Hyperplane arrangements
 AT THE CROSSROADS OF TOPOLOGY AND COMBINATORICS

Alex Suciu

Northeastern University

PIMS Distinguished Lecture
University of Regina

August 14, 2015
(1) Hyperplane arrangements

- Complement and intersection lattice
- Cohomology ring
- Fundamental group
(2) COHOMOLOGY JUMP LOCI
- Characteristic varieties
- Resonance varieties
- The Tangent Cone theorem
(3) JUMP LOCI OF ARRANGEMENTS
- Resonance varieties
- Multinets
- Characteristic varieties

4) The Milnor fibrations of An arrangement

- The Milnor fibrations of an arrangement
- The homology of the Milnor fiber
- Modular inequalities
- Torsion in homology

HYpERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite collection \mathcal{A} of codimension 1 linear subspaces in \mathbb{C}^{ℓ}.
- Intersection lattice $L(\mathcal{A})$: poset of all intersections of \mathcal{A}, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H$.

Example (The Boolean arrangement)

- \mathcal{B}_{n} : all coordinate hyperplanes $z_{i}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{B}_{n}\right)$: Boolean lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$: complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$.

EXAMPLE (THE BRAID ARRANGEMENT)

- \mathcal{A}_{n} : all diagonal hyperplanes $z_{i}-z_{j}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{A}_{n}\right)$: lattice of partitions of $[n]:=\{1, \ldots, n\}$, ordered by refinement.
- $M\left(\mathcal{A}_{n}\right)$: configuration space of n ordered points in \mathbb{C} (a classifying space for P_{n}, the pure braid group on n strings).

Figure : A planar slice of the braid arrangement \mathcal{A}_{4}

- We may assume that \mathcal{A} is essential, i.e., $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
- Fix an ordering $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$, and choose linear forms $f_{i}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ with $\operatorname{ker}\left(f_{i}\right)=H_{i}$. Define an injective linear map

$$
\iota: \mathbb{C}^{\ell} \rightarrow \mathbb{C}^{n}, \quad z \mapsto\left(f_{1}(z), \ldots, f_{n}(z)\right)
$$

- This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M\left(\mathcal{B}_{n}\right)$. Hence, $M(\mathcal{A})=\iota\left(\mathbb{C}^{\ell}\right) \cap\left(\mathbb{C}^{*}\right)^{n}$ is a Stein manifold.
- Therefore, $M=M(\mathcal{A})$ has the homotopy type of a connected, finite cell complex of dimension ℓ.
- In fact, M has a minimal cell structure (Dimca-Papadima, Randell, Salvetti, Adiprasito,...). Consequently, $H_{*}(M, \mathbb{Z})$ is torsion-free.

COHOMOLOGY RING

- The Betti numbers $b_{q}(M):=\operatorname{rank} H_{q}(M, \mathbb{Z})$ are given by

$$
\sum_{q=0}^{\ell} b_{q}(M) t^{q}=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}
$$

where $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is the Möbius function, defined recursively by $\mu\left(\mathbb{C}^{\ell}\right)=1$ and $\mu(X)=-\sum_{Y \ni X} \mu(Y)$.

- Let $E=\bigwedge(\mathcal{A})$ be the \mathbb{Z}-exterior algebra on degree 1 classes e_{H} dual to the meridians around the hyperplanes $H \in \mathcal{A}$.
- Let $\partial: E^{\bullet} \rightarrow E^{\bullet-1}$ be the differential given by $\partial\left(e_{H}\right)=1$, and set $e_{\mathcal{B}}=\prod_{H \in \mathcal{B}} e_{H}$ for each $\mathcal{B} \subset \mathcal{A}$.
- The cohomology ring $H^{*}(M(\mathcal{A}), \mathbb{Z})$ is isomorphic to the Orlik-Solomon algebra $A(\mathcal{A})=E / I$, where

$$
I=\operatorname{ideal}\left\langle\partial \boldsymbol{e}_{\mathcal{B}}\right| \operatorname{codim} \bigcap_{H \in \mathcal{B}} H\langle | \mathcal{B}| \rangle .
$$

