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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

HYPERPLANE ARRANGEMENTS

An arrangement of hyperplanes is a finite collection A of
codimension 1 linear subspaces in C`.

Intersection lattice LpAq: poset of all intersections of A, ordered by
reverse inclusion, and ranked by codimension.

Complement: MpAq “ C`z
Ť

HPA H.
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L3L4

P1 P2
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

EXAMPLE (THE BOOLEAN ARRANGEMENT)

Bn: all coordinate hyperplanes zi “ 0 in Cn.

LpBnq: Boolean lattice of subsets of t0,1un.

MpBnq: complex algebraic torus pC˚qn.

EXAMPLE (THE BRAID ARRANGEMENT)

An: all diagonal hyperplanes zi ´ zj “ 0 in Cn.

LpAnq: lattice of partitions of rns :“ t1, . . . ,nu, ordered by
refinement.

MpAnq: configuration space of n ordered points in C (a classifying
space for Pn, the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

‚ ‚

‚

‚

z2 ´ z4 z1 ´ z2

z1 ´ z4

z2 ´ z3

z1 ´ z3 z3 ´ z4

FIGURE : A planar slice of the braid arrangement A4
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

We may assume that A is essential, i.e.,
Ş

HPA H “ t0u.

Fix an ordering A “ tH1, . . . ,Hnu, and choose linear forms
fi : C` Ñ C with kerpfiq “ Hi . Define an injective linear map

ι : C` Ñ Cn, z ÞÑ pf1pzq, . . . , fnpzqq.

This map restricts to an inclusion ι : MpAq ãÑ MpBnq. Hence,
MpAq “ ιpC`q X pC˚qn is a Stein manifold.

Therefore, M “ MpAq has the homotopy type of a connected,
finite cell complex of dimension `.

In fact, M has a minimal cell structure (Dimca–Papadima, Randell,
Salvetti, Adiprasito,. . . ). Consequently, H˚pM,Zq is torsion-free.
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HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

COHOMOLOGY RING

The Betti numbers bqpMq :“ rank HqpM,Zq are given by
ÿ`

q“0
bqpMqtq “

ÿ

XPLpAq
µpX qp´tqrankpXq,

where µ : LpAq Ñ Z is the Möbius function, defined recursively by
µpC`q “ 1 and µpX q “ ´

ř

YĽX µpY q.

Let E “
Ź

pAq be the Z-exterior algebra on degree 1 classes eH
dual to the meridians around the hyperplanes H P A.

Let B : E‚ Ñ E‚´1 be the differential given by BpeHq “ 1, and set
eB “

ś

HPB eH for each B Ă A.

The cohomology ring H˚pMpAq,Zq is isomorphic to the
Orlik–Solomon algebra ApAq “ E{I, where

I “ ideal
A

BeB

ˇ

ˇ

ˇ
codim

č

HPB
H ă |B|

E

.
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUP

FUNDAMENTAL GROUP

Given a generic projection of a generic slice of A in C2, the
fundamental group π “ π1pMpAqq can be computed from the
resulting braid monodromy α “ pα1, . . . , αsq, where αr P Pn.

π has a (minimal) finite presentation with

Meridional generators x1, . . . , xn, where n “ |A|.

Commutator relators xiαjpxiq
´1, where each αj acts on Fn via the

Artin representation.

Let π{γk pπq be the pk ´ 1qth nilpotent quotient of π. Then:

πab “ π{γ2 equals Zn.

π{γ3 is determined by Aď2pAq, and thus by Lď2pAq.

π{γ4 (and thus, π) is not determined by LpAq. (Rybnikov).
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite cell complex, and let π “ π1pX , x0q.

Let k be an algebraically closed field, and let Hompπ,k˚q be the
affine algebraic group of k-valued, multiplicative characters on π.

The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X :

Vq
s pX , kq “ tρ P Hompπ,k˚q | dimk HqpX , kρq ě su.

Here, kρ is the local system defined by ρ, i.e, k viewed as a kπ-module,
via g ¨ x “ ρpgqx , and HipX ,kρq “ HipC˚prX ,kq bkπ kρq.

These loci are Zariski closed subsets of the character group.

The sets V1
s pX ,kq depend only on π{π2.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have ĂS1 “ R. Identify π1pS1, ˚q “ Z “ xty and kZ “ krt˘1s. Then:

C˚pĂS1, kq : 0 // krt˘1s
t´1 // krt˘1s // 0 .

