Free abelian covers and arrangements of Schubert varieties

Alex Suciu

Northeastern University

Centro Ennio De Giorgi Pisa, Italy May 25, 2010

Outline

- Characteristic varieties and Dwyer–Fried invariants
 - Free abelian covers
 - The Dwyer–Fried sets
 - Characteristic varieties
 - Computing the Ω-invariants
- 2 Characteristic arrangements and Schubert varieties
 - Tangent cones
 - Characteristic subspace arrangements
 - Special Schubert varieties
- 3 Resonance varieties and straight spaces
 - The Aomoto complex
 - Resonance varieties
 - Straight spaces
 - Ω-invariants of straight spaces
- 4 Examples
 - Toric complexes
 - Hyperplane arrangements

Free abelian covers

- Let X be a connected CW-complex, with finite k-skeleton, for some k ≥ 1.
- We may assume X has a single 0-cell, call it x_0 . Let $G = \pi_1(X, x_0)$.
- Consider the connected, regular covering spaces of *X*, with group of deck transformations a free abelian group of fixed rank *r*.
- Model situation: the *r*-dimensional torus *T^r* and its universal cover, Z^r → ℝ^r → *T^r*.
- Any epimorphism $\nu : G \twoheadrightarrow \mathbb{Z}^r$ gives rise to a \mathbb{Z}^r -cover, by pull back:

where $f_{\sharp} \colon \pi_1(X, x_0) \to \pi_1(T^r)$ realizes ν . (Note: X^{ν} is the homotopy fiber of f).

• All connected, regular \mathbb{Z}^r -covers of X arise in this manner.

• The map ν factors as

$$G \xrightarrow{\mathrm{ab}} G_{\mathrm{ab}} \xrightarrow{\nu_*} \mathbb{Z}^r$$
,

where ν_* may be identified with the induced homomorphism

 $f_*: H_1(X,\mathbb{Z}) \to H_1(T^r,\mathbb{Z}).$

Passing to the homomorphism in Q-homology, we see that the cover X^ν → X is determined by the kernel of

 $\nu_* \colon H_1(X, \mathbb{Q}) \to \mathbb{Q}^r.$

 Conversely, every codimension-*r* linear subspace of *H*₁(*X*, ℚ) can be realized as

 $\ker(\nu_*\colon H_1(X,\mathbb{Q})\to\mathbb{Q}^r).$

for some $\nu \colon G \twoheadrightarrow \mathbb{Z}^r$, and thus gives rise to a cover $X^{\nu} \to X$.

- Let Gr_r(H¹(X, ℚ)) be the Grassmanian of *r*-planes in the finite-dimensional, rational vector space H¹(X, ℚ).
- Using the dual map $\nu^* \colon \mathbb{Q}^r \to H^1(X, \mathbb{Q})$ instead, we obtain:

Proposition (Dwyer–Fried 1987)

The connected, regular covers of X whose group of deck transformations is free abelian of rank r are parametrized by the rational Grassmannian $Gr_r(H^1(X, \mathbb{Q}))$, via the correspondence

$$\{\mathbb{Z}^r\text{-covers }X^{\nu}\to X\}\longleftrightarrow \{r\text{-planes }P_{\nu}:=\operatorname{im}(\nu^*)\text{ in }H^1(X,\mathbb{Q})\}.$$

The Dwyer–Fried sets

Moving about the rational Grassmannian, and recording how the Betti numbers of the corresponding covers vary leads to:

Definition

The Dwyer-Fried invariants of X are the subsets

 $\Omega^{i}_{r}(X) = \big\{ P_{\nu} \in \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \ \big| \ b_{j}(X^{\nu}) < \infty \text{ for } j \leq i \big\},$

defined for all $i \ge 0$ and all r > 0, with the convention that $\Omega_r^i(X) = \emptyset$ if $r > b_1(X)$.

