of size b; — s + 1 of the block-matrix 61 @ 4'.

e In particular, RL(A) = V(I,_s(")), the zero-set of the ideal of
codimension s minors of 6.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

RESONANCE VARIETIES OF PD-ALGEBRAS
o Let Abe a PD, algebra.

e Forall0 <i<mandall ae A', the square

m—i—1y\x i
(Am—i)* (%2 ) (Am—l—'l )*

PDT; PDT;
Al % Al
commutes up to a sign of (—1)'.

@ Consequently,
(Hi(A 53))* ~ H™ (A 5_,).

@ Hence, for all i and s,
R5(A) = RT(A).

e In particular, RT"(A) = {0}.
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RESONANCE VARIETIES 3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

o Let Abe a PD3-algebra with by (A) = n > 0. Then
o R3(A) =RI(A) = {0}.
o R2(A) =RL(A) for1 <s<n.
o RL(A) = &, otherwise.
e Write Rs(A) = R1(A). Work of Buchsbaum and Eisenbud on
Pfaffians of skew-symmetric matrices implies that
) RZK(A) = R2k+1 (A) if nis even.
o Rok_1(A) = Rok(A) if nis odd.

o If up hasrank n = 3, then R, _2(A) = Rp_1(A) = Rn(A) = {0}.

e Here, the rank of a form y: /\3 V — k is the minimum dimension of
a linear subspace W < V such that y factors through /\3 w.

o The nullity of y is the maximum dimension of a subspace U c V
suchthat uy(anbac)=0foralla be Uandce V.
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RESONANCE VARIETIES 3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

If n > 4, then dim R+ (A) = null(pa) > 2.

If nis even, then R4 (A) = Ro(A) = A.

If n=2g+1 > 1, then R¢(A) # A" if and only if 11 is ‘generic’ in
the sense of Berceanu and Papadima (1994).

That s, 3 ¢ € A' such that the 2-form 7, € A? A; given by
ve(anb) = ua(anbnac)hasrank 2g,ie., 17 # 0in A% A;.

In that case, R1(A) is the hypersurface Pf(j4) = 0, where
pf(81(i; 1)) = (—1)+ 1 x Pf(ua).

EXAMPLE

Let M = S' x Zg’ where g > 2. Then uy = X7, aibic is generic, and
Pf(um) = ng+1 Hence, Ry = - = Rpg_2 = {Xog+1 = 0} and
Rag—1 = Reg = Rog+1 = {0}.
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RESONANCE VARIETIES

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n | u [ R n [ Ri=Rp | Ry |
[3 [ 128 [ 0o | [ 5[ 125+345 [ {xs=0} | 0 |
n u R4 Ro =Rz Ry
6 123+456 CO | {(xy=xo=x3=0} U {x4 = X5 = x5 = 0} 0
123+236+456 | C° {x3 = x5 = X = 0} 0
n u R1=TRo Rz =Ra Rs
7 147+257+367 {x7 =0} {x7 =0} 0
756+147+257+367 {7 =0} X4 =x =X =x7 =0} 0
123+456+147 {xy =0} U {xq4 =0} {X{ =Xo=x3=X4 =0} U {X; =X4 = X5 = Xg =0} 0
123+456+147+257 {X1X4 + Xox5 = 0} {X{ =Xo = X4 = X5 = x% — x3Xg = 0} 0
123+456+147+257+367 | {X1X4 + XoX5 + X3Xg = X2} 0 0
n u R1 Ro =Rg3 R4 =Rs
8 147+257+367+358 C8 {x; =0} {x3=x5=x7=xg =0} U{X; =X3 =Xx4 =X5 =x7 =0}
456+147+257+367+358 & {xs = x7 = 0} (X3 =X = X5 = X7 = Xy g + X& = 0}
123+456+147+358 C8l {xy =x5 =0} U {x3 = x4 =0} {X{ = X3 = X4 = X5 = XpXg + X7Xg = 0}
123+456+147+257+358 CBl{x{ =x5 =0} U {x3 = x4 = x5 = 0} {X{ =Xo = X3 = X4 = X5 = X7 =0}
123+456+147+257+367+358 | C® {X3 = X5 = x1X4 — X2 =0} {X{ =X = X3 = X4 = X5 = Xg = X7 = 0}
147+268+358 & {Xy=x4=x7=0} u{xg=0} |{xy=x4=x7=xg=0}U{Xo=Xx3=x5=X5=Xxg=0]
147+257+268+358 [ Liulyuls Lyulp
456+147+257+268+358 [ Cy U Cy [y oLy
147+257+367+268+358 [ LLulyaulgoly ool
456+147+257+367+268+358 | C° Cy UGy U Cy [yolyols
123+456+147+268+358 [ Cy UGy L
123+456+147+257+268+358 | C® {fi = =fyy =0} 0
123+456+147+257+367+268+358|C® {g1 =" =020 =0} 0
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

