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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

HYPERPLANE ARRANGEMENTS

An arrangement of hyperplanes is a finite collection A of
codimension 1 linear (or affine) subspaces in C`.

Intersection lattice LpAq: poset of all intersections of A, ordered by
reverse inclusion, and ranked by codimension.
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Complement: MpAq “ C`z
Ť

HPA H.
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

EXAMPLE (THE BOOLEAN ARRANGEMENT)

Bn: all coordinate hyperplanes zi “ 0 in Cn.

LpBnq: Boolean lattice of subsets of t0,1un.

MpBnq: complex algebraic torus pC˚qn.

EXAMPLE (THE BRAID ARRANGEMENT)

An: all diagonal hyperplanes zi ´ zj “ 0 in Cn.

LpAnq: lattice of partitions of rns :“ t1, . . . ,nu, ordered by
refinement.

MpAnq: configuration space of n ordered points in C (a classifying
space for Pn, the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

We may assume that A is essential, i.e.,
Ş

HPA H “ t0u.

Fix an ordering A “ tH1, . . . ,Hnu, and choose linear forms
fi : C` Ñ C with kerpfiq “ Hi . Define an injective linear map

ι : C` Ñ Cn, z ÞÑ pf1pzq, . . . , fnpzqq.

This map restricts to an inclusion ι : MpAq ãÑ MpBnq. Hence,
MpAq “ ιpC`q X pC˚qn is a Stein manifold.

Therefore, M “ MpAq has the homotopy type of a connected,
finite cell complex of dimension `.

In fact, M has a minimal cell structure. Consequently, H˚pM,Zq is
torsion-free.

Let UpAq “ PpMpAqq “ CP`z
Ť

HPA PpHq be the projectivized
complement. Then MpAq – UpAq ˆ C˚.
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HYPERPLANE ARRANGEMENTS LINE ARRANGEMENTS

LINE ARRANGEMENTS

Let A1 “ tH X C2uHPA be a generic planar slice of A. Then the
arrangement group, π “ π1pMpAqq, is isomorphic to π1pMpA1qq.

So, for the purpose of studying π1’s, it is enough to consider
arrangements of affine lines in C2, or projective lines in CP2.

EXAMPLE

‚ z2 ´ z3

z1 ´ z2

z1 ´ z3

π “ P3 – F2 ˆ Z

‚ ‚

‚

‚

z2 ´ z4 z1 ´ z2

z1 ´ z4

z2 ´ z3

z1 ´ z3 z3 ´ z4

π “ P4 – F3 ¸ P3
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUP

FUNDAMENTAL GROUP

Let A “ tL1, . . . ,Lnu be a line arrangement in C2, with multiple
points P “ tP1, . . . ,Psu.

The incidence poset LpAq is the corresponding point-line
incidence diagram (a bipartite graph).

Taking a generic projection C2 Ñ C yields the braid monodromy
α “ pα1, . . . , αsq, where αr P Pn.

π has a (minimal) finite presentation with meridional generators
x1, . . . , xn and commutator relators xiαjpxiq

´1, where each αj acts
on Fn via the Artin representation.

Let π{γk pπq be the pk ´ 1qth nilpotent quotient of π. Then:
πab “ π{γ2 equals Zn.
π{γ3 is determined by LpAq.
π{γ4 (and thus, π) is not determined by LpAq. (Rybnikov).
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HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

COHOMOLOGY RING

The Betti numbers bqpMq :“ rank HqpM,Zq are given by
ÿ`

q“0
bqpMpAqqtq “

ÿ

XPLpAq
µpX qp´tqrankpXq,

with µ : LpAq Ñ Z given by µpC`q “ 1 and µpX q “ ´
ř

YĽX µpY q.

Let E “
Ź

pAq be the Z-exterior algebra on degree-1 classes eH
dual to the meridians around the hyperplanes H P A.

Let B : E‚ Ñ E‚´1 be the differential given by BpeHq “ 1, and set
eB “

ś

HPB eH for each B Ă A.

Building on work of Arnold & Brieskorn, Orlik and Solomon
described the cohomology ring of MpAq solely in terms of LpAq:

H˚pMpAq,Zq – E{
@

BeB
ˇ

ˇ codim
č

HPB
H ă |B|

D

.

