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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY ALGEBRAS

Let A be a graded, graded-commutative algebra over a field k.
A =

À

iě0 Ai , where Ai are k-vector spaces.
¨ : Ai bAj Ñ Ai+j .
ab = (´1)ijba for all a P Ai , b P Bj .

We will assume that A is connected (A0 = k ¨ 1), and locally finite
(all the Betti numbers bi(A) := dimk Ai are finite).

A is a Poincaré duality k-algebra of dimension m if there is a
k-linear map ε : Am Ñ k (called an orientation) such that all the
bilinear forms Ai bk Am´i Ñ k, ab b ÞÑ ε(ab) are non-singular.

Consequently,
bi (A) = bm´i (A), and Ai = 0 for i ą m.
ε is an isomorphism.
The maps PD : Ai Ñ (Am´i )˚, PD(a)(b) = ε(ab) are isomorphisms.
Each a P Ai has a Poincaré dual, a_ P Am´i , such that ε(aa_) = 1.
The orientation class is defined as ωA = 1_, so that ε(ωA) = 1.
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POINCARÉ DUALITY THE ASSOCIATED ALTERNATING FORM

THE ASSOCIATED ALTERNATING FORM

Associated to a k-PDm algebra there is an alternating m-form,

µA :
ŹmA1 Ñ k, µA(a1 ^ ¨ ¨ ¨ ^ am) = ε(a1 ¨ ¨ ¨ am).

Assume now that m = 3, and set n = b1(A). Fix a basis
te1, . . . ,enu for A1, and let te_1 , . . . ,e_n u be the PD basis for A2.

The multiplication in A, then, is given on basis elements by

eiej =
n

ÿ

k=1

µijk e_k , eie_j = δij ω,

where µijk = µ(ei ^ ej ^ ek ).

Alternatively, let Ai = (Ai)˚, and let ei P A1 be the (Kronecker)
dual of ei . We may then view µ dually as a trivector,

µ =
ÿ

µijk ei ^ ej ^ ek P
Ź3A1,

which encodes the algebra structure of A.
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POINCARÉ DUALITY POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

If M is a compact, connected, orientable, m-dimensional manifold,
then the cohomology ring A = H.(M,k) is a PDm algebra over k.

Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ P

Ź3V ˚, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

Such a 3-manifold can be constructed via “Borromean surgery."

If M bounds an oriented 4-manifold W such that the cup-product
pairing on H2(W ,M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then µM = 0.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

RESONANCE VARIETIES OF GRADED ALGEBRAS

Let A be a connected, finite-type cga over k = C.

For each a P A1, there is a cochain complex of k-vector spaces,

(A, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δa(b) = a ¨ b, for b P Ai .

The resonance varieties of A are the sets

Ri
s(A) = ta P A1 | dimk H i(A, δa) ě su.

An element a P A1 belongs to Ri
s(A) if and only if

rank δi+1
a + rank δi

a ď bi(A)´ s.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

Fix a k-basis te1, . . . ,enu for A1, and let tx1, . . . , xnu be the dual
basis for A1 = (A1)˚.

Identify Sym(A1) with S = k[x1, . . . , xn], the coordinate ring of the
affine space A1.

Define a cochain complex of free S-modules, L(A) := (A‚ bS, δ),

¨ ¨ ¨ // Ai bS δi
// Ai+1 bS δi+1

// Ai+2 bS // ¨ ¨ ¨ ,

where δi(u b s) =
řn

j=1 eju b sxj .

The specialization of (AbS, δ) at a P A1 coincides with (A, δa).

Hence, Ri
s(A) is the zero-set of the ideal generated by all minors

of size bi ´ s + 1 of the block-matrix δi+1 ‘ δi .

In particular, R1
s(A) = V (In´s(δ1)), the zero-set of the ideal of

codimension s minors of δ1.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

RESONANCE VARIETIES OF PD-ALGEBRAS

Let A be a PDm algebra.

For all 0 ď i ď m and all a P A1, the square

(Am´i)˚
(δm´i´1

a )˚// (Am´i´1)˚

Ai δi
a //

PD –

OO

Ai+1

PD –

OO

commutes up to a sign of (´1)i .

Consequently, (
H i(A, δa)

)˚
– Hm´i(A, δ´a).

