HYPERPLANE ARRANGEMENTS

AT THE CROSSROADS OF TOPOLOGY AND COMBINATORICS

Alex Suciu

Northeastern University

PIMS Distinguished Lecture

University of Regina

August 14, 2015

OUTLINE

- HYPERPLANE ARRANGEMENTS
 - Complement and intersection lattice
 - Cohomology ring
 - Fundamental group
- 2 COHOMOLOGY JUMP LOCI
 - Characteristic varieties
 - Resonance varieties
 - The Tangent Cone theorem
- 3 JUMP LOCI OF ARRANGEMENTS
 - Resonance varieties
 - Multinets
 - Characteristic varieties
 - THE MILNOR FIBRATIONS OF AN ARRANGEMENT
 - The Milnor fibrations of an arrangement
 - The homology of the Milnor fiber
 - Modular inequalities
 - Torsion in homology

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite collection A of codimension 1 linear subspaces in C^ℓ.
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$.

EXAMPLE (THE BOOLEAN ARRANGEMENT)

- \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
- $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
- $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.

EXAMPLE (THE BRAID ARRANGEMENT)

- A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
- *L*(*A_n*): lattice of partitions of [*n*] := {1, ..., *n*}, ordered by refinement.
- *M*(*A_n*): configuration space of *n* ordered points in ℂ (a classifying space for *P_n*, the pure braid group on *n* strings).

FIGURE : A planar slice of the braid arrangement A_4

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $\mathcal{A} = \{H_1, \dots, H_n\}$, and choose linear forms $f_i : \mathbb{C}^{\ell} \to \mathbb{C}$ with ker $(f_i) = H_i$. Define an injective linear map

$$\iota \colon \mathbb{C}^{\ell} \to \mathbb{C}^{n}, \quad z \mapsto (f_{1}(z), \dots, f_{n}(z)).$$

- This map restricts to an inclusion *ι*: *M*(*A*) → *M*(*B_n*). Hence,
 M(*A*) = *ι*(ℂ^ℓ) ∩ (ℂ^{*})ⁿ is a Stein manifold.
- Therefore, M = M(A) has the homotopy type of a connected, finite cell complex of dimension ℓ .
- In fact, *M* has a minimal cell structure (Dimca–Papadima, Randell, Salvetti, Adiprasito,...). Consequently, *H*_{*}(*M*, Z) is torsion-free.

COHOMOLOGY RING

• The Betti numbers $b_q(M) := \operatorname{rank} H_q(M, \mathbb{Z})$ are given by

$$\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)},$$

where $\mu \colon L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined recursively by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.

- Let *E* = ∧(*A*) be the Z-exterior algebra on degree 1 classes *e_H* dual to the meridians around the hyperplanes *H* ∈ *A*.
- Let $\partial: E^{\bullet} \to E^{\bullet-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_{\mathcal{B}} = \prod_{H \in \mathcal{B}} e_H$ for each $\mathcal{B} \subset \mathcal{A}$.
- The cohomology ring *H*^{*}(*M*(*A*), ℤ) is isomorphic to the Orlik–Solomon algebra *A*(*A*) = *E*/*I*, where

$$I = \text{ideal} \left\langle \partial e_{\mathcal{B}} \middle| \operatorname{codim} \bigcap_{H \in \mathcal{B}} H < |\mathcal{B}| \right\rangle.$$

FUNDAMENTAL GROUP

- Given a generic projection of a generic slice of A in C², the fundamental group π = π₁(M(A)) can be computed from the resulting braid monodromy α = (α₁,..., α_s), where α_r ∈ P_n.
- π has a (minimal) finite presentation with
 - Meridional generators x_1, \ldots, x_n , where $n = |\mathcal{A}|$.
 - Commutator relators $x_i \alpha_j (x_i)^{-1}$, where each α_j acts on F_n via the Artin representation.
- Let $\pi/\gamma_k(\pi)$ be the (k-1)th nilpotent quotient of π . Then:
 - $\pi_{ab} = \pi/\gamma_2$ equals \mathbb{Z}^n .
 - π/γ_3 is determined by $A^{\leq 2}(\mathcal{A})$, and thus by $L_{\leq 2}(\mathcal{A})$.
 - π/γ_4 (and thus, π) is *not* determined by L(A). (Rybnikov).