The space MpAq is Q-formal but not Fp-formal in general.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

RESONANCE VARIETIES

Let X be a connected, finite cell complex,

Let A “ H˚pX , kq, where char k ‰ 2. Then: a P A1 ñ a2 “ 0.

We thus get a cochain complex

pA, ¨aq : A0 a // A1 a // A2 // ¨ ¨ ¨ .

The resonance varieties of X are the jump loci for the cohomology
of this complex

Rq
s pX ,kq “ ta P A1 | dimk HqpA, ¨aq ě su

E.g., R1
1pX ,kq “ ta P A1 | Db P A1, b ‰ λa, ab “ 0u.

These loci are homogeneous subvarieties of A1 “ H1pX ,kq. In
general, they can be arbitrarily complicated.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF ARRANGEMENTS

RESONANCE VARIETIES OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen, A.S., Libgober, and Yuzvinsky,
completely describes the varieties RspAq “ R1

spMpAq,Cq.

R1pAq is a union of linear subspaces in H1pMpAq,Cq – C|A|.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

RspAq is the union of those linear subspaces that have dimension
at least s ` 1.

Each k-multinet on a sub-arrangement B Ď A gives rise to a
component of R1pAq of dimension k ´ 1. Moreover, all
components of R1pAq arise in this way.
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COHOMOLOGY JUMP LOCI MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k ě 3 subsets
A1, . . . ,Ak , together with an assignment of multiplicities, m : AÑ N,
and a subset X Ď L2pAq, such that:

1 D d P N such that
ř

HPAα
mH “ d , for all α P rks.

2 If H and H 1 are in different classes, then H X H 1 P X .

3 @ X P X , the sum nX “
ř

HPAα:HĄX mH is independent of α.

4
`
Ť

HPAα
H
˘

zX is connected, for each α.

Such a multinet is also called a pk ,dq-multinet, or k -multinet.

It is reduced if mH “ 1, for all H P A.

A net is a reduced multinet with nX “ 1, for all X P X .
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COHOMOLOGY JUMP LOCI MULTINETS

EXAMPLE (BRAID ARRANGEMENT A4)

‚ ‚

‚

‚

4
2

1 3 5 6

R1pAq Ă C6 has 4 local components (from the triple points), and one
essential component, from the above p3,2q-net:

L124 “ tx1 ` x2 ` x4 “ x3 “ x5 “ x6 “ 0u,
L135 “ tx1 ` x3 ` x5 “ x2 “ x4 “ x6 “ 0u,
L236 “ tx2 ` x3 ` x6 “ x1 “ x4 “ x5 “ 0u,
L456 “ tx4 ` x5 ` x6 “ x1 “ x2 “ x3 “ 0u,
L “ tx1 ` x2 ` x3 “ x1 ´ x6 “ x2 ´ x5 “ x3 ´ x4 “ 0u.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite cell complex, let π “ π1pX , x0q, and let
Hompπ,C˚q be the affine algebraic group of C-valued,
multiplicative characters on π.

The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X :

Vq
s pX q “ tρ P Hompπ,C˚q | dim HqpX ,Cρq ě su.

Here, Cρ is the local system defined by ρ, i.e, C viewed as a
Crπs-module, via g ¨ x “ ρpgqx , and HipX ,Cρq “ HipC˚prX ,Cq bCrπs Cρq.

These loci are Zariski closed subsets of the character group. In
general, they can be arbitrarily complicated.

The sets V1
s pX q depend only on π{π2.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES OF ARRANGEMENTS

CHARACTERISTIC VARIETIES OF ARRANGEMENTS

Let A be an arrangement of n hyperplanes, and let
Hompπ1pMpAqq,C˚q “ pC˚qn be the character torus.

The characteristic variety V1pAq :“ V1
1 pMpAqq lies in the subtorus

tt P pC˚qn | t1 ¨ ¨ ¨ tn “ 1u; it is a finite union of torsion-translates of
algebraic subtori of pC˚qn.

If a linear subspace L Ă Cn is a component of R1pAq, then the
algebraic torus T “ exppLq is a component of V1pAq.