For ρ P HompZ,k˚q “ k˚, we get

C˚pĂS1, kq bkZ kρ : 0 // k ρ´1 // k // 0 ,

which is exact, except for ρ “ 1, when H0pS1,kq “ H1pS1,kq “ k.
Hence: V0

1 pS
1,kq “ V1

1 pS
1, kq “ t1u and V i

spS1,kq “ H, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify π1pCztn pointsuq “ Fn, and xFn “ pk˚qn. Then:

V1
s pCztn pointsu,kq “

$

&

%

pk˚qn if s ă n,
t1u if s “ n,
H if s ą n.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

RESONANCE VARIETIES

Let A “ H˚pX , kq, where chark ‰ 2. Then: a P A1 ñ a2 “ 0.

We thus get a cochain complex

pA, ¨aq : A0 a // A1 a // A2 // ¨ ¨ ¨ .

The resonance varieties of X are the jump loci for the cohomology
of this complex

Rq
s pX ,kq “ ta P A1 | dimk HqpA, ¨aq ě su

E.g., R1
1pX ,kq “ ta P A1 | Db P A1, b ‰ λa, ab “ 0u.

These loci are homogeneous subvarieties of A1 “ H1pX ,kq.

EXAMPLE

R1
1pT

n, kq “ t0u, for all n ą 0.
R1

1pCztn pointsu,kq “ kn, for all n ą 1.
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COHOMOLOGY JUMP LOCI THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

Given a subvariety W Ă pC˚qnq, let
τ1pW q “ tz P Cn | exppλzq P W , @λ P Cu.

(Dimca–Papadima–S. 2009) τ1pW q is a finite union of rationally
defined linear subspaces, and τ1pW q Ď TC1pW q.

(Libgober 2002/DPS 2009)

τ1pV i
spX qq Ď TC1pV i

spX qq Ď Ri
spX q.

(DPS 2009/DP 2014): Suppose X is a k -formal space. Then, for
each i ď k and s ą 0,

τ1pV i
spX qq “ TC1pV i

spX qq “ Ri
spX q.

Consequently, Ri
spX ,Cq is a union of rationally defined linear

subspaces in H1pX ,Cq.
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JUMP LOCI OF ARRANGEMENTS RESONANCE VARIETIES

JUMP LOCI OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen–A.S., Libgober, and Yuzvinsky,
completely describes the varieties RspAq :“ R1

spMpAq,Cq:

R1pAq is a union of linear subspaces in H1pMpAq,Cq – C|A|.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

RspAq is the union of those linear subspaces that have dimension
at least s ` 1.

(Falk–Yuzvinsky 2007) Each k-multinet on a sub-arrangement
B Ď A gives rise to a component of R1pAq of dimension k ´ 1.
Moreover, all components of R1pAq arise in this way.
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JUMP LOCI OF ARRANGEMENTS MULTINETS

MULTINETS

To compute R1pAq, we may assume A is an arrangement in C3.
Its projectivization, Ā, is an arrangement of lines in CP2.

L1pAq ÐÑ lines of Ā, L2pAq ÐÑ intersection points of Ā.

A flat X P L2pAq has multiplicity q if the point X̄ has exactly q lines
from Ā passing through it.

A pk ,dq-multinet on A is a partition into k ě 3 subsets,
A1, . . . ,Ak , together with an assignment of multiplicities,
m : AÑ N, and a subset X Ď L2pAq, such that (basically):

1 D d P N such that
ř

HPAα
mH “ d , for all α P rks.

2 If H and H 1 are in different classes, then H X H 1 P X .

3 @ X P X , the sum nX “
ř

HPAα:HĄX mH is independent of α.

The multinet is reduced if mH “ 1, for all H P A.

A net is a reduced multinet with nX “ 1, for all X P X .
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JUMP LOCI OF ARRANGEMENTS MULTINETS

EXAMPLE (BRAID ARRANGEMENT A4)

‚ ‚

‚

‚

4
2

1 3 5 6

R1pAq Ă C6 has 4 local components (from the triple points), and one
essential component, from the above p3,2q-net:

L124 “ tx1 ` x2 ` x4 “ x3 “ x5 “ x6 “ 0u,
L135 “ tx1 ` x3 ` x5 “ x2 “ x4 “ x6 “ 0u,
L236 “ tx2 ` x3 ` x6 “ x1 “ x4 “ x5 “ 0u,
L456 “ tx4 ` x5 ` x6 “ x1 “ x2 “ x3 “ 0u,
L “ tx1 ` x2 ` x3 “ x1 ´ x6 “ x2 ´ x5 “ x3 ´ x4 “ 0u.
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JUMP LOCI OF ARRANGEMENTS CHARACTERISTIC VARIETIES

Let Hompπ1pMpAqq,C˚q “ pC˚qn be the character torus.