e Let X be a connected, finite-type CW-complex.

e The fundamental group 7 = 771 (X, Xo) is a finitely presented
group, with abelianization 7., =~ Hy (X, Z).

e The group-algebra R = C|[r,] is the coordinate ring of the
character group, Char(X) = Hom(7r,C*) =~ (C*)" x Tors(7ap),
where n = by (X).

e The characteristic varieties of X are the homology jump loci
VI(X) = {p € Char(X) | dimc Hi(X,C,) = s}.
e Away from 1, we have that V! (X) = V(Es(Ay)), the zero-set of

the ideal of codimension s minors of the Alexander matrix of
abelianized Fox derivatives of the relators of 7.
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CHARACTERISTIC VARIETIES THE ALEXANDER POLYNOMIAL

THE ALEXANDER POLYNOMIAL

e The group-algebra C|m,y,/ Tors(7t,p)] is isomorphic to
A=C[t, ..., t¥1], the coordinate ring of Char®(X) =~ (C*)".

e The Alexander polynomial Ay is the gcd of E1(A; ®g A).

e Dimca—Papadima-S. (2011): The zero-set V(Ax) coincides (away
from 1) with the union of all codimension 1 irreducible components
of V] (X) n Char®(X).

EXAMPLE

Let K be a knot in S3. Its complement, X, is a homology circle. The
Alexander polynomial, A = Ay, satisfies A(1) = £1,and so 1 ¢ V(A).
On the other hand, V! (X) = V(A) u {1}.
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CHARACTERISTIC VARIETIES TANGENT CONES AND EXPONENTIAL MAPS

TANGENT CONES AND EXPONENTIAL MAPS

@ The map exp: C" — (C*)", (z4,..., zp) — (er, ..., e’)is a
homomorphism taking 0 to 1.

e For a Zariski-closed subset W = V/(/) inside (C*)", define:
e The tangent cone at 1to W as TCy (W) = V(in(/)).

e The exponential tangent cone at 1 to W as
(W) ={zeC"|exp(Az) e W, VA e C}

e These sets are homogeneous subvarieties of C", which depend
only on the analytic germ of W at 1.

@ Both commute with finite unions and arbitrary intersections.

o T (W) < TC(W).
o = if all irred components of W are subtori.
e # ingeneral.

e 71(W) is a finite union of rationally defined subspaces.
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CHARACTERISTIC VARIETIES THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

e The resonance varieties of a space X are the jump loci
RL(X) < H'(X,C) = C" associated to the algebra A = H*(X, C).

e We also have the characteristic varieties VL(X) < Char(X).

o (Libgober 2002) , ,
TC1(Vs(X)) = Ro(X).

@ Thus, _ ' '
T (Vs(X)) € TC1(Vs(X)) = Re(X).

o (DPS 2009/DP 2014) If X is formal, then

T (Ve(X)) = TC(Vi(X)) = Ru(X).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

@ Let M be a closed, orientable, 3-dimensional manifold.

e C. McMullen (2000): Let / be the augmentation ideal of A. Then

£\ (M) {(Am if by (M)

<1
2. (AM) if by (M) > 2.
o It follows that V] (M) n Char®(M) = V(Ay), at least away from 1.