Hence, for all i and s,
Ri

s(A) = Rm´i
s (A).

In particular, Rm
1 (A) = t0u.
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RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

Let A be a PD3-algebra with b1(A) = n ą 0. Then

R3
1(A) = R0

1(A) = t0u.

R2
s(A) = R1

s(A) for 1 ď s ď n.

Ri
s(A) = H, otherwise.

Write Rs(A) = R1
s(A). Work of Buchsbaum and Eisenbud on

Pfaffians of skew-symmetric matrices implies that

R2k (A) = R2k+1(A) if n is even.

R2k´1(A) = R2k (A) if n is odd.

If µA has rank n ě 3, then Rn´2(A) = Rn´1(A) = Rn(A) = t0u.

Here, the rank of a form µ :
Ź3 V Ñ k is the minimum dimension of

a linear subspace W Ă V such that µ factors through
Ź3 W .

The nullity of µ is the maximum dimension of a subspace U Ă V
such that µ(a^ b^ c) = 0 for all a,b P U and c P V .
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RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

If n ě 4, then dimR1(A) ě null(µA) ě 2.

If n is even, then R1(A) = R0(A) = A1.

If n = 2g + 1 ą 1, then R1(A) ‰ A1 if and only if µA is ‘generic’ in
the sense of Berceanu and Papadima (1994).

That is, D c P A1 such that the 2-form γc P
Ź2 A1 given by

γc(a^ b) = µA(a^ b^ c) has rank 2g, i.e., γ
g
c ‰ 0 in

Ź2g A1.

In that case, R1(A) is the hypersurface Pf(µA) = 0, where
pf(δ1(i ; i)) = (´1)i+1xi Pf(µA).

EXAMPLE

Let M = S1 ˆΣg , where g ě 2. Then µM =
řg

i=1 aibic is generic, and
Pf(µM) = xg´1

2g+1. Hence, R1 = ¨ ¨ ¨ = R2g´2 = tx2g+1 = 0u and
R2g´1 = R2g = R2g+1 = t0u.

ALEX SUCIU (NORTHEASTERN) DUALITY AND RESONANCE ROCHESTER TOP SEMINAR 9 / 28



RESONANCE VARIETIES RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n µ R1
3 123 0

n µ R1 = R2 R3
5 125+345 tx5 = 0u 0

n µ R1 R2 = R3 R4
6 123+456 C6 tx1 = x2 = x3 = 0uY tx4 = x5 = x6 = 0u 0

123+236+456 C6 tx3 = x5 = x6 = 0u 0

n µ R1 = R2 R3 = R4 R5
7 147+257+367 tx7 = 0u tx7 = 0u 0

456+147+257+367 tx7 = 0u tx4 = x5 = x6 = x7 = 0u 0
123+456+147 tx1 = 0uY tx4 = 0u tx1 = x2 = x3 = x4 = 0uY tx1 = x4 = x5 = x6 = 0u 0

123+456+147+257 tx1x4 + x2x5 = 0u tx1 = x2 = x4 = x5 = x2
7 ´ x3x6 = 0u 0

123+456+147+257+367 tx1x4 + x2x5 + x3x6 = x2
7 u 0 0

n µ R1 R2 = R3 R4 = R5 R6
8 147+257+367+358 C8 tx7 = 0u tx3 =x5 =x7 =x8 =0uYtx1 =x3 =x4 =x5 =x7 =0u 0

456+147+257+367+358 C8 tx5 = x7 = 0u tx3 = x4 = x5 = x7 = x1x8 + x2
6 = 0u 0

123+456+147+358 C8 tx1 = x5 = 0uY tx3 = x4 = 0u tx1 = x3 = x4 = x5 = x2x6 + x7x8 = 0u 0
123+456+147+257+358 C8 tx1 = x5 = 0uY tx3 = x4 = x5 = 0u tx1 = x2 = x3 = x4 = x5 = x7 = 0u 0

123+456+147+257+367+358 C8 tx3 = x5 = x1x4´ x2
7 = 0u tx1 = x2 = x3 = x4 = x5 = x6 = x7 = 0u 0