For a fixed r > 0, get a descending filtration of the Grassmanian of r-planes in \mathbb{Q}^n , where $n = b_1(X)$:

 $\operatorname{Gr}_r(\mathbb{Q}^n) = \Omega^0_r(X) \supseteq \Omega^1_r(X) \supseteq \Omega^2_r(X) \supseteq \cdots$

The Ω -sets are homotopy-type invariants of X:

Lemma

Suppose $X \simeq Y$. For each r > 0, there is an isomorphism $\operatorname{Gr}_r(H^1(Y, \mathbb{Q})) \cong \operatorname{Gr}_r(H^1(X, \mathbb{Q}))$ sending each subset $\Omega_r^i(Y)$ bijectively onto $\Omega_r^i(X)$.

In view of this lemma, we may extend the definition of the Ω -sets from spaces to groups.

Let *G* be a finitely-generated group. Pick a classifying space K(G, 1) with finite *k*-skeleton, for some $k \ge 1$.

Definition

The Dwyer-Fried invariants of G are the subsets

 $\Omega_r^i(G) = \Omega_r^i(K(G,1))$

of $\operatorname{Gr}_r(H^1(G, \mathbb{Q}))$, defined for all $i \ge 0$ and $r \ge 1$.

- Especially manageable situation: r = n, where $n = b_1(X) > 0$.
- In this case, $\operatorname{Gr}_n(H^1(X, \mathbb{Q})) = \{ pt \}.$
- This single point corresponds to the maximal free abelian cover, $X^{\alpha} \rightarrow X$, where $\alpha : G \twoheadrightarrow G_{ab} / \text{Tors}(G_{ab}) = \mathbb{Z}^{n}$.
- The sets $\Omega_n^i(X)$ are then given by

$$\Omega_n^i(X) = \begin{cases} \{ \text{pt} \} & \text{if } b_j(X^\alpha) < \infty \text{ for } j \le i, \\ \emptyset & \text{otherwise.} \end{cases}$$

Example

Let $X = S^1 \vee S^k$, for some k > 1. Then $X^{\alpha} \simeq \bigvee_{i \in \mathbb{Z}} S_i^k$. Thus,

$$\Omega_n^i(X) = \begin{cases} \{ \text{pt} \} & \text{for } i < k, \\ \emptyset & \text{for } i \ge k. \end{cases}$$

Remark

Finiteness of the Betti numbers of a free abelian cover X^{ν} does not imply finite-generation of the integral homology groups of X^{ν} .

E.g., let *K* be a knot in S^3 , with complement $X = S^3 \setminus K$, infinite cyclic cover X^{ab} , and Alexander polynomial $\Delta_K \in \mathbb{Z}[t^{\pm 1}]$. Then

$$H_1(X^{\mathrm{ab}},\mathbb{Z}) = \mathbb{Z}[t^{\pm 1}]/(\Delta_{\mathcal{K}}).$$

Hence, $H_1(X^{ab}, \mathbb{Q}) = \mathbb{Q}^d$, where $d = \deg \Delta_K$. Thus, $\Omega_1^1(X) = \{pt\}.$

But, if Δ_K is not monic, $H_1(X^{ab}, \mathbb{Z})$ need not be finitely generated.

Example (Milnor 1968)

Let *K* be the 5₂ knot, with Alex polynomial $\Delta_K = 2t^2 - 3t + 2$. Then $H_1(X^{ab}, \mathbb{Z}) = \mathbb{Z}[1/2] \oplus \mathbb{Z}[1/2]$ is not f.g., though $H_1(X^{ab}, \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q}$.