@ Using the previous discussion, as well as work of Turaev (2002),
we obtain:

THEOREM
Suppose by (M) is odd and i is generic. Then

TCi(V{ (M) = Ri(M).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

e If by(M) is even, the conclusion of the theorem may or may not
hold:
o Let M = ST x S?4S" x S?;then V] (M) = Char(M) = (C*)?, and
so TCy(V] (M)) = RI(M) = C2.

o Let M be the Heisenberg nilmanifold; then TC; (V] (M)) = {0},
whereas R1(M) = C2.

e If M is not formal, the first half of the Tangent Cone theorem may
fail to hold, i.e., T4 (V11 (M)) & TC4 (1211 (M)).
e Let M be a closed, orientable 3-manifold with by = 7 and
U = ei1e36s5 + e1e467 + eses67 + e3ege7 + e46566. Then “M is
generic and Pf(u) = (x2 + x2)2. Hence, R1(M) = {x2 + x% = 0}
splits as a union of two hyperplanes over C, but not over Q.
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ABELIAN DUALITY AND PROPAGATION OF CJLS PROPAGATION OF JUMP LOCI

PROPAGATION OF JUMP LOCI

e We say that the resonance varieties of a graded algebra
A= @] ,A propagate if
RI(A) € --- < RI(A).
o Likewise, the characteristic varieties of an n-dimensional
CW-complex X propagate if
VIX) <. V(X).

e (Eisenbud—Popescu—Yuzvinsky 2003) If X is the complement of a
hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DENHAM-S.—YUZVINSKY 2016 /17, GENERALIZING EPY)

Suppose the k-dual of a graded algebra A has a linear free resolution
over E = N\A'. Then the resonance varieties of A propagate.
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ABELIAN DUALITY AND PROPAGATION OF CJLS DUALITY SPACES

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we
turn to a notion due to Bieri and Eckmann (1978).

e X is a duality space of dimension nif H' (X, Z) = 0 for i # nand
H"(X,Zm) # 0 and torsion-free.

e Let D = H"(X, Zr) be the dualizing Z-module. Given any
Zm-module A, we have H'(X, A) =~ H,_i(X,D® A).

e If D = Z, with trivial Zt-action, then X is a Poincaré duality
space.

e If X = K(rm, 1) is a duality space, then 7t is a duality group.

ALEX SUCIU (NORTHEASTERN) DUALITY AND RESONANCE ROCHESTER TOP SEMINAR 18 /28



ABELIAN DUALITY AND PROPAGATION OF CJLS ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in (DSY17) an analogous notion, by replacing 7w ~~ 7,p.

e X is an abelian duality space of dimension nif H' (X, Zm.,) = 0
for i # nand H"(X, Zm,,) # 0 and torsion-free.

e Let B= H"(X, Zm.) be the dualizing Zrt,,-module. Given any
Zap-module A, we have H' (X, A) =~ H,_j(X, B® A).

e The two notions of duality are independent.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If p: 71 (X) — C*
satisfies H'(X,C,) # 0, then H/(X,C,) # 0, forall i < j < n.
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ABELIAN DUALITY AND PROPAGATION OF CJLS ABELIAN DUALITY SPACES

COROLLARY (DSY)

Let X be an abelian duality space of dimension n. Then:
o The characteristic varieties propagate: V} (X) < --- < VP(X).
@ bi(X)=n—-1.
e Ifn>2, thenb;j(X) #0, forall0 < i< n.

PROPOSITION (DSY)

Let M be a closed, orientable 3-manifold. If by(M) is even and
non-zero, then the resonance varieties of M do not propagate.

EXAMPLE
o Let M be the 3-dimensional Heisenberg nilmanifold.
o Characteristic varieties propagate: V| (M) = {1} for i < 3.
o Resonance does not propagate: R} (M) = k?, R$(M) = 0.
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TORIC COMPLEXES AND RAAGS TORIC COMPLEXES

TORIC COMPLEXES

e Let L be a simplicial complex on vertex set V = {vy, ..., Vin}-

e Define T, = Z,(S", «) to be the subcomplex of T obtained by
deleting the cells corresponding to the missing simplices of L.

e T, is a finite, connected CW-complex, and dim T, = dim L+ 1.
e T, is formal. (Notbohm—Ray 2005).

e (Kim—Roush 1980, Charney—Davis 1995) The cohomology
algebra H*( Ty, k) is the exterior Stanley—Reisner ring

k(L) = AV*/(v; | o ¢ L),

where k = Z or a field, V is the free k-module on V, and
V* = Homg(V, k), while vi = v v foro = {iy,..., s}.

o If H*(Tx,Z) ~ H*(T., Z), then K = L. (Stretch 2017)
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TORIC COMPLEXES AND RAAGS RIGHT ANGLED ARTIN GROUPS

RIGHT ANGLED ARTIN GROUPS

e The fundamental group 7t := 711 (T, =) is the RAAG associated
to the graph I' := L(Y) = (V,E),

nmr={veV||[v,w]=1if{v,w}eE).

