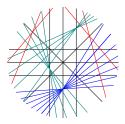
TOPOLOGY AND COMBINATORICS OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

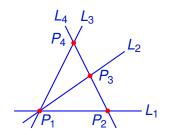
Mathematics Colloquium University of Nevada at Reno

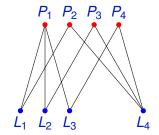
February 22, 2019



HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite collection A of codimension 1 linear (or affine) subspaces in C^ℓ.
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.





• Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$.

EXAMPLE (THE BOOLEAN ARRANGEMENT)

- \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
- $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
- $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.

EXAMPLE (THE BRAID ARRANGEMENT)

- A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
- *L*(*A_n*): lattice of partitions of [*n*] := {1, ..., *n*}, ordered by refinement.
- *M*(*A_n*): configuration space of *n* ordered points in ℂ (a classifying space for *P_n*, the pure braid group on *n* strings).

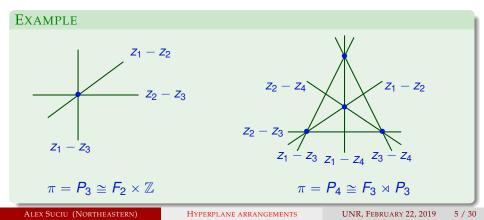
- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $\mathcal{A} = \{H_1, \dots, H_n\}$, and choose linear forms $f_i : \mathbb{C}^{\ell} \to \mathbb{C}$ with ker $(f_i) = H_i$. Define an injective linear map

 $\iota: \mathbb{C}^{\ell} \to \mathbb{C}^{n}, \quad z \mapsto (f_{1}(z), \dots, f_{n}(z)).$

- This map restricts to an inclusion *ι*: *M*(*A*) → *M*(*B_n*). Hence,
 M(*A*) = *ι*(ℂ^ℓ) ∩ (ℂ^{*})ⁿ is a Stein manifold.
- Therefore, M = M(A) has the homotopy type of a connected, finite cell complex of dimension ℓ .
- In fact, *M* has a minimal cell structure. Consequently, *H*_∗(*M*, ℤ) is torsion-free.
- Let U(A) = ℙ(M(A)) = ℂℙ^ℓ \ ⋃_{H∈A} ℙ(H) be the projectivized complement. Then M(A) ≅ U(A) × ℂ*.

LINE ARRANGEMENTS

- Let $\mathcal{A}' = \{H \cap \mathbb{C}^2\}_{H \in \mathcal{A}}$ be a generic planar slice of \mathcal{A} . Then the arrangement group, $\pi = \pi_1(\mathcal{M}(\mathcal{A}))$, is isomorphic to $\pi_1(\mathcal{M}(\mathcal{A}'))$.
- So, for the purpose of studying π₁'s, it is enough to consider arrangements of affine lines in C², or projective lines in CP².



FUNDAMENTAL GROUP

- Let A = {L₁,..., L_n} be a line arrangement in C², with multiple points P = {P₁,..., P_s}.
- The incidence poset *L*(*A*) is the corresponding point-line incidence diagram (a bipartite graph).
- Taking a generic projection $\mathbb{C}^2 \to \mathbb{C}$ yields the braid monodromy $\alpha = (\alpha_1, \dots, \alpha_s)$, where $\alpha_r \in P_n$.
- π has a (minimal) finite presentation with meridional generators x_1, \ldots, x_n and commutator relators $x_i \alpha_j (x_i)^{-1}$, where each α_j acts on F_n via the Artin representation.
- Let $\pi/\gamma_k(\pi)$ be the (k-1)th nilpotent quotient of π . Then:
 - $\pi_{ab} = \pi/\gamma_2$ equals \mathbb{Z}^n .
 - π/γ_3 is determined by $L(\mathcal{A})$.
 - π/γ_4 (and thus, π) is *not* determined by L(A). (Rybnikov).

COHOMOLOGY RING

COHOMOLOGY RING

• The Betti numbers $b_q(M) := \operatorname{rank} H_q(M, \mathbb{Z})$ are given by

$$\sum_{q=0}^{\ell} b_q(M(\mathcal{A}))t^q = \sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}$$

with $\mu: L(\mathcal{A}) \to \mathbb{Z}$ given by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supset X} \mu(Y)$.