CHARACTERISTIC VARIETIES

- Let *X* be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let k be an algebraically closed field, and let Hom(π, k*) be the affine algebraic group of k-valued, multiplicative characters on π.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^*) \mid \dim_{\Bbbk} H_{\boldsymbol{q}}(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

Here, \Bbbk_{ρ} is the local system defined by ρ , i.e, \Bbbk viewed as a $\Bbbk\pi$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \Bbbk_{\rho}) = H_i(C_*(\widetilde{X}, \Bbbk) \otimes_{\Bbbk\pi} \Bbbk_{\rho})$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_s^1(X, \Bbbk)$ depend only on π/π'' .

EXAMPLE (CIRCLE)

We have $\widetilde{S^1} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{k}\mathbb{Z} = \mathbb{k}[t^{\pm 1}]$. Then:

$$\mathcal{C}_*(\widetilde{S^1}, \Bbbk): 0 \longrightarrow \Bbbk[t^{\pm 1}] \stackrel{t-1}{\longrightarrow} \Bbbk[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \text{Hom}(\mathbb{Z}, \mathbb{k}^*) = \mathbb{k}^*$, we get

$$\mathcal{C}_*(\widetilde{S^1}, \Bbbk) \otimes_{\Bbbk \mathbb{Z}} \Bbbk_{
ho} : 0 \longrightarrow \Bbbk \xrightarrow{
ho-1} \Bbbk \longrightarrow 0$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \Bbbk) = H_1(S^1, \Bbbk) = \Bbbk$. Hence: $\mathcal{V}_1^0(S^1, \Bbbk) = \mathcal{V}_1^1(S^1, \Bbbk) = \{1\}$ and $\mathcal{V}_s^i(S^1, \Bbbk) = \emptyset$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\widehat{F}_n = (\mathbb{k}^*)^n$. Then: $\mathcal{V}_s^1(\mathbb{C}\setminus\{n \text{ points}\},\mathbb{k}) = \begin{cases} (\mathbb{k}^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

RESONANCE VARIETIES

- Let $A = H^*(X, \mathbb{k})$, where char $\mathbb{k} \neq 2$. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- We thus get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

 The resonance varieties of X are the jump loci for the cohomology of this complex

$$\mathcal{R}^{q}_{s}(X, \Bbbk) = \{ a \in \mathcal{A}^{1} \mid \dim_{\Bbbk} \mathcal{H}^{q}(A, \cdot a) \ge s \}$$

- E.g., $\mathcal{R}_1^1(X, \mathbb{k}) = \{ a \in A^1 \mid \exists b \in A^1, b \neq \lambda a, ab = 0 \}.$
- These loci are *homogeneous* subvarieties of $A^1 = H^1(X, \mathbb{k})$.

EXAMPLE

- $\mathcal{R}_1^1(T^n, \Bbbk) = \{0\}$, for all n > 0.
- $\mathcal{R}_1^1(\mathbb{C}\setminus\{n \text{ points}\}, \mathbb{k}) = \mathbb{k}^n$, for all n > 1.

THE TANGENT CONE THEOREM

- Given a subvariety $W \subset (\mathbb{C}^*)^n$, let $\tau_1(W) = \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \forall \lambda \in \mathbb{C}\}.$
- (Dimca–Papadima–S. 2009) *τ*₁(*W*) is a finite union of rationally defined linear subspaces, and *τ*₁(*W*) ⊆ TC₁(*W*).
- (Libgober 2002/DPS 2009)

 $\tau_1(\mathcal{V}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathsf{TC}_1(\mathcal{V}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{X}).$

(DPS 2009/DP 2014): Suppose X is a k-formal space. Then, for each *i* ≤ k and s > 0,

$$\tau_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathcal{R}_{\boldsymbol{s}}^i(\boldsymbol{X}).$$

Consequently, Rⁱ_s(X, ℂ) is a union of rationally defined linear subspaces in H¹(X, ℂ).