147+268+358 C8 tx1 = x4 = x7 = 0uY tx8 = 0u tx1 =x4 =x7 =x8 =0uYtx2 =x3 =x5 =x6 =x8 =0u 0
147+257+268+358 C8 L1Y L2Y L3 L1Y L2 0

456+147+257+268+358 C8 C1YC2 L1Y L2 0
147+257+367+268+358 C8 L1Y L2Y L3Y L4 L1

1Y L1
2Y L1

3 0
456+147+257+367+268+358 C8 C1YC2YC3 L1Y L2Y L3 0

123+456+147+268+358 C8 C1YC2 L 0
123+456+147+257+268+358 C8 tf1 = ¨ ¨ ¨ = f20 = 0u 0 0

123+456+147+257+367+268+358 C8 tg1 = ¨ ¨ ¨ = g20 = 0u 0 0
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex.

The fundamental group π = π1(X , x0) is a finitely presented
group, with abelianization πab – H1(X ,Z).

The group-algebra R = C[πab] is the coordinate ring of the
character group, Char(X ) = Hom(π,C˚) – (C˚)n ˆTors(πab),
where n = b1(X ).

The characteristic varieties of X are the homology jump loci

V i
s(X ) = tρ P Char(X ) | dimC Hi(X ,Cρ) ě su.

Away from 1, we have that V1
s (X ) = V (Es(Aπ)), the zero-set of

the ideal of codimension s minors of the Alexander matrix of
abelianized Fox derivatives of the relators of π.
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CHARACTERISTIC VARIETIES THE ALEXANDER POLYNOMIAL

THE ALEXANDER POLYNOMIAL

The group-algebra C[πab/Tors(πab)] is isomorphic to
Λ = C[t˘1

1 , . . . , t˘1
n ], the coordinate ring of Char0(X ) – (C˚)n.

The Alexander polynomial ∆X is the gcd of E1(Aπ bR Λ).

Dimca–Papadima–S. (2011): The zero-set V (∆X ) coincides (away
from 1) with the union of all codimension 1 irreducible components
of V1

1 (X )X Char0(X ).

EXAMPLE

Let K be a knot in S3. Its complement, X , is a homology circle. The
Alexander polynomial, ∆ = ∆X , satisfies ∆(1) = ˘1, and so 1 R V (∆).
On the other hand, V1

1 (X ) = V (∆)Y t1u.
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CHARACTERISTIC VARIETIES TANGENT CONES AND EXPONENTIAL MAPS

TANGENT CONES AND EXPONENTIAL MAPS

The map exp : Cn Ñ (C˚)n, (z1, . . . , zn) ÞÑ (ez1 , . . . ,ezn) is a
homomorphism taking 0 to 1.

For a Zariski-closed subset W = V (I) inside (C˚)n, define:
The tangent cone at 1 to W as TC1(W ) = V (in(I)).

The exponential tangent cone at 1 to W as

τ1(W ) = tz P Cn | exp(λz) P W , @λ P Cu

These sets are homogeneous subvarieties of Cn, which depend
only on the analytic germ of W at 1.

Both commute with finite unions and arbitrary intersections.

τ1(W ) Ď TC1(W ).
= if all irred components of W are subtori.
‰ in general.

τ1(W ) is a finite union of rationally defined subspaces.
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CHARACTERISTIC VARIETIES THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

The resonance varieties of a space X are the jump loci
Ri

s(X ) Ă H1(X ,C) = Cn associated to the algebra A = H˚(X ,C).

We also have the characteristic varieties V i
s(X ) Ă Char(X ).

(Libgober 2002)
TC1(V i

s(X )) Ď Ri
s(X ).

Thus,
τ1(V i

s(X )) Ď TC1(V i
s(X )) Ď Ri

s(X ).

(DPS 2009/DP 2014) If X is formal, then

τ1(V i
s(X )) = TC1(V i

s(X )) = Ri
s(X ).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

Let M be a closed, orientable, 3-dimensional manifold.

C. McMullen (2000): Let I be the augmentation ideal of Λ. Then

E1(M) =

#

(∆M) if b1(M) ď 1,

I2 ¨ (∆M) if b1(M) ě 2.

It follows that V1
1 (M)X Char0(M) = V (∆M), at least away from 1.