The characteristic variety V1pAq :“ V1
1 pMpAq,Cq lies in the

substorus tt P pC˚qn | t1 ¨ ¨ ¨ tn “ 1u.

V1pAq is a finite union of torsion-translates of algebraic subtori of
pC˚qn.

If a linear subspace L Ă Cn is a component of R1pAq, then the
algebraic torus T “ exppLq is a component of V1pAq.

All components of V1pAq passing through the origin 1 P pC˚qn
arise in this way (and thus, are combinatorially determined).

In general, though, there are translated subtori in V1pAq.
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JUMP LOCI OF ARRANGEMENTS CHARACTERISTIC VARIETIES

(Denham–S. 2014)
Suppose there is a multinet M on A, and there is a hyperplane H
for which mH ą 1 and mH | nX for each X P X such that X Ă H.

Then V1pA z tHuq has a component which is a 1-dimensional
subtorus, translated by a character of order mH .

EXAMPLE (THE DELETED B3 ARRANGEMENT)

2

2

2

The B3 arrangement supports a p3,4q-multinet; X consists of 4 triple
points (nX “ 1) and 3 quadruple points (nX “ 2). So pick H with
mH “ 2 to get a translated torus in V1pB3ztHuq.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

Let A be a (central) hyperplane arrangement in C`.

For each H P A, let fH : C` Ñ C be a linear form with kernel H.

For each choice of multiplicities m “ pmHqHPA with mH P N, let

Qm :“ QmpAq “
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N “
ř

HPA mH .

The map Qm : C` Ñ C restricts to a map Qm : MpAq Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement pA,mq,

FmpAq // MpAq Qm // C˚.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

The typical fiber, FmpAq “ Q´1
m p1q, is called the Milnor fiber of the

multi-arrangement.

FmpAq is a Stein manifold. It has the homotopy type of a finite cell
complex, with gcdpmq connected components, of dim `´ 1.

The (geometric) monodromy is the diffeomorphism

h : FmpAq Ñ FmpAq, z ÞÑ e2πi{Nz.

If all mH “ 1, the polynomial Q “ QpAq is the usual defining
polynomial, and F pAq is the usual Milnor fiber of A.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

EXAMPLE

Let A be the single hyperplane t0u inside C. Then MpAq “ C˚,
QmpAq “ zm, and FmpAq “ m-roots of 1.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F pAq is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F pAq

h

F pAq

More generally, if A is a pencil of n lines in C2, then F pAq is a Riemann
surface of genus

`n´1
2

˘

, with n punctures.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

Let Bn be the Boolean arrangement, with QmpBnq “ zm1
1 ¨ ¨ ¨ zmn

n .
Then MpBnq “ pC˚qn and

FmpBnq “ kerpQmq – pC˚qn´1 ˆ Zgcdpmq

Let A “ tH1, . . . ,Hnu be an essential arrangement. The inclusion
ι : MpAq Ñ MpBnq restricts to a bundle map

FmpAq //

��

MpAq
QmpAq //

ι
��

C˚

FmpBnq // MpBnq
QmpBnq // C˚

Thus,
FmpAq “ MpAq X FmpBnq
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE HOMOLOGY OF THE MILNOR FIBER

THE HOMOLOGY OF THE MILNOR FIBER

Let pA,mq be a multi-arrangement with gcdpmq “ 1. Set
N “

ř

HPA mH .

The Milnor fiber FmpAq is a regular ZN -cover of the projectivized
complement, UpAq “ PpMpAqq, defined by the homomorphism

δm : π1pUpAqq� ZN , xH ÞÑ mH mod N

Let xδm : HompZN , k˚q Ñ Hompπ1pUpAqq,k˚q be the induced map
between character groups.

If charpkq - N, the dimension of HqpFmpAq,kq may be computed by
summing up the number of intersection points of impxδmq with the
varieties Vq

s pUpAq,kq, for all s ě 1.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE HOMOLOGY OF THE MILNOR FIBER

We now consider the simplest non-trivial case: that of an
arrangement A of n planes in C3, and its Milnor fiber, F pAq.

Let ∆Aptq “ detpt ¨ id´h˚q be the characteristic polynomial of the
algebraic monodromy, h˚ : H1pF pAq,Cq Ñ H1pF pAq,Cq.

Since hn
˚ “ id, we may write

∆Aptq “
ź

d |n

Φdptqed pAq, (‹)

where Φdptq is the d-th cyclotomic polynomial, and edpAq P Zě0.

PROBLEM

Is the polynomial ∆A (or, equivalently, the exponents edpAq)
determined by the intersection lattice LpAq?
In particular, is the first Betti number b1pF pAqq “ degp∆Aq
combinatorially determined?
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE HOMOLOGY OF THE MILNOR FIBER

By a transfer argument, e1pAq “ n ´ 1.