- Let $E = \bigwedge(A)$ be the \mathbb{Z} -exterior algebra on degree-1 classes e_H dual to the meridians around the hyperplanes $H \in A$.
- Let $\partial: E^{\bullet} \to E^{\bullet-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_{\mathcal{B}} = \prod_{H \in \mathcal{B}} e_H$ for each $\mathcal{B} \subset \mathcal{A}$.
- Building on work of Arnold & Brieskorn, Orlik and Solomon described the cohomology ring of M(A) solely in terms of L(A):

$$H^*(M(\mathcal{A}),\mathbb{Z})\cong E/\langle \partial e_{\mathcal{B}} \, | \, \mathsf{codim} igcap_{H\in\mathcal{B}} H < |\mathcal{B}| \,
angle.$$

• The space $M(\mathcal{A})$ is Q-formal but not \mathbb{F}_p -formal in general.

7 / 30

RESONANCE VARIETIES

- Let X be a connected, finite cell complex,
- Let $A = H^*(X, \Bbbk)$, where char $\Bbbk \neq 2$. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- We thus get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

• The *resonance varieties* of *X* are the jump loci for the cohomology of this complex

$$\mathcal{R}^{q}_{s}(X, \Bbbk) = \{ a \in A^{1} \mid \dim_{\Bbbk} H^{q}(A, \cdot a) \geq s \}$$

- E.g., $\mathcal{R}_1^1(X, \mathbb{k}) = \{ a \in A^1 \mid \exists b \in A^1, b \neq \lambda a, ab = 0 \}.$
- These loci are homogeneous subvarieties of $A^1 = H^1(X, \Bbbk)$. In general, they can be arbitrarily complicated.

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen, A.S., Libgober, and Yuzvinsky, completely describes the varieties $\mathcal{R}_s(\mathcal{A}) = \mathcal{R}_s^1(\mathcal{M}(\mathcal{A}), \mathbb{C})$.

- $\mathcal{R}_1(\mathcal{A})$ is a union of linear subspaces in $H^1(\mathcal{M}(\mathcal{A}),\mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}_s(\mathcal{A})$ is the union of those linear subspaces that have dimension at least s + 1.
- Each *k*-multinet on a sub-arrangement B ⊆ A gives rise to a component of R₁(A) of dimension k − 1. Moreover, all components of R₁(A) arise in this way.

DEFINITION (FALK AND YUZVINSKY)

A *multinet* on \mathcal{A} is a partition of the set \mathcal{A} into $k \ge 3$ subsets $\mathcal{A}_1, \ldots, \mathcal{A}_k$, together with an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, such that:

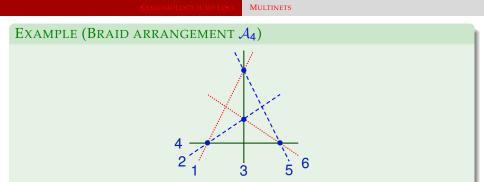
- $\exists d \in \mathbb{N}$ such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$.
- **2** If *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$.
- **③** \forall *X* ∈ *X*, the sum $n_X = \sum_{H \in A_\alpha: H \supset X} m_H$ is independent of *α*.

• $(\bigcup_{H \in \mathcal{A}_{\alpha}} H) \setminus \mathcal{X}$ is connected, for each α .

- Such a multinet is also called a (k, d)-multinet, or k-multinet.
- It is *reduced* if $m_H = 1$, for all $H \in A$.

• A *net* is a reduced multinet with $n_X = 1$, for all $X \in \mathcal{X}$.

ALEX SUCIU (NORTHEASTERN)



 $\mathcal{R}_1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 local components (from the triple points), and one essential component, from the above (3, 2)-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$

ALEX SUCIU (NORTHEASTERN)

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, let π = π₁(X, x₀), and let Hom(π, C*) be the affine algebraic group of C-valued, multiplicative characters on π.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}) = \{ \rho \in \operatorname{Hom}(\pi, \mathbb{C}^*) \mid \dim H_{\boldsymbol{q}}(\boldsymbol{X}, \mathbb{C}_{\rho}) \geq \boldsymbol{s} \}.$

Here, \mathbb{C}_{ρ} is the local system defined by ρ , i.e, \mathbb{C} viewed as a $\mathbb{C}[\pi]$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \mathbb{C}_{\rho}) = H_i(C_*(\widetilde{X}, \mathbb{C}) \otimes_{\mathbb{C}[\pi]} \mathbb{C}_{\rho})$.

- These loci are Zariski closed subsets of the character group. In general, they can be arbitrarily complicated.
- The sets $\mathcal{V}_s^1(X)$ depend only on π/π'' .