FUNDAMENTAL GROUP

- Given a generic projection of a generic slice of \mathcal{A} in \mathbb{C}^{2}, the fundamental group $\pi=\pi_{1}(M(\mathcal{A}))$ can be computed from the resulting braid monodromy $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, where $\alpha_{r} \in P_{n}$.
- π has a (minimal) finite presentation with
- Meridional generators x_{1}, \ldots, x_{n}, where $n=|\mathcal{A}|$.
- Commutator relators $x_{i} \alpha_{j}\left(x_{i}\right)^{-1}$, where each α_{j} acts on F_{n} via the Artin representation.
- Let $\pi / \gamma_{k}(\pi)$ be the $(k-1)^{\text {th }}$ nilpotent quotient of π. Then:
- $\pi_{\mathrm{ab}}=\pi / \gamma_{2}$ equals \mathbb{Z}^{n}.
- π / γ_{3} is determined by $A^{\leqslant 2}(\mathcal{A})$, and thus by $L_{\leqslant 2}(\mathcal{A})$.
- π / γ_{4} (and thus, π) is not determined by $L(\mathcal{A})$. (Rybnikov).

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
- Let \mathbb{k} be an algebraically closed field, and let $\operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right)$ be the affine algebraic group of \mathbb{k}-valued, multiplicative characters on π.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X :

$$
\mathcal{V}_{s}^{q}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right) \mid \operatorname{dim}_{\mathbb{k}} H_{q}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

Here, \mathbb{k}_{ρ} is the local system defined by ρ, i.e, \mathbb{k} viewed as a $\mathbb{k} \pi$-module, via $g \cdot x=\rho(g) x$, and $H_{i}\left(X, \mathbb{k}_{\rho}\right)=H_{i}\left(C_{*}(\widetilde{X}, \mathbb{k}) \otimes_{k} \pi \mathbb{k}_{\rho}\right)$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_{s}^{1}(X, \mathbb{k})$ depend only on $\pi / \pi^{\prime \prime}$.

Example (Circle)

We have $\widetilde{S^{1}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{k} \mathbb{Z}=\mathbb{k}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{k}\right): 0 \longrightarrow \mathbb{k}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{k}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{k}^{*}\right)=\mathbb{k}^{*}$, we get

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{k}\right) \otimes_{\mathbb{k} \mathbb{Z}} \mathbb{k}_{\rho}: 0 \longrightarrow \mathbb{k} \xrightarrow{\rho-1} \mathbb{k} \longrightarrow 0
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{k}\right)=H_{1}\left(S^{1}, \mathbb{k}\right)=\mathbb{k}$. Hence: $\mathcal{V}_{1}^{0}\left(S^{1}, \mathbb{k}\right)=\mathcal{V}_{1}^{1}\left(S^{1}, \mathbb{k}\right)=\{1\}$ and $\mathcal{V}_{s}^{i}\left(S^{1}, \mathbb{k}\right)=\varnothing$, otherwise.

Example (Punctured complex line) Identify $\pi_{1}(\mathbb{C} \backslash\{n$ points $\})=F_{n}$, and $\widehat{F_{n}}=\left(\mathbb{k}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{1}(\mathbb{C} \backslash\{n \text { points }\}, \mathbb{k})= \begin{cases}\left(\mathbb{k}^{*}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n, \\ \varnothing & \text { if } s>n\end{cases}
$$

Resonance varieties

- Let $A=H^{*}(X, \mathbb{k})$, where char $\mathbb{k} \neq 2$. Then: $a \in A^{1} \Rightarrow a^{2}=0$.
- We thus get a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2}
$$

- The resonance varieties of X are the jump loci for the cohomology of this complex

$$
\mathcal{R}_{s}^{q}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{q}(A, \cdot a) \geqslant s\right\}
$$

- E.g., $\mathcal{R}_{1}^{1}(X, \mathbb{k})=\left\{a \in A^{1} \mid \exists b \in A^{1}, b \neq \lambda a, a b=0\right\}$.
- These loci are homogeneous subvarieties of $A^{1}=H^{1}(X, \mathbb{k})$.