All components of V1pAq passing through the origin 1 P pC˚qn
arise in this way (and thus, are combinatorially determined).

In general, though, there are translated subtori in V1pAq, which
are not a priori determined by LpAq.
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COHOMOLOGY JUMP LOCI ABELIAN DUALITY

ABELIAN DUALITY

DEFINITION (BIERI–ECKMANN 1978)

X is a duality space of dimension n if H ipX ,Zπq “ 0 for i ‰ n and
HnpX ,Zπq ‰ 0 and torsion-free.

DEFINITION (DENHAM–S.–YUZVINSKY 2016/17)

X is an abelian duality space of dimension n if H ipX ,Zπabq “ 0 for
i ‰ n and HnpX ,Zπabq ‰ 0 and torsion-free.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:
b1pX q ě n ´ 1.
bipX q ‰ 0, for 0 ď i ď n and bipX q “ 0 for i ą n.
p´1qnχpX q ě 0.
The characteristic varieties “propagate”: V1

1 pX q Ď ¨ ¨ ¨ Ď Vn
1 pX q.
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COHOMOLOGY JUMP LOCI ABELIAN DUALITY

THEOREM (DENHAM–S. 2018)

Let X be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose X has a smooth compactification Y for which

Components of Y zX form an arrangement of hypersurfaces A;
For each submanifold X in the intersection poset LpAq, the
complement of the restriction of A to X is a Stein manifold.

Then X is both a duality and an abelian duality space of dimension n.

THEOREM (DS18)

Suppose that A is one of the following:
A hyperplane arrangement in Cn or CPn;
A non-empty elliptic arrangement in En;
A toric arrangement in pC˚qn.

Then MpAq is both a duality and an abelian duality space of dimension
n ´ r , n ` r , and n, respectively, where r “ corankpAq.
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MILNOR FIBRATION MILNOR FIBER AND MONODROMY

MILNOR FIBRATION

A

F

h

F

Let A be a central arrangement in C`. For each H P A let αH be a
linear form with kerpαHq “ H, and let Q “

ś

HPA αH .

Q : C` Ñ C restricts to a smooth fibration, Q : MpAq Ñ C˚. The
Milnor fiber of the arrangement is F pAq :“ Q´1p1q.

F is a Stein manifold. It has the homotopy type of a finite
CW-complex of dimension `´ 1.

In general, F is not Q-formal, and H˚pF ,Zq may have torsion.

F “ F pAq is the regular, Zn-cover of U “ UpAq, classified by the
morphism π1pUq� Zn taking each loop xH to 1 (where n “ |A|).
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MILNOR FIBRATION MODULAR INEQUALITIES

MODULAR INEQUALITIES

The monodromy diffeo, h : F Ñ F , is given by hpzq “ e2πi{nz.

Let ∆ptq be the characteristic polynomial of h˚ : H1pF ,Cq". Since
hn “ id, we have

∆ptq “
ź

r |n

Φr ptqer pAq,

where Φr ptq is the r -th cyclotomic polynomial, and er pAq P Zě0.

To compute h˚, we may assume ` “ 3, so that Ā “ PpAq is an
arrangement of lines in CP2.

If there is no point of Ā of multiplicity q ě 3 such that r | q, then
er pAq “ 0 (Libgober 2002).

In particular, if Ā has only points of multiplicity 2 and 3, then
∆ptq “ pt ´ 1qn´1pt2 ` t ` 1qe3 . If multiplicity 4 appears, then we
also get factor of pt ` 1qe2 ¨ pt2 ` 1qe4 .
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MILNOR FIBRATION MODULAR INEQUALITIES

Let A “ H.pMpAq,kq, and let σ “
ř

HPA eH P A1.

Assume k has characteristic p ą 0, and define

βppAq “ dimk H1pA, ¨σq.

That is, βppAq “ maxts | σ P R1
spA,kqu.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

epmpAq ď βppAq, for all m ě 1.