Characteristic varieties

• Consider the group of complex-valued characters of G,

 $\widehat{G} = \operatorname{Hom}(G, \mathbb{C}^{\times}) = H^1(X, \mathbb{C}^{\times})$

- Let G_{ab} = G/G' ≅ H₁(X, Z) be the abelianization of G. The projection ab: G → G_{ab} induces an isomorphism G_{ab} ≅→ G.
- The identity component, \widehat{G}^0 , is isomorphic to a complex algebraic torus of dimension $n = \operatorname{rank} G_{ab}$.
- The other connected components are all isomorphic to \$\hat{G}^0 = (\mathbb{C}^{\times})^n\$, and are indexed by the finite abelian group Tors(\$G_{ab}\$).
 \$\hat{G}\$ parametrizes rank 1 local systems on \$X\$:

$$\rho\colon \mathbf{G}\to\mathbb{C}^\times\quad\rightsquigarrow\quad\mathcal{L}_\rho$$

the complex vector space \mathbb{C} , viewed as a right module over the group ring $\mathbb{Z}G$ via $a \cdot g = \rho(g)a$, for $g \in G$ and $a \in \mathbb{C}$.

The homology groups of X with coefficients in \mathcal{L}_{ρ} are defined as

$$H_*(X, \mathcal{L}_{\rho}) = H_*(\mathcal{L}_{\rho} \otimes_{\mathbb{Z}G} C_{\bullet}(\widetilde{X}, \mathbb{Z})),$$

where $C_{\bullet}(\widetilde{X},\mathbb{Z})$ is the equivariant chain complex of the universal cover of *X*.

Definition

The characteristic varieties of X are the sets

$$\mathcal{V}^{i}(\boldsymbol{X}) = \{
ho \in \widehat{\boldsymbol{G}} \mid \mathcal{H}_{j}(\boldsymbol{X}, \mathcal{L}_{
ho})
eq \boldsymbol{0}, ext{ for some } j \leq i \},$$

defined for all degrees $0 \le i \le k$.

- Get filtration $\{1\} = \mathcal{V}^0(X) \subseteq \mathcal{V}^1(X) \subseteq \cdots \subseteq \mathcal{V}^k(X) \subseteq \widehat{G}.$
- Each $\mathcal{V}^{i}(X)$ is a Zariski closed subset of the algebraic group \widehat{G} .
- The characteristic varieties are homotopy-type invariants: Suppose X ≃ X'. There is then an isomorphism G' ≅ G, which restricts to isomorphisms Vⁱ(X') ≅ Vⁱ(X), for all i ≤ k.

The characteristic varieties may be reinterpreted as the support varieties for the Alexander invariants of X.

Let X^{ab} → X be the maximal abelian cover. View H_{*}(X^{ab}, C) as a module over C[G_{ab}]. Then (Papadima–S. 2010),

$$\mathcal{V}^{i}(X) = V\Big(\operatorname{ann}\Big(\bigoplus_{j\leq i}H_{j}(X^{\operatorname{ab}},\mathbb{C})\Big)\Big).$$

• Set $\mathcal{W}^{i}(X) = \mathcal{V}^{i}(X) \cap \widehat{G}^{0}$. View $H_{*}(X^{\alpha}, \mathbb{C})$ as a module over $\mathbb{C}[G_{\alpha}] \cong \mathbb{Z}[t_{1}^{\pm 1}, \dots, t_{n}^{\pm 1}]$, where $n = b_{1}(G)$. Then $\mathcal{W}^{i}(X) = V\left(\operatorname{ann}\left(\bigoplus H_{j}(X^{\alpha}, \mathbb{C})\right)\right)$.

Example

Let $L = (L_1, ..., L_n)$ be a link in S^3 , with complement $X = S^3 \setminus \bigcup_{i=1}^n L_i$ and Alexander polynomial $\Delta_L = \Delta_L(t_1, ..., t_n)$. Then

$$\mathcal{V}^1(X) = \{z \in (\mathbb{C}^{\times})^n \mid \Delta_L(z) = 0\} \cup \{1\}.$$

Computing the Ω -invariants

• Given an epimorphism $\nu : \mathbf{G} \twoheadrightarrow \mathbb{Z}^r$, let

$$\hat{
u}\colon \widehat{\mathbb{Z}^r} \hookrightarrow \widehat{G}, \qquad \hat{
u}(
ho)(oldsymbol{g}) =
u(
ho(oldsymbol{g}))$$

be the induced monomorphism between character groups.