CHARACTERISTIC VARIETIES OF ARRANGEMENTS

- Let \mathcal{A} be an arrangement of *n* hyperplanes, and let $\operatorname{Hom}(\pi_1(M(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^n$ be the character torus.
- The characteristic variety V₁(A) := V₁¹(M(A)) lies in the subtorus {t ∈ (ℂ*)ⁿ | t₁ ··· t_n = 1}; it is a finite union of torsion-translates of algebraic subtori of (ℂ*)ⁿ.
- If a linear subspace L ⊂ Cⁿ is a component of R₁(A), then the algebraic torus T = exp(L) is a component of V₁(A).
- All components of V₁(A) passing through the origin 1 ∈ (ℂ*)ⁿ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in V₁(A), which are not a priori determined by L(A).

ABELIAN DUALITY

DEFINITION (BIERI-ECKMANN 1978)

X is a *duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.

DEFINITION (DENHAM-S.-YUZVINSKY 2016/17)

X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$
- The characteristic varieties "propagate": $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.

ALEX SUCIU (NORTHEASTERN)

HYPERPLANE ARRANGEMENTS

14 / 30

THEOREM (DENHAM-S. 2018)

Let X be a connected, smooth, complex quasi-projective variety of dimension n. Suppose X has a smooth compactification Y for which

- Components of $Y \setminus X$ form an arrangement of hypersurfaces A;
- For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then X is both a duality and an abelian duality space of dimension n.

THEOREM (DS18)

Suppose that A is one of the following:

- A hyperplane arrangement in \mathbb{C}^n or \mathbb{CP}^n ;
- A non-empty elliptic arrangement in Eⁿ;
- A toric arrangement in $(\mathbb{C}^*)^n$.

Then M(A) is both a duality and an abelian duality space of dimension n - r, n + r, and n, respectively, where $r = \operatorname{corank}(A)$.

MILNOR FIBRATION

- Let A be a central arrangement in C^ℓ. For each H ∈ A let α_H be a linear form with ker(α_H) = H, and let Q = ∏_{H∈A} α_H.
- Q: C^ℓ → C restricts to a smooth fibration, Q: M(A) → C*. The Milnor fiber of the arrangement is F(A) := Q⁻¹(1).
- *F* is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension ℓ − 1.
- In general, F is not \mathbb{Q} -formal, and $H_*(F, \mathbb{Z})$ may have torsion.
- *F* = *F*(*A*) is the regular, ℤ_n-cover of *U* = *U*(*A*), classified by the morphism π₁(*U*) → ℤ_n taking each loop x_H to 1 (where n = |*A*|).

MODULAR INEQUALITIES

- The monodromy diffeo, $h: F \to F$, is given by $h(z) = e^{2\pi i/n} z$.
- Let $\Delta(t)$ be the characteristic polynomial of $h_*: H_1(F, \mathbb{C}) \bigcirc$. Since $h^n = id$, we have

$$\Delta(t) = \prod_{r|n} \Phi_r(t)^{\boldsymbol{e}_r(\mathcal{A})},$$

where $\Phi_r(t)$ is the *r*-th cyclotomic polynomial, and $e_r(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- To compute *h*_{*}, we may assume *l* = 3, so that *Ā* = ℙ(*A*) is an arrangement of lines in Cℙ².
- If there is no point of \overline{A} of multiplicity $q \ge 3$ such that $r \mid q$, then $e_r(A) = 0$ (Libgober 2002).
- In particular, if \overline{A} has only points of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$. If multiplicity 4 appears, then we also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

• Let $A = H^{\bullet}(M(\mathcal{A}), \mathbb{k})$, and let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$.

Assume k has characteristic p > 0, and define

 $\beta_{\boldsymbol{\rho}}(\boldsymbol{\mathcal{A}}) = \dim_{\mathbb{k}} \boldsymbol{H}^{1}(\boldsymbol{\mathcal{A}}, \cdot \boldsymbol{\sigma}).$

That is, $\beta_{\rho}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^m}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $m \geq 1$.

THEOREM (PAPADIMA-S. 2017)

• Suppose A admits a k-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \ge k - 2$, otherwise.

• If A admits a reduced k-multinet, then $e_k(A) \ge k - 2$.

COMBINATORICS AND MONODROMY

THEOREM (PS)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a reduced 3-multinet iff A admits a 3-net iff $\beta_3(A) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2$.
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

COROLLARY

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

ALEX SUCIU (NORTHEASTERN)

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for the Milnor fibration of an arrangement \mathcal{A} of rank at least 3 is given by the combinatorial formula

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

• The conjecture has been verified for

- All sub-arrangements of non-exceptional Coxeter arrangements (Măcinic, Papadima).
- All complex reflection arrangements (Măcinic, Papadima, Popescu, Dimca, Sticlaru).
- Certain types of complexified real arrangements (Yoshinaga, Bailet, Torielli, Settepanella).
- A counterexample has been announced by Yoshinaga (2019): there is an arrangement of 16 planes in C³ with e₂ = 0 but β₂ = 1.