THEOREM (PAPADIMA–S. 2017)

Suppose A admits a k-net. Then βppAq “ 0 if p - k and
βppAq ě k ´ 2, otherwise.
If A admits a reduced k-multinet, then ek pAq ě k ´ 2.
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MILNOR FIBRATION COMBINATORICS AND MONODROMY

COMBINATORICS AND MONODROMY

THEOREM (PS)

Suppose A has no points of multiplicity 3r with r ą 1. Then A admits a
reduced 3-multinet iff A admits a 3-net iff β3pAq ‰ 0. Moreover,

β3pAq ď 2.
e3pAq “ β3pAq, and thus e3pAq is combinatorially determined.

COROLLARY

Suppose all flats X P L2pAq have multiplicity 2 or 3. Then ∆ptq, and
thus b1pF pAqq, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and β2pAq ď 2. Then
e2pAq “ e4pAq “ β2pAq “ 2.
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MILNOR FIBRATION COMBINATORICS AND MONODROMY

CONJECTURE (PS)

The characteristic polynomial of the degree 1 algebraic monodromy for
the Milnor fibration of an arrangement A of rank at least 3 is given by
the combinatorial formula

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

The conjecture has been verified for
All sub-arrangements of non-exceptional Coxeter arrangements
(Măcinic, Papadima).
All complex reflection arrangements (Măcinic, Papadima, Popescu,
Dimca, Sticlaru).
Certain types of complexified real arrangements (Yoshinaga, Bailet,
Torielli, Settepanella).

A counterexample has been announced by Yoshinaga (2019):
there is an arrangement of 16 planes in C3 with e2 “ 0 but β2 “ 1.

ALEX SUCIU (NORTHEASTERN) HYPERPLANE ARRANGEMENTS UNR, FEBRUARY 22, 2019 20 / 30



BOUNDARY STRUCTURES THE BOUNDARY MANIFOLD

THE BOUNDARY MANIFOLD

Let A be a (central) arrangement of hyperplanes in C`.

Let N be a (closed) regular neighborhood of the hypersurface
V pAq “

Ť

HPA PpHq inside CP`´1.

Let UpAq “ CP`´1z intpNq. Clearly, U » U.

The boundary manifold of A is BU “ BN. This is a compact,
orientable, smooth manifold of dimension 2`´ 3.

EXAMPLE

Let A be a pencil of n hyperplanes in C`, defined by Q “ zn
1 ´ zn

2 .
If n “ 1, then BU “ S2`´3. If n ą 1, then BU “ 7n´1S1 ˆ S2p`´2q.
Let A be a near-pencil of n planes in C3, defined by
Q “ z1pzn´1

2 ´ zn´1
3 q. Then BU “ S1 ˆ Σn´2.
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BOUNDARY STRUCTURES THE BOUNDARY MANIFOLD

When ` “ 3, the boundary manifold BU is a 3-dimensional
graph-manifold MΓ, where

Γ is the incidence graph of A, with V pΓq “ L1pAq Y L2pAq and
EpΓq “ tpL,Pq | P P Lu.

Vertex manifolds Mv “ S1 ˆ
`

S2z
Ť

tv ,wuPEpΓq D2
v ,w

˘

are glued along
edge manifolds Me “ S1 ˆ S1 via flip maps.

b1pMΓq “ |A| ` b1pΓq ´ 1.

THEOREM (JIANG–YAU 1993)

UpAq – UpA1q ñ MΓ – MΓ1 ñ Γ – Γ1 ñ LpAq – LpA1q.

THEOREM (COHEN–S. 2008)

V1
1 pMΓq “

ď

vPVpΓq : degpvqě3

!

t P pC˚qb1pMΓq |
ź

iPv

ti “ 1
)

.
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BOUNDARY STRUCTURES THE RFRp PROPERTY

THE RFRp PROPERTY

DEFINITION (AGOL, KOBERDA–S.)

A finitely generated group G is residually finite rationally p for some
prime p if there is a sequence of subgroups,

G “ G0 ą ¨ ¨ ¨ ą Gi ą Gi`1 ą ¨ ¨ ¨

such that
Ş

iě0 Gi “ t1u, and, for each i ,
Gi`1 ŸGi ;
Gi{Gi`1 is an elementary abelian p-group;
kerpGi Ñ H1pGi ,Qqq is a subgroup of Gi`1.