Example

- $\mathcal{R}_{1}^{1}\left(T^{n}, \mathbb{k}\right)=\{0\}$, for all $n>0$.
- $\mathcal{R}_{1}^{1}(\mathbb{C} \backslash\{n$ points $\}, \mathbb{k})=\mathbb{k}^{n}$, for all $n>1$.

The TANGENT CONE THEOREM

- Given a subvariety $\left.W \subset\left(\mathbb{C}^{*}\right)^{n}\right)$, let $\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}$.
- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces, and $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$.
- (Libgober 2002/DPS 2009)

$$
\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathcal{R}_{s}^{i}(X)
$$

- (DPS 2009/DP 2014): Suppose X is a k-formal space. Then, for each $i \leqslant k$ and $s>0$,

$$
\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathcal{R}_{s}^{i}(X)
$$

- Consequently, $\mathcal{R}_{s}^{i}(X, \mathbb{C})$ is a union of rationally defined linear subspaces in $H^{1}(X, \mathbb{C})$.

JUMP LOCI OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen-A.S., Libgober, and Yuzvinsky, completely describes the varieties $\mathcal{R}_{s}(\mathcal{A}):=\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{C})$:

- $\mathcal{R}_{1}(\mathcal{A})$ is a union of linear subspaces in $H^{1}(M(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}(\mathcal{A})$ is the union of those linear subspaces that have dimension at least $s+1$.
- (Falk-Yuzvinsky 2007) Each k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of $\mathcal{R}_{1}(\mathcal{A})$ of dimension $k-1$. Moreover, all components of $\mathcal{R}_{1}(\mathcal{A})$ arise in this way.

Multinets

- To compute $\mathcal{R}_{1}(\mathcal{A})$, we may assume \mathcal{A} is an arrangement in \mathbb{C}^{3}. Its projectivization, $\overline{\mathcal{A}}$, is an arrangement of lines in $\mathbb{C P}^{2}$.
- $L_{1}(\mathcal{A}) \longleftrightarrow$ lines of $\overline{\mathcal{A}}, \quad L_{2}(\mathcal{A}) \longleftrightarrow$ intersection points of $\overline{\mathcal{A}}$.
- A flat $X \in L_{2}(\mathcal{A})$ has multiplicity q if the point \bar{X} has exactly q lines from $\overline{\mathcal{A}}$ passing through it.
- $\mathrm{A}(k, d)$-multinet on \mathcal{A} is a partition into $k \geqslant 3$ subsets, $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$, together with an assignment of multiplicities, $m: \mathcal{A} \rightarrow \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, such that (basically):
(1) $\exists d \in \mathbb{N}$ such that $\sum_{H \in \mathcal{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$.
(2) If H and H^{\prime} are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$.
(3) $\forall X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{\alpha}: H \supset X} m_{H}$ is independent of α.
- The multinet is reduced if $m_{H}=1$, for all $H \in \mathcal{A}$.
- A net is a reduced multinet with $n_{X}=1$, for all $X \in \mathcal{X}$.

Example (Braid arrangement \mathcal{A}_{4})

$\mathcal{R}_{1}(\mathcal{A}) \subset \mathbb{C}^{6}$ has 4 local components (from the triple points), and one essential component, from the above $(3,2)$-net:

$$
\begin{aligned}
& L_{124}=\left\{x_{1}+x_{2}+x_{4}=x_{3}=x_{5}=x_{6}=0\right\}, \\
& L_{135}=\left\{x_{1}+x_{3}+x_{5}=x_{2}=x_{4}=x_{6}=0\right\}, \\
& L_{236}=\left\{x_{2}+x_{3}+x_{6}=x_{1}=x_{4}=x_{5}=0\right\}, \\
& L_{456}=\left\{x_{4}+x_{5}+x_{6}=x_{1}=x_{2}=x_{3}=0\right\}, \\
& L=\left\{x_{1}+x_{2}+x_{3}=x_{1}-x_{6}=x_{2}-x_{5}=x_{3}-x_{4}=0\right\} .
\end{aligned}
$$