THE BOUNDARY MANIFOLD

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{ℓ} .
- Let *N* be a (closed) regular neighborhood of the hypersurface
 V(A) = ∪_{H∈A} ℙ(H) inside ℂℙ^{ℓ-1}.
- Let $\overline{U}(\mathcal{A}) = \mathbb{CP}^{\ell-1} \setminus \operatorname{int}(N)$. Clearly, $\overline{U} \simeq U$.
- The boundary manifold of A is $\partial \overline{U} = \partial N$. This is a compact, orientable, smooth manifold of dimension $2\ell 3$.

EXAMPLE

- Let \mathcal{A} be a pencil of *n* hyperplanes in \mathbb{C}^{ℓ} , defined by $Q = z_1^n z_2^n$. If n = 1, then $\partial \overline{U} = S^{2\ell-3}$. If n > 1, then $\partial \overline{U} = \sharp^{n-1}S^1 \times S^{2(\ell-2)}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^3 , defined by $Q = z_1(z_2^{n-1} z_3^{n-1})$. Then $\partial \overline{U} = S^1 \times \Sigma_{n-2}$.

- When $\ell = 3$, the boundary manifold $\partial \overline{U}$ is a 3-dimensional graph-manifold M_{Γ} , where
 - Γ is the incidence graph of \mathcal{A} , with $V(\Gamma) = L_1(\mathcal{A}) \cup L_2(\mathcal{A})$ and $E(\Gamma) = \{(L, P) \mid P \in L\}.$
 - Vertex manifolds M_ν = S¹ × (S²\U_{{ν,w}∈E(Γ)} D²_{ν,w}) are glued along edge manifolds M_e = S¹ × S¹ via flip maps.

•
$$b_1(M_{\Gamma}) = |\mathcal{A}| + b_1(\Gamma) - 1.$$

THEOREM (JIANG-YAU 1993) $U(\mathcal{A}) \cong U(\mathcal{A}') \Rightarrow M_{\Gamma} \cong M_{\Gamma'} \Rightarrow \Gamma \cong \Gamma' \Rightarrow L(\mathcal{A}) \cong L(\mathcal{A}').$

THEOREM (COHEN-S. 2008)

$$\mathcal{V}_1^1(M_{\Gamma}) = \bigcup_{\nu \in V(\Gamma) : \deg(\nu) \ge 3} \Big\{ t \in (\mathbb{C}^*)^{b_1(M_{\Gamma})} \mid \prod_{i \in \nu} t_i = 1 \Big\}.$$

THE RFRp property

DEFINITION (AGOL, KOBERDA-S.)

A finitely generated group G is *residually finite rationally p* for some prime p if there is a sequence of subgroups,

 $G = G_0 > \cdots > G_i > G_{i+1} > \cdots$

such that $\bigcap_{i \ge 0} G_i = \{1\}$, and, for each *i*,

- $G_{i+1} \lhd G_i$;
- G_i/G_{i+1} is an elementary abelian *p*-group;
- $\ker(G_i \to H_1(G_i, \mathbb{Q}))$ is a subgroup of G_{i+1} .
- G RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite & residually nilpotent.
- $G \operatorname{RFR}_p \Rightarrow \text{torsion-free.}$
- G finitely presented & $RFRp \Rightarrow$ has solvable word problem.
- The class of RFRp groups is closed under taking subgroups, finite direct products, and finite free products.

ALEX SUCIU (NORTHEASTERN)

- Finitely generated free groups F_n , surface groups $\pi_1(\Sigma_g)$, and right-angled Artin groups A_{Γ} are RFRp, for all p.
- Finite groups and non-abelian nilpotent groups are not RFRp, for any p.

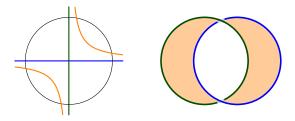
THEOREM (KOBERDA-S. 2016)

If G is a finitely presented group which is RFRp for infinitely many primes p, then either G is abelian or G is large (i.e., it virtually surjects onto a non-abelian free group).

THEOREM (KS)

Let M_{Γ} be the boundary manifold of a line arrangement in \mathbb{C}^2 . Then $\pi_1(M_{\Gamma})$ is RFRp, for all primes p.