Not all divisors of n appear in (‹). E.g., if d does not divide at least
one of the multiplicities of the intersection points, then edpAq “ 0.

In particular, if A has only points of multiplicity 2 and 3, then
∆Aptq “ pt ´ 1qm´1pt2 ` t ` 1qe3 .

If multiplicity 4 appears, then also get factor of pt ` 1qe2 ¨ pt2 ` 1qe4 .

EXAMPLE

Let A “ A4 be the braid arrangement. Then V1pAq has a single
‘essential’ component,

T “ tt P pC˚q6 | t1t2t3 “ t1t´1
6 “ t2t´1

5 “ t3t´1
4 “ 1u.

Clearly, δ2 P T , yet δ R T . Hence, ∆Aptq “ pt ´ 1q5pt2 ` t ` 1q.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT MODULAR INEQUALITIES

MODULAR INEQUALITIES

Let σ “
ř

HPA eH P A1 be the “diagonal" vector.

Assume k has characteristic p ą 0, and define

βppAq “ dimk H1pA, ¨σq.

That is, βppAq “ maxts | σ P R1
spA, kqu.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

epspAq ď βppAq, for all s ě 1.

THEOREM

1 Suppose A admits a k-net. Then βppAq “ 0 if p - k and
βppAq ě k ´ 2, otherwise.

2 If A admits a reduced k-multinet, then ek pAq ě k ´ 2.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT MODULAR INEQUALITIES

THEOREM (PAPADIMA–S. 2014)

Suppose A has no points of multiplicity 3r with r ą 1. Then A admits a
reduced 3-multinet iff A admits a 3-net iff β3pAq ‰ 0. Moreover,

β3pAq ď 2.
e3pAq “ β3pAq, and thus e3pAq is combinatorially determined.

COROLLARY (PS)

Suppose all flats X P L2pAq have multiplicity 2 or 3. Then ∆ptq, and
thus b1pF pAqq, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and β2pAq ď 2. Then
e2pAq “ e4pAq “ β2pAq “ 2.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT MODULAR INEQUALITIES

CONJECTURE (PS)

Let A be an arrangement which is not a pencil. Then epspAq “ 0 for all
primes p and integers s ě 1, with two possible exceptions:

e2pAq “ e4pAq “ β2pAq and e3pAq “ β3pAq.

If edpAq “ 0 for all divisors d of |A| which are not prime powers, this
conjecture would give:

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

The conjecture has been verified for several classes of arrangements:

Complex reflection arrangements (Măcinic–Papadima–Popescu).

Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement pA,mq such that
H1pFmpAq,Zq has non-zero p-torsion.

1

2

1

1

2 2
3 3

Simplest example: the arrangement of 8 hyperplanes in C3 with

QmpAq “ x2ypx2 ´ y2q3px2 ´ z2q2py2 ´ z2q

Then H1pFmpAq,Zq “ Z7 ‘ Z2 ‘ Z2.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement A is a multinet structure,
together with a distinguished hyperplane H P A for which mH ą 1 and
mH | nX for each X P X such that X Ă H.

THEOREM (DENHAM–S. 2014)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH . There is then a
choice of multiplicities m1 on the deletion A1 “ AztHu such that
H1pFm1pA1q,Zq has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V1
1 pMpA1q,kq

varies with charpkq.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

To produce p-torsion in the homology of the usual Milnor fiber, we use
a “polarization" construction:

}  

pA,mq A}m, an arrangement of N “
ř

HPA mH hyperplanes, of rank
equal to rankA` |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 “ AztHu
such that HqpF pBq,Zq has p-torsion, where B “ A1}m1 and
q “ 1`

ˇ

ˇ

 

K P A1 : m1
K ě 3

(ˇ

ˇ.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

COROLLARY (DS)
For every prime p ě 2, there is an arrangement A such that
HqpF pAq,Zq has non-zero p-torsion, for some q ą 1.

Simplest example: the arrangement of 27 hyperplanes in C8 with
QpAq “ xypx2 ´ y2qpx2 ´ z2qpy2 ´ z2qw1w2w3w4w5px

2 ´ w2
1 qpx

2 ´ 2w2
1 qpx

2 ´ 3w2
1 qpx ´ 4w1q¨

ppx ´ yq2 ´ w2
2 qppx ` yq2 ´ w2

3 qppx ´ zq2 ´ w2
4 qppx ´ zq2 ´ 2w2

4 q ¨ ppx ` zq2 ´ w2
5 qppx ` zq2 ´ 2w2

5 q.

Then H6pF pAq,Zq has 2-torsion (of rank 108).
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY
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