Using the previous discussion, as well as work of Turaev (2002),
we obtain:

THEOREM

Suppose b1(M) is odd and µM is generic. Then

TC1(V1
1 (M)) = R1

1(M).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

If b1(M) is even, the conclusion of the theorem may or may not
hold:

Let M = S1 ˆS2#S1 ˆS2; then V1
1 (M) = Char(M) = (C˚)2, and

so TC1(V1
1 (M)) = R1

1(M) = C2.

Let M be the Heisenberg nilmanifold; then TC1(V1
1 (M)) = t0u,

whereas R1
1(M) = C2.

If M is not formal, the first half of the Tangent Cone theorem may
fail to hold, i.e., τ1(V1

1 (M)) Ę TC1(V1
1 (M)).

Let M be a closed, orientable 3-manifold with b1 = 7 and
µ = e1e3e5 + e1e4e7 + e2e5e7 + e3e6e7 + e4e5e6. Then µ is
generic and Pf(µ) = (x2

5 + x2
7 )

2. Hence, R1
1(M) = tx2

5 + x2
7 = 0u

splits as a union of two hyperplanes over C, but not over Q.
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ABELIAN DUALITY AND PROPAGATION OF CJLS PROPAGATION OF JUMP LOCI

PROPAGATION OF JUMP LOCI

We say that the resonance varieties of a graded algebra
A =

Àn
i=0 Ai propagate if

R1
1(A) Ď ¨ ¨ ¨ Ď Rn

1(A).

Likewise, the characteristic varieties of an n-dimensional
CW-complex X propagate if

V1(X ) Ď ¨ ¨ ¨ Ď Vn(X ).

(Eisenbud–Popescu–Yuzvinsky 2003) If X is the complement of a
hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DENHAM–S.–YUZVINSKY 2016/17, GENERALIZING EPY)

Suppose the k-dual of a graded algebra A has a linear free resolution
over E =

Ź

A1. Then the resonance varieties of A propagate.
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ABELIAN DUALITY AND PROPAGATION OF CJLS DUALITY SPACES

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we
turn to a notion due to Bieri and Eckmann (1978).

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If D = Z, with trivial Zπ-action, then X is a Poincaré duality
space.

If X = K (π,1) is a duality space, then π is a duality group.
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ABELIAN DUALITY AND PROPAGATION OF CJLS ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in (DSY17) an analogous notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

The two notions of duality are independent.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If ρ : π1(X )Ñ C˚

satisfies H i(X ,Cρ) ‰ 0, then H j(X ,Cρ) ‰ 0, for all i ď j ď n.
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ABELIAN DUALITY AND PROPAGATION OF CJLS ABELIAN DUALITY SPACES

COROLLARY (DSY)

Let X be an abelian duality space of dimension n. Then:
The characteristic varieties propagate: V1

1 (X ) Ď ¨ ¨ ¨ Ď Vn
1 (X ).

b1(X ) ě n´ 1.
If n ě 2, then bi(X ) ‰ 0, for all 0 ď i ď n.

PROPOSITION (DSY)

Let M be a closed, orientable 3-manifold. If b1(M) is even and
non-zero, then the resonance varieties of M do not propagate.

EXAMPLE

Let M be the 3-dimensional Heisenberg nilmanifold.
Characteristic varieties propagate: V i

1(M) = t1u for i ď 3.
Resonance does not propagate: R1

1(M) = k2, R3
1(M) = 0.
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TORIC COMPLEXES AND RAAGS TORIC COMPLEXES

TORIC COMPLEXES

Let L be a simplicial complex on vertex set V = tv1, . . . , vmu.

Define TL = ZL(S1, ˚) to be the subcomplex of T m obtained by
deleting the cells corresponding to the missing simplices of L.

TL is a finite, connected CW-complex, and dimTL = dimL + 1.

TL is formal. (Notbohm–Ray 2005).

(Kim–Roush 1980, Charney–Davis 1995) The cohomology
algebra H˚(TL,k) is the exterior Stanley–Reisner ring

kxLy =
Ź

V ˚/(v˚σ | σ R L),

where k = Z or a field, V is the free k-module on V, and
V ˚ = Homk(V ,k), while v˚σ = v˚i1 ¨ ¨ ¨ v

˚
is for σ = ti1, . . . , isu.