The boundary of the Milnor fiber

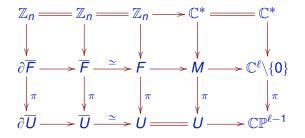


- For an arrangement A in C^ℓ, let F(A) = F(A) ∩ D^{2ℓ} be the closed Milnor fiber of A. Clearly, F ≃ F.
- The boundary of the Milnor fiber of A is the compact, smooth, orientable, (2ℓ 3)-manifold ∂F = F ∩ S^{2ℓ-1}.
- The pair $(\overline{F}, \partial \overline{F})$ is $(\ell 2)$ -connected. In particular, if $\ell \ge 3$, then $\partial \overline{F}$ is connected, and $\pi_1(\partial \overline{F}) \to \pi_1(\overline{F})$ is surjective.

EXAMPLE

- Let \mathcal{B}_n be the Boolean arrangement in \mathbb{C}^n . Then $F = (\mathbb{C}^*)^{n-1}$. Hence, $\overline{F} = T^{n-1} \times D^{n-1}$ and so $\partial \overline{F} = T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of *n* planes in \mathbb{C}^3 . Then $\partial \overline{F} = S^1 \times \Sigma_{n-2}$.

Set $n = |\mathcal{A}|$. The Hopf fibration $\pi : \mathbb{C}^{\ell} \setminus \{0\} \to \mathbb{CP}^{\ell-1}$ restricts to regular, cyclic *n*-fold covers, $\pi : \overline{F} \to \overline{U}$ and $\pi : \partial \overline{F} \to \partial \overline{U}$, which fit into



Assume now that $\ell = 3$. The fundamental group of $\partial \overline{U} = M_{\Gamma}$ has generators $\{\overline{x}_H \mid H \in A\}$ and $\{y_c \mid c \text{ a cycle in } \Gamma\}$.

PROPOSITION (S. 2014)

The \mathbb{Z}_n -cover $\pi: \partial \overline{F} \to \partial \overline{U}$ is classified by the homomorphism $\pi_1(\partial \overline{U}) \to \mathbb{Z}_n$ given by $x_H \mapsto 1$ and $y_c \mapsto 0$.

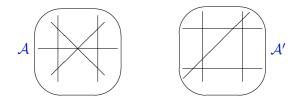
THEOREM (NÉMETHI-SZILARD 2012)

The characteristic polynomial of h_* : $H_1(\partial \overline{F}, \mathbb{C}) \bigcirc$ is given by

$$\delta(t) = \prod_{P \in L_2(\mathcal{A})} (t-1) (t^{\gcd(n_P, n)} - 1)^{n_P - 2}.$$

ALEX SUCIU (NORTHEASTERN)

A PAIR OF ARRANGEMENTS



- Let A and A' be the above pair of arrangements. Both have 2 triple points and 9 double points, yet L(A) ≇ L(A').
- Nevertheless, $U(\mathcal{A}) \simeq U(\mathcal{A}')$.
- Since L(A) ≇ L(A'), the corresponding boundary manifolds, ∂U
 and ∂U', are not homotopy equivalent.
- In fact, V¹₁(∂U) consists of 7 codimension-1 subtori in (ℂ*)¹³, while V¹₁(∂U) consists of 8 such subtori.

• The corresponding Milnor fibers, *F* and *F'*, have the same characteristic polynomial of the algebraic monodromy,

 $\Delta = \Delta' = (t-1)^5.$

• Likewise for the boundaries of the Milnor fibers,

$$\delta = \delta' = (t-1)^{13}(t^2 + t + 1)^2.$$

- The varieties V¹₁(F) and V¹₁(F') consist of two 2-dimensional subtori of (ℂ*)⁵. On the other hand, V¹₂(F) ≇ V¹₂(F').
- Thus, $\pi_1(F) \ncong \pi_1(F')$.

CONJECTURE

Let \mathcal{A} and \mathcal{A}' be two central arrangements in \mathbb{C}^3 . Then

$$F(\mathcal{A}) \cong F(\mathcal{A}') \Rightarrow L(\mathcal{A}) \cong L(\mathcal{A}').$$

ALEX SUCIU (NORTHEASTERN)

REFERENCES

- G. Denham, A. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum Math. Sigma **6** (2018), e6, 20 pp.
- G. Denham, A. Suciu, S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- G. Denham, A. Suciu, S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- T. Koberda, A. Suciu, *Residually finite rationally p groups*, Commun. Contemp. Math. (2019).
- S. Papadima, A. Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, Proc. London Math. Soc. **114** (2017), no. 6, 961–1004.
- A. Suciu, *Hyperplane arrangements and Milnor fibrations*, Ann. Fac. Sci. Toulouse Math. **23** (2014), no. 2, 417–481.
- A. Suciu, *On the topology of Milnor fibrations of hyperplane arrangements*, Rev. Roumaine Math. Pures Appl. **62** (2017), no. 1, 191–215.