Its image, T_ν = ν̂(Z^r), is a complex algebraic subtorus of G, isomorphic to (C[×])^r.

Theorem (Dwyer-Fried 1987, Papadima-S. 2010)

Let X be a connected CW-complex with finite k-skeleton, $G = \pi_1(X)$. For an epimorphism $\nu : G \rightarrow \mathbb{Z}^r$, the following are equivalent:

- The vector space $\bigoplus_{i=0}^{k} H_i(X^{\nu}, \mathbb{C})$ is finite-dimensional.
- 2 The algebraic torus \mathbb{T}_{ν} intersects the variety $\mathcal{W}^{k}(X)$ in only finitely many points.

Let exp: $H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^{\times})$ be the coefficient homomorphism induced by the homomorphism $\mathbb{C} \to \mathbb{C}^{\times}$, $z \mapsto e^z$.

Lemma

Let $\nu : G \to \mathbb{Z}^r$ be an epimorphism. Under the universal coefficient isomorphism $H^1(X, \mathbb{C}^{\times}) \cong \operatorname{Hom}(G, \mathbb{C}^{\times})$, the complex *r*-torus $\exp(P_{\nu} \otimes \mathbb{C})$ corresponds to $\mathbb{T}_{\nu} = \hat{\nu}(\widehat{\mathbb{Z}^r})$.

Proof: Chase the commuting diagram

$$\begin{array}{c} \mathbb{Q}^{r} \xrightarrow{\nu^{*}} H^{1}(X, \mathbb{Q}) \\ & \downarrow \\ Hom(\mathbb{Z}^{r}, \mathbb{C}) \xrightarrow{\sim} \mathbb{C}^{r} \xrightarrow{\nu^{*}} H^{1}(X, \mathbb{C}) \xrightarrow{\sim} Hom(G, \mathbb{C}) \\ & \downarrow exp \qquad \qquad \downarrow exp \qquad \qquad \downarrow Hom(_, exp) \\ Hom(\mathbb{Z}^{r}, \mathbb{C}^{\times}) \xrightarrow{\simeq} (\mathbb{C}^{\times})^{r} \xrightarrow{\nu^{*}} H^{1}(X, \mathbb{C}^{\times}) \xrightarrow{\simeq} Hom(G, \mathbb{C}^{\times}). \\ & \downarrow \\ &$$

Thus, we may reinterpret the Ω -invariants, as follows:

Theorem

 $\Omega^i_r(X) = \big\{ P \in \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \ \big| \ \dim \big(\exp(P \otimes \mathbb{C}) \cap \mathcal{W}^i(X) \big) = \mathbf{0} \big\}.$

Corollary

Suppose $\mathcal{W}^{i}(X)$ is finite. Then $\Omega_{r}^{i}(X) = \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})), \quad \forall r \leq b_{1}(X).$

Example

Let *M* be a nilmanifold. By (Macinic–Papadima 2009): $W^i(M) = \{1\}$, for all $i \ge 0$. Hence,

 $\Omega^i_r(M) = \operatorname{Gr}_r(\mathbb{Q}^n), \quad \forall i \ge 0, \ r \le n = b_1(M).$

Example

Let X be the complement of a knot in S^m , $m \ge 3$. Then

$$\Omega_1^i(X) = \{\mathsf{pt}\}, \qquad \forall i \ge 0.$$

Corollary

Let $n = b_1(X)$. Suppose $W^i(X)$ is infinite, for some i > 0. Then $\Omega_n^q(X) = \emptyset$, for all $q \ge i$.