- Let $\operatorname{Hom}\left(\pi_{1}(M(\mathcal{A})), \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{n}$ be the character torus.
- The characteristic variety $\mathcal{V}_{1}(\mathcal{A}):=\mathcal{V}_{1}^{1}(M(\mathcal{A}), \mathbb{C})$ lies in the substorus $\left\{t \in\left(\mathbb{C}^{*}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\}$.
- $\mathcal{V}_{1}(\mathcal{A})$ is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{*}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}_{1}(\mathcal{A})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}_{1}(\mathcal{A})$.
- All components of $\mathcal{V}_{1}(\mathcal{A})$ passing through the origin $1 \in\left(\mathbb{C}^{*}\right)^{n}$ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}_{1}(\mathcal{A})$.

(Denham-S. 2014)

- Suppose there is a multinet \mathcal{M} on \mathcal{A}, and there is a hyperplane H for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.
- Then $\mathcal{V}_{1}(\mathcal{A} \backslash\{H\})$ has a component which is a 1-dimensional subtorus, translated by a character of order m_{H}.

EXAMPLE (THE DELETED B3 ARRANGEMENT)

The B_{3} arrangement supports a $(3,4)$-multinet; \mathcal{X} consists of 4 triple points $\left(n_{X}=1\right)$ and 3 quadruple points $\left(n_{X}=2\right)$. So pick H with $m_{H}=2$ to get a translated torus in $\mathcal{V}_{1}\left(\mathrm{~B}_{3} \backslash\{H\}\right)$.

The Milnor fibration(s) OF AN ARRANGEMENT

- Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^{ℓ}.
- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m=\left(m_{H}\right)_{H \in \mathcal{A}}$ with $m_{H} \in \mathbb{N}$, let

$$
Q_{m}:=Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}}
$$

a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.

- The map $Q_{m}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the multi-arrangement (\mathcal{A}, m),

$$
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}} \mathbb{C}^{*}
$$

- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, of $\operatorname{dim} \ell-1$.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi \mathrm{i} / N_{z}}
$$

- If all $m_{H}=1$, the polynomial $Q=Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A})=\mathbb{C}^{*}$, $Q_{m}(\mathcal{A})=z^{m}$, and $F_{m}(\mathcal{A})=m$-roots of 1 .

ExAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

- Let \mathcal{B}_{n} be the Boolean arrangement, with $Q_{m}\left(\mathcal{B}_{n}\right)=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and

$$
F_{m}\left(\mathcal{B}_{n}\right)=\operatorname{ker}\left(\mathbb{Q}_{m}\right) \cong\left(\mathbb{C}^{*}\right)^{n-1} \times \mathbb{Z}_{\operatorname{gcd}(m)}
$$

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \rightarrow M\left(\mathcal{B}_{n}\right)$ restricts to a bundle map

$$
\begin{array}{cc}
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}(\mathcal{A})} \mathbb{C}^{*} \\
\downarrow & \downarrow \iota \\
F_{m}\left(\mathcal{B}_{n}\right) \longrightarrow & M\left(\mathcal{B}_{n}\right) \xrightarrow{Q_{m}\left(\mathcal{B}_{n}\right)} \mathbb{C}^{*}
\end{array}
$$

- Thus,

$$
F_{m}(\mathcal{A})=M(\mathcal{A}) \cap F_{m}\left(\mathcal{B}_{n}\right)
$$

The homology of the Milnor fiber

- Let (\mathcal{A}, m) be a multi-arrangement with $\operatorname{gcd}(m)=1$. Set $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The Milnor fiber $F_{m}(\mathcal{A})$ is a regular \mathbb{Z}_{N}-cover of the projectivized complement, $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$, defined by the homomorphism

$$
\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, \quad x_{H} \mapsto m_{H} \bmod N
$$