If I' = K, then Gr = F,, while if T = K, then Gr = Z".

fr=1’ ]_[F”, then Gr = Gp * Gy».
o fI' =1"= F”, then Gr = Gr/ X Gr//.

K(mr, 1) = Ta,, where Ar is the flag complex of T'.

(Kim—Makar-Limanov—Neggers—Roush 1980, Droms 1987)

I' 2’ < nr = npe.
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TORIC COMPLEXES AND RAAGS RIGHT ANGLED ARTIN GROUPS

Identify H'(T,, C) with CV, the C-vector space with basis {v | v € V}.

THEOREM (PAPADIMA-S. 2010)

RY(TL) = U cv,
_ wev
Soetyy dim i1 (Ikyy (0).€)>s

where Ly is the subcomplex induced by L on W, and kg (o) is the link

of a simplex o in a subcomplex K < L.

In particular (PS06):
RI(Gr) = J o

S wev
T'w disconnected

Similar formula holds for V.(T,), with CV replaced by (C*)"W.
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TORIC COMPLEXES AND RAAGS THE COHEN-MACAULAY PROPERTY

THE COHEN-MACAULAY PROPERTY

A simplicial complex L is Cohen—Macaulay if for each simplex ¢ € L,
the reduced cohomology of Ik(¢) is concentrated in degree dim L — |o|
and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN—MEIER 2005)

A RAAG rtr is a duality group if and only if At is Cohen—Macaulay.
Moreover, rtr is a Poincaré duality group if and only ifT' is a complete
graph.

THEOREM (DSY17)

A toric complex T, is an abelian duality space (of dimension dim L + 1)
if and only if L is Cohen-Macaulay, in which case both the resonance
and characteristic varieties of T, propagate.
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TORIC COMPLEXES AND RAAGS BESTVINA-BRADY GROUPS

BESTVINA-BRADY GROUPS

e The Bestvina—Brady group associated to a graph I is defined as
Nr = ker(¢: ir — Z), where ¢(v) = 1, foreach v e V(I).

e A counterexample to either the Eilenberg—Ganea conjecture or
the Whitehead conjecture can be constructed from these groups.

@ The cohomology ring H*(Nr, Z) was computed by Papadima-S.
(2007) and Leary—Saadetoglu (2011).

e The jump loci R1(Nr) and V] (Nr) were computed in PS07.

THEOREM (DAVIS-OKUN 2012)

Suppose Ar is acyclic. Then Ny is a duality group if and only if Ay is
Cohen—Macaulay.

THEOREM (DSY17)

Nr is an abelian duality group if and only if Ay is acyclic and
Cohen—Macaulay.
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ARRANGEMENTS OF SMOOTH HYPERSURFACES

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which
© Components of Y\U form an arrangement of hypersurfaces A;
@ For each submanifold X in the intersection poset L(.A), the

complement of the restriction of A to X is a Stein manifold.
Then:

Q U is both a duality space and an abelian duality space of
dimension n.

@ If A is a finite-dimensional representation of t = 711 (U), and if
AYe = 0 for all g in a building set Gx, for some X e L(A), then
H'(U,A) =0 foralli # n.

© The l>-Betti numbers of U vanish for all i # n.
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LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

ARRANGEMENTS OF SMOOTH HYPERSURFACES

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)
Suppose that A is one of the following:
©Q An affine-linear arrangement in C", or a hyperplane arrangement
in CP";
@ A non-empty elliptic arrangement in E";
@ A toric arrangement in (C*)".

Then the complement M(.A) is both a duality space and an abelian
duality space of dimension n— r, n+ r, and n, respectively, where r is

the corank of the arrangement.

This theorem extends several previous results:
© Dauvis, Januszkiewicz, Leary, and Okun (2011);
@ Levin and Varchenko (2012);
© Davis and Settepanella (2013), Esterov and Takeuchi (2014).
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