If H˚(TK ,Z) – H˚(TL,Z), then K – L. (Stretch 2017)
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TORIC COMPLEXES AND RAAGS RIGHT ANGLED ARTIN GROUPS

RIGHT ANGLED ARTIN GROUPS

The fundamental group πΓ := π1(TL, ˚) is the RAAG associated
to the graph Γ := L(1) = (V,E),

πΓ = xv P V | [v ,w ] = 1 if tv ,wu P Ey.

If Γ = K n then GΓ = Fn, while if Γ = Kn, then GΓ = Zn.

If Γ = Γ1
š

Γ2, then GΓ = GΓ1 ˚GΓ2 .

If Γ = Γ1 ˚ Γ2, then GΓ = GΓ1 ˆGΓ2 .

K (πΓ,1) = T∆Γ , where ∆Γ is the flag complex of Γ.

(Kim–Makar-Limanov–Neggers–Roush 1980, Droms 1987)

Γ – Γ1 ðñ πΓ – πΓ1 .
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TORIC COMPLEXES AND RAAGS RIGHT ANGLED ARTIN GROUPS

Identify H1(TL,C) with CV, the C-vector space with basis tv | v P Vu.

THEOREM (PAPADIMA–S. 2010)

Ri
s(TL) =

ď

WĎV
ř

σPLVzW
dim rHi´1´|σ|(lkLW

(σ),C)ěs

CW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K Ď L.

In particular (PS06):

R1
1(GΓ) =

ď

WĎV
ΓW disconnected

CW.

Similar formula holds for V i
s(TL), with CW replaced by (C˚)W.
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TORIC COMPLEXES AND RAAGS THE COHEN–MACAULAY PROPERTY

THE COHEN–MACAULAY PROPERTY

A simplicial complex L is Cohen–Macaulay if for each simplex σ P L,
the reduced cohomology of lk(σ) is concentrated in degree dimL´ |σ|
and is torsion-free.

THEOREM (N. BRADY–MEIER 2001, JENSEN–MEIER 2005)

A RAAG πΓ is a duality group if and only if ∆Γ is Cohen–Macaulay.
Moreover, πΓ is a Poincaré duality group if and only if Γ is a complete
graph.

THEOREM (DSY17)

A toric complex TL is an abelian duality space (of dimension dimL + 1)
if and only if L is Cohen-Macaulay, in which case both the resonance
and characteristic varieties of TL propagate.
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TORIC COMPLEXES AND RAAGS BESTVINA–BRADY GROUPS

BESTVINA–BRADY GROUPS

The Bestvina–Brady group associated to a graph Γ is defined as
NΓ = ker(ϕ : πΓ Ñ Z), where ϕ(v) = 1, for each v P V (Γ).

A counterexample to either the Eilenberg–Ganea conjecture or
the Whitehead conjecture can be constructed from these groups.

The cohomology ring H˚(NΓ,Z) was computed by Papadima–S.
(2007) and Leary–Saadetoğlu (2011).

The jump loci R1
1(NΓ) and V1

1 (NΓ) were computed in PS07.

THEOREM (DAVIS–OKUN 2012)

Suppose ∆Γ is acyclic. Then NΓ is a duality group if and only if ∆Γ is
Cohen–Macaulay.

THEOREM (DSY17)

NΓ is an abelian duality group if and only if ∆Γ is acyclic and
Cohen–Macaulay.
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ARRANGEMENTS OF SMOOTH HYPERSURFACES

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM–S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

1 Components of Y zU form an arrangement of hypersurfaces A;

2 For each submanifold X in the intersection poset L(A), the
complement of the restriction of A to X is a Stein manifold.

Then:
1 U is both a duality space and an abelian duality space of

dimension n.
2 If A is a finite-dimensional representation of π = π1(U), and if

Aγg = 0 for all g in a building set GX , for some X P L(A), then
H i(U,A) = 0 for all i ‰ n.

3 The `2-Betti numbers of U vanish for all i ‰ n.
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ARRANGEMENTS OF SMOOTH HYPERSURFACES LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

1 An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

2 A non-empty elliptic arrangement in En;

3 A toric arrangement in (C˚)n.
Then the complement M(A) is both a duality space and an abelian
duality space of dimension n´ r , n + r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2014).
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