Example

Let S_g be a Riemann surface of genus g > 1. Then

$$\begin{split} \Omega^i_r(\mathcal{S}_g) &= \emptyset, & \text{for all } i, r \geq 1 \\ \Omega^n_r(\mathcal{S}_{g_1} \times \cdots \times \mathcal{S}_{g_n}) &= \emptyset, & \text{for all } r \geq 1 \end{split}$$

Example

Let $Y_m = \bigvee^m S^1$ be a wedge of *m* circles, m > 1. Then

$$\begin{aligned} \Omega^{i}_{r}(Y_{m}) &= \emptyset, & \text{for all } i, r \geq 1 \\ \Omega^{n}_{r}(Y_{m_{1}} \times \cdots \times Y_{m_{n}}) &= \emptyset, & \text{for all } r \geq 1 \end{aligned}$$

Tangent cones

Let W = V(I) be a Zariski closed subset in $(\mathbb{C}^{\times})^n$.

Definition

• The *tangent cone* at 1 to W:

 $\mathsf{TC}_1(W) = V(\mathsf{in}(I))$

• The exponential tangent cone at 1 to W:

 $\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}$

Both types of tangent cones

- are homogeneous subvarieties of Cⁿ;
- are non-empty iff $1 \in W$;
- depend only on the analytic germ of W at 1;
- commute with finite unions.

Moreover,

- τ_1 commutes with (arbitrary) intersections;
- $\tau_1(W) \subseteq \mathsf{TC}_1(W)$
 - \bullet = if all irred components of *W* are subtori
 - \neq in general
- (Dimca–Papadima–S. 2009) τ₁(W) is a finite union of rationally defined linear subspaces of Cⁿ.

Characteristic subspace arrangements

Let *X* be a connected CW-complex with finite *k*-skeleton. Set $n = b_1(G)$, and identify $H^1(X, \mathbb{C}) = \mathbb{C}^n$ and $H^1(X, \mathbb{C}^{\times})^0 = (\mathbb{C}^{\times})^n$.

Definition

For each $i \leq k$, the *i*-th characteristic arrangement of X, denoted $C_i(X)$, is the subspace arrangement in $H^1(X, \mathbb{Q})$ whose complexified union is the exponential tangent cone to $\mathcal{W}^i(X)$:

$$au_1(\mathcal{W}^i(X)) = \bigcup_{L\in\mathcal{C}_i(X)} L\otimes\mathbb{C}.$$

- We get a sequence C₀(X),...,C_k(X) of rational subspace arrangements, all lying in H¹(X, Q) = Qⁿ.
- The arrangements $C_i(X)$ depend only on the homotopy type of X.

Theorem

$$\Omega^i_r(X) \subseteq \left(\bigcup_{L \in \mathcal{C}_i(X)} \left\{ P \in \mathrm{Gr}_r(H^1(X, \mathbb{Q})) \mid P \cap L \neq \{0\} \right\} \right)^{\mathfrak{c}},$$

for all $i \leq k$ and all $1 \leq r \leq b_1(X)$.

Proof.

Fix an *r*-plane $P \in \operatorname{Gr}_r(H^1(X, \mathbb{Q}))$, and let $T = \exp(P \otimes \mathbb{C})$. Then:

$$P \in \Omega_r^i(X) \iff T \cap \mathcal{W}^i(X) \text{ is finite}$$
$$\implies \tau_1(T \cap \mathcal{W}^i(X)) = \{0\}$$
$$\iff (P \otimes \mathbb{C}) \cap \tau_1(\mathcal{W}^i(X)) = \{0\}$$
$$\iff P \cap L = \{0\}, \text{ for each } L \in \mathcal{C}_i(X)$$

- For many spaces (e.g., "straight spaces"), the inclusion holds as an equality.
- If r = 1, the inclusion always holds as an equality (DF 1987, PS 2010)
- In general, though, the inclusion is strict. E.g., there are finitely presented (Kähler) groups G for which Ω¹₂(G) is *not* open.

Special Schubert varieties

• Let V be a homogeneous variety in \mathbb{k}^n . The set

 $\sigma_r(V) = \left\{ P \in \operatorname{Gr}_r(\Bbbk^n) \mid P \cap V \neq \{0\} \right\}$

is a Zariski closed subset of $\operatorname{Gr}_r(\Bbbk^n)$, called the variety of incident *r*-planes to *V*.