JUMP LOCI OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen–A.S., Libgober, and Yuzvinsky, completely describes the varieties $\mathcal{R}_s(\mathcal{A}) := \mathcal{R}_s^1(\mathcal{M}(\mathcal{A}), \mathbb{C})$:

- $\mathcal{R}_1(\mathcal{A})$ is a union of linear subspaces in $H^1(\mathcal{M}(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}_s(\mathcal{A})$ is the union of those linear subspaces that have dimension at least s + 1.
- (Falk–Yuzvinsky 2007) Each *k*-multinet on a sub-arrangement
 B ⊆ A gives rise to a component of R₁(A) of dimension k − 1.
 Moreover, all components of R₁(A) arise in this way.

MULTINETS

- To compute *R*₁(*A*), we may assume *A* is an arrangement in C³. Its projectivization, *Ā*, is an arrangement of lines in CP².
- $L_1(\mathcal{A}) \longleftrightarrow$ lines of $\overline{\mathcal{A}}$, $L_2(\mathcal{A}) \longleftrightarrow$ intersection points of $\overline{\mathcal{A}}$.
- A flat X ∈ L₂(A) has multiplicity q if the point X
 has exactly q lines from A
 passing through it.
- A (*k*, *d*)-multinet on A is a partition into k ≥ 3 subsets, A₁,..., A_k, together with an assignment of multiplicities, m: A → N, and a subset X ⊆ L₂(A), such that (basically):
 - **1** ∃ *d* ∈ \mathbb{N} such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$.

2 If *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$.

(a) \forall *X* ∈ *X*, the sum $n_X = \sum_{H \in A_α: H \supset X} m_H$ is independent of *α*.

- The multinet is *reduced* if $m_H = 1$, for all $H \in A$.
- A *net* is a reduced multinet with $n_X = 1$, for all $X \in \mathcal{X}$.

 $\mathcal{R}_1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 local components (from the triple points), and one essential component, from the above (3, 2)-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$
Alex SUCID
HYPERPLANE ARRANGEMENTS
UNIVERSITY OF REGINA, 2015
15/

- Let $\operatorname{Hom}(\pi_1(M(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^n$ be the character torus.
- The characteristic variety V₁(A) := V₁¹(M(A), C) lies in the substorus {t ∈ (C*)ⁿ | t₁ ··· t_n = 1}.
- \$\mathcal{V}_1(\mathcal{A})\$ is a finite union of torsion-translates of algebraic subtori of \$(\mathcal{C}^*)^n\$.
- If a linear subspace L ⊂ Cⁿ is a component of R₁(A), then the algebraic torus T = exp(L) is a component of V₁(A).
- All components of V₁(A) passing through the origin 1 ∈ (ℂ*)ⁿ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}_1(\mathcal{A})$.

(Denham–S. 2014)

- Suppose there is a multinet *M* on *A*, and there is a hyperplane *H* for which *m_H* > 1 and *m_H* | *n_X* for each *X* ∈ *X* such that *X* ⊂ *H*.
- Then V₁(A \ {H}) has a component which is a 1-dimensional subtorus, translated by a character of order m_H.

The B₃ arrangement supports a (3, 4)-multinet; \mathcal{X} consists of 4 triple points ($n_X = 1$) and 3 quadruple points ($n_X = 2$). So pick *H* with $m_H = 2$ to get a translated torus in $\mathcal{V}_1(B_3 \setminus \{H\})$.

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^{ℓ} .
- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let $Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H}$,

a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

- The map $Q_m \colon \mathbb{C}^\ell \to \mathbb{C}$ restricts to a map $Q_m \colon M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- *F_m*(*A*) is a Stein manifold. It has the homotopy type of a finite cell complex, with gcd(*m*) connected components, of dim ℓ − 1.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

• If all $m_H = 1$, the polynomial Q = Q(A) is the usual defining polynomial, and F(A) is the usual Milnor fiber of A.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

• Let $\mathcal{A} = \{H_1, \dots, H_n\}$ be an essential arrangement. The inclusion $\iota \colon M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$

The homology of the Milnor Fiber

- Let (A, m) be a multi-arrangement with gcd(m) = 1. Set $N = \sum_{H \in A} m_H$.
- The Milnor fiber *F_m*(*A*) is a regular ℤ_N-cover of the projectivized complement, *U*(*A*) = ℙ(*M*(*A*)), defined by the homomorphism