G RFRp ñ residually p ñ residually finite & residually nilpotent.
G RFRp ñ torsion-free.
G finitely presented & RFRp ñ has solvable word problem.
The class of RFRp groups is closed under taking subgroups, finite
direct products, and finite free products.
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BOUNDARY STRUCTURES THE RFRp PROPERTY

Finitely generated free groups Fn, surface groups π1pΣgq, and
right-angled Artin groups AΓ are RFRp, for all p.

Finite groups and non-abelian nilpotent groups are not RFRp, for
any p.

THEOREM (KOBERDA–S. 2016)

If G is a finitely presented group which is RFRp for infinitely many
primes p, then either G is abelian or G is large (i.e., it virtually surjects
onto a non-abelian free group).

THEOREM (KS)

Let MΓ be the boundary manifold of a line arrangement in C2. Then
π1pMΓq is RFRp, for all primes p.

ALEX SUCIU (NORTHEASTERN) HYPERPLANE ARRANGEMENTS UNR, FEBRUARY 22, 2019 24 / 30



BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

THE BOUNDARY OF THE MILNOR FIBER

For an arrangement A in C`, let F pAq “ F pAq X D2` be the closed
Milnor fiber of A. Clearly, F » F .

The boundary of the Milnor fiber of A is the compact, smooth,
orientable, p2`´ 3q-manifold BF “ F X S2`´1.

The pair pF , BF q is p`´ 2q-connected. In particular, if ` ě 3, then
BF is connected, and π1pBF q Ñ π1pF q is surjective.
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

EXAMPLE

Let Bn be the Boolean arrangement in Cn. Then F “ pC˚qn´1.
Hence, F “ T n´1 ˆ Dn´1 and so BF “ T n´1 ˆ Sn´2.
Let A be a near-pencil of n planes in C3. Then BF “ S1 ˆ Σn´2.

Set n “ |A|. The Hopf fibration π : C`zt0u Ñ CP`´1 restricts to regular,
cyclic n-fold covers, π : F Ñ U and π : BF Ñ BU, which fit into

Zn

��

Zn

��

Zn //

��

C˚

��

C˚

��
BF

π
��

// F

π
��

» // F

π

��

// M //

π

��

C`zt0u

π
��

BU // U » // U U // CP`´1
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

Assume now that ` “ 3. The fundamental group of BU “ MΓ has
generators txH | H P Au and tyc | c a cycle in Γu.

PROPOSITION (S. 2014)

The Zn-cover π : BF Ñ BU is classified by the homomorphism
π1pBUq� Zn given by xH ÞÑ 1 and yc ÞÑ 0.

THEOREM (NÉMETHI–SZILARD 2012)

The characteristic polynomial of h˚ : H1pBF ,Cq" is given by

δptq “
ź

PPL2pAq
pt ´ 1qptgcdpnP ,nq ´ 1qnP´2.
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BOUNDARY STRUCTURES A PAIR OF ARRANGEMENTS

A PAIR OF ARRANGEMENTS

' $

& %�
�
�
�@

@
@
@

A

' $

& %�
�
�
�
�

A1

Let A and A1 be the above pair of arrangements. Both have 2
triple points and 9 double points, yet LpAq fl LpA1q.

Nevertheless, UpAq » UpA1q.

Since LpAq fl LpA1q, the corresponding boundary manifolds, BU
and BU

1
, are not homotopy equivalent.

In fact, V1
1 pBUq consists of 7 codimension-1 subtori in pC˚q13,

while V1
1 pBU

1
q consists of 8 such subtori.
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BOUNDARY STRUCTURES A PAIR OF ARRANGEMENTS

The corresponding Milnor fibers, F and F 1, have the same
characteristic polynomial of the algebraic monodromy,

∆ “ ∆1 “ pt ´ 1q5.

Likewise for the boundaries of the Milnor fibers,

δ “ δ1 “ pt ´ 1q13pt2 ` t ` 1q2.

The varieties V1
1 pF q and V1

1 pF
1q consist of two 2-dimensional

subtori of pC˚q5. On the other hand, V1
2 pF q fl V1

2 pF
1q.

Thus, π1pF q fl π1pF 1q.

CONJECTURE

Let A and A1 be two central arrangements in C3. Then

F pAq – F pA1q ñ LpAq – LpA1q.
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BOUNDARY STRUCTURES REFERENCES
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