- When V is a a linear subspace L ⊂ kⁿ, the variety σ_r(L) is called the special Schubert variety defined by L.
- If *L* has codimension *d* in kⁿ, then σ_r(*L*) has codimension
 d − *r* + 1 in Gr_r(kⁿ).

Example

The Grassmannian $\operatorname{Gr}_2(\Bbbk^4)$ is the hypersurface in $\mathbb{P}(\Bbbk^6)$ with equation $p_{12}p_{34} - p_{13}p_{24} + p_{23}p_{14} = 0$. Let *L* be a plane in \Bbbk^4 , represented as the row space of a 2 × 4 matrix. Then $\sigma_2(L)$ is the 3-fold in $\operatorname{Gr}_2(\Bbbk^4)$ cut out by the hyperplane

 $\rho_{12}L_{34} - \rho_{13}L_{24} - \rho_{23}L_{14} + \rho_{14}L_{23} - \rho_{24}L_{13} + \rho_{34}L_{12} = 0.$

Theorem

$$\Omega^{i}_{r}(X) \subseteq \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \setminus \bigcup_{L \in \mathcal{C}_{i}(X)} \sigma_{r}(L),$$

for all $i \leq k$ and all $1 \leq r \leq b_1(X)$.

Thus, each set $\Omega_r^i(X)$ is contained in the complement of a Zariski closed subset of $\operatorname{Gr}_r(H^1(X, \mathbb{Q}))$: the union of the special Schubert varieties corresponding to the subspaces comprising $C_i(X)$.

Corollary

Suppose $C_i(X)$ contains a subspace of codimension *d*. Then $\Omega_r^i(X) = \emptyset$, for all $r \ge d + 1$.

Corollary

Let X^{α} be the maximal free abelian cover of X. If $\tau_1(\mathcal{W}^1(X)) \neq \{0\}$, then $b_1(X^{\alpha}) = \infty$.

The Aomoto complex

Consider the cohomology algebra $A = H^*(X, \mathbb{C})$, with product operation given by the cup product of cohomology classes.

For each $a \in A^1$, we have $a^2 = 0$, by graded-commutativity of the cup product.

Definition

The *Aomoto complex* of *A* (with respect to $a \in A^1$) is the cochain complex of finite-dimensional, complex vector spaces,

$$(A, a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots \xrightarrow{a} A^k$$
,

with differentials given by left-multiplication by a.

Alternative interpretation: Pick a basis $\{e_1, \ldots, e_n\}$ for $A^1 = H^1(X, \mathbb{C})$, and let $\{x_1, \ldots, x_n\}$ be the Kronecker dual basis for $A_1 = H_1(X, \mathbb{C})$. Identify Sym (A_1) with $S = \mathbb{C}[x_1, \ldots, x_n]$.

Definition

The *universal Aomoto complex* of *A* is the cochain complex of free *S*-modules,

$$: \cdots \longrightarrow A^{i} \otimes_{\mathbb{C}} S \xrightarrow{d^{i}} A^{i+1} \otimes_{\mathbb{C}} S \xrightarrow{d^{i+1}} A^{i+2} \otimes_{\mathbb{C}} S \longrightarrow \cdots,$$

where the differentials are defined by $d^i(u \otimes 1) = \sum_{j=1}^n e_j u \otimes x_j$ for $u \in A^i$, and then extended by *S*-linearity.

Lemma

The evaluation of the universal Aomoto complex at an element $a \in A^1$ coincides with the Aomoto complex (A, a).

Let X be a connected, finite-type CW-complex.

The CW-structure on X is *minimal* if the number of *i*-cells of X equals the Betti number $b_i(X)$, for every $i \ge 0$.

Equivalently, all boundary maps in $C_{\bullet}(X, \mathbb{Z})$ are zero.

Theorem (Papadima-S. 2010)

If X is a minimal CW-complex, the linearization of the cochain complex $C^{\bullet}(X^{ab}, \mathbb{C})$ coincides with the universal Aomoto complex of $H^*(X, \mathbb{C})$.

Concretely:

- Identify $\mathbb{C}[\mathbb{Z}^n]$ with $\Lambda = \mathbb{C}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$.
- Filter Λ by powers of the maximal ideal $I = (t_1 1, \dots, t_n 1)$, and identify $gr(\Lambda)$ with $S = \mathbb{C}[x_1, \dots, x_n]$, via the ring map $t_i 1 \mapsto x_i$.
- The minimality hypothesis allows us to identify $C_i(X^{ab}, \mathbb{C})$ with $\Lambda \otimes_{\mathbb{C}} H_i(X, \mathbb{C})$ and $C^i(X^{ab}, \mathbb{C})$ with $A^i \otimes_{\mathbb{C}} \Lambda$.
- Under these identifications, the boundary map ∂_{i+1}^{ab} : $C_{i+1}(X^{ab}, \mathbb{C}) \rightarrow C_i(X^{ab}, \mathbb{C})$ dualizes to a map

 $\delta^i \colon \mathcal{A}^i \otimes_{\mathbb{C}} \Lambda \to \mathcal{A}^{i+1} \otimes_{\mathbb{C}} \Lambda.$

• Let $\operatorname{gr}(\delta^i) \colon A^i \otimes_{\mathbb{C}} S \to A^{i+1} \otimes_{\mathbb{C}} S$ be the associated graded of δ^i , and let $\operatorname{gr}(\delta^i)^{\operatorname{lin}}$ be its linear part. Then:

$$\operatorname{gr}(\delta^{i})^{\operatorname{lin}} = d^{i} \colon \mathcal{A}^{i} \otimes_{\mathbb{C}} \mathcal{S} \to \mathcal{A}^{i+1} \otimes_{\mathbb{C}} \mathcal{S}.$$

Resonance varieties

Definition

The resonance varieties of X are the sets

 $\mathcal{R}^{i}(X) = \{ a \in A^{1} \mid H^{j}(A, \cdot a) \neq 0, \text{ for some } j \leq i \},$

defined for all integers $0 \le i \le k$.

- Get filtration $\{0\} = \mathcal{R}^0(X) \subseteq \mathcal{R}^1(X) \subseteq \cdots \subseteq \mathcal{R}^k(X) \subseteq H^1(X, \mathbb{C}) = \mathbb{C}^n.$
- Each $\mathcal{R}^{i}(X)$ is a homogeneous algebraic subvariety of \mathbb{C}^{n} .
- These varieties are homotopy-type invariants of X: If $X \simeq Y$, there is an isomorphism $H^1(Y, \mathbb{C}) \cong H^1(X, \mathbb{C})$ which restricts to isomorphisms $\mathcal{R}^i(Y) \cong \mathcal{R}^i(X)$, for all $i \ge 0$.
- (Libgober 2002) $\mathsf{TC}_1(\mathcal{W}^i(X)) \subseteq \mathcal{R}^i(X)$.

Straight spaces

As before, let X be a connected CW-complex with finite k-skeleton.

Definition

We say X is *k*-straight if the following conditions hold, for each $i \le k$:

- All positive-dimensional components of Wⁱ(X) are algebraic subtori.
- 2 $\operatorname{TC}_1(\mathcal{W}^i(X)) = \mathcal{R}^i(X).$

If X is k-straight for all $k \ge 1$, we say X is a straight space.

- The *k*-straightness property depends only on the homotopy type of a space.
- Hence, we may declare a group G to be k-straight if there is a K(G, 1) which is k-straight; in particular, G must be of type F_k.
- X is 1-straight if and only if $\pi_1(X)$ is 1-straight.

Example

- Let $f \in \mathbb{Z}[t]$ with f(1) = 0. Then $X_f = (S^1 \vee S^2) \cup_f e^3$ is minimal.
- 𝒱¹(X_f) = {1}, 𝔅²(X_f) = 𝒱(f): finite subsets of 𝑘¹(𝑋, 