- Let $\widehat{\delta_{m}}: \operatorname{Hom}\left(\mathbb{Z}_{N}, \mathbb{k}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U(\mathcal{A})), \mathbb{k}^{*}\right)$ be the induced map between character groups.
- If char $(\mathbb{k}) \nmid N$, the dimension of $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$ may be computed by summing up the number of intersection points of $\operatorname{im}\left(\widehat{\delta_{m}}\right)$ with the varieties $\mathcal{V}_{s}^{q}(U(\mathcal{A}), \mathbb{k})$, for all $s \geqslant 1$.
- We now consider the simplest non-trivial case: that of an arrangement \mathcal{A} of n planes in \mathbb{C}^{3}, and its Milnor fiber, $F(\mathcal{A})$.
- Let $\Delta_{\mathcal{A}}(t)=\operatorname{det}\left(t \cdot \mathrm{id}-h_{*}\right)$ be the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{1}(F(\mathcal{A}), \mathbb{C}) \rightarrow H_{1}(F(\mathcal{A}), \mathbb{C})$.
- Since $h_{*}^{n}=$ id, we may write

$$
\Delta_{\mathcal{A}}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

Problem

- Is the polynomial $\Delta_{\mathcal{A}}$ (or, equivalently, the exponents $e_{d}(\mathcal{A})$) determined by the intersection lattice $L(\mathcal{A})$?
- In particular, is the first Betti number $b_{1}(F(\mathcal{A}))=\operatorname{deg}\left(\Delta_{\mathcal{A}}\right)$ combinatorially determined?
- By a transfer argument, $e_{1}(\mathcal{A})=n-1$.
- Not all divisors of n appear in (\star). E.g., if d does not divide at least one of the multiplicities of the intersection points, then $e_{d}(\mathcal{A})=0$.
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then $\Delta_{\mathcal{A}}(t)=(t-1)^{m-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.

EXAMPLE

Let $\mathcal{A}=\mathcal{A}_{4}$ be the braid arrangement. Then $\mathcal{V}_{1}(\mathcal{A})$ has a single 'essential' component,

$$
T=\left\{t \in\left(\mathbb{C}^{*}\right)^{6} \mid t_{1} t_{2} t_{3}=t_{1} t_{6}^{-1}=t_{2} t_{5}^{-1}=t_{3} t_{4}^{-1}=1\right\}
$$

Clearly, $\delta^{2} \in T$, yet $\delta \notin T$. Hence, $\quad \Delta_{\mathcal{A}}(t)=(t-1)^{5}\left(t^{2}+t+1\right)$.

MODULAR INEQUALITIES

- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma) .
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)

 $e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.
Theorem

(1) Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.
(2) If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

THEOREM (PAPADIMA-S. 2014)

Suppose \mathcal{A} has no points of multiplicity $3 r$ with $r>1$. Then \mathcal{A} admits a reduced 3 -multinet iff \mathcal{A} admits a 3-net iff $\beta_{3}(\mathcal{A}) \neq 0$. Moreover,

- $\beta_{3}(\mathcal{A}) \leqslant 2$.
- $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

COROLLARY (PS)

Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3 . Then $\Delta(t)$, and thus $b_{1}(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose \mathcal{A} supports a 4-net and $\beta_{2}(\mathcal{A}) \leqslant 2$. Then

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A})=2
$$

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^{s}}(\mathcal{A})=0$ for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})
$$

If $e_{d}(\mathcal{A})=0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).

TORSION IN HOMOLOGY

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^{3} with

$$
Q_{m}(\mathcal{A})=x^{2} y\left(x^{2}-y^{2}\right)^{3}\left(x^{2}-z^{2}\right)^{2}\left(y^{2}-z^{2}\right)
$$

Then $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)=\mathbb{Z}^{7} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM-S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}. There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_{1}^{1}\left(M\left(\mathcal{A}^{\prime}\right), \mathbb{k}\right)$ varies with char((\mathbb{k}).

To produce p-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

$(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to rank $\mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

Corollary (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
& Q(\mathcal{A})=x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) \\
& \quad\left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

REFERENCES

(T. Denham, A. Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. 108 (2014), no. 6, 1435-1470.

E- S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.
A. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417-481.