 $\delta_m \colon \pi_1(U(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, \quad x_H \mapsto m_H \mod N$

- Let $\widehat{\delta_m}$: Hom $(\mathbb{Z}_N, \mathbb{k}^*) \to$ Hom $(\pi_1(U(\mathcal{A})), \mathbb{k}^*)$ be the induced map between character groups.
- If char(k) ∤ N, the dimension of H_q(F_m(A), k) may be computed by summing up the number of intersection points of im(δ_m) with the varieties V^q_s(U(A), k), for all s ≥ 1.

- We now consider the simplest non-trivial case: that of an arrangement A of n planes in C³, and its Milnor fiber, F(A).
- Let Δ_A(t) = det(t ⋅ id −h_{*}) be the characteristic polynomial of the algebraic monodromy, h_{*}: H₁(F(A), C) → H₁(F(A), C).
- Since $h_*^n = id$, we may write

$$\Delta_{\mathcal{A}}(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},\tag{(\star)}$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

PROBLEM

- Is the polynomial ∆_A (or, equivalently, the exponents e_d(A)) determined by the intersection lattice L(A)?
- In particular, is the first Betti number b₁(F(A)) = deg(Δ_A) combinatorially determined?

- By a transfer argument, $e_1(A) = n 1$.
- Not all divisors of *n* appear in (⋆). E.g., if *d* does not divide at least one of the multiplicities of the intersection points, then e_d(A) = 0.
- In particular, if A has only points of multiplicity 2 and 3, then $\Delta_A(t) = (t-1)^{m-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

EXAMPLE

Let $\mathcal{A} = \mathcal{A}_4$ be the braid arrangement. Then $\mathcal{V}_1(\mathcal{A})$ has a single 'essential' component,

$$T = \{t \in (\mathbb{C}^*)^6 \mid t_1 t_2 t_3 = t_1 t_6^{-1} = t_2 t_5^{-1} = t_3 t_4^{-1} = 1\}.$$

Clearly, $\delta^2 \in T$, yet $\delta \notin T$. Hence, $\Delta_A(t) = (t-1)^5(t^2+t+1)$.

MODULAR INEQUALITIES

- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector.
- Assume k has characteristic p > 0, and define

 $\beta_{p}(\mathcal{A}) = \dim_{\mathbb{K}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{p}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^s}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $s \geq 1$.

THEOREM

Suppose A admits a k-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \ge k - 2$, otherwise.

2 If A admits a reduced k-multinet, then $e_k(A) \ge k - 2$.

THEOREM (PAPADIMA-S. 2014)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a reduced 3-multinet iff A admits a 3-net iff $\beta_3(A) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2$.
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

COROLLARY (PS)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^s}(\mathcal{A}) = 0$ for all primes p and integers $s \ge 1$, with two possible exceptions:

 $e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A})$ and $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$.

If $e_d(A) = 0$ for all divisors *d* of |A| which are not prime powers, this conjecture would give:

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).

TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (A, m) such that $H_1(F_m(A), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

ALEX SUCIU

We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement A is a multinet structure, together with a distinguished hyperplane $H \in A$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM–S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1^1(M(\mathcal{A}'), \Bbbk)$ varies with char(\Bbbk).

To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' \| m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$

COROLLARY (DS)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

 $Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2)(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1) \cdot \frac{1}{2}(x - 4w_1) \cdot \frac{1}{2}(x$

 $((x-y)^2 - w_2^2)((x+y)^2 - w_3^2)((x-z)^2 - w_4^2)((x-z)^2 - 2w_4^2) \cdot ((x+z)^2 - w_5^2)((x+z)^2 - 2w_5^2).$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

ALEX SUCIU

HYPERPLANE ARRANGEMENTS

REFERENCES

- G. Denham, A. Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, Proc. London Math. Soc. **108** (2014), no. 6, 1435–1470.
- S. Papadima, A. Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, arxiv:1401.0868.
- A. Suciu, *Hyperplane arrangements and Milnor fibrations*, Ann. Fac. Sci. Toulouse Math. **23** (2014), no. 2, 417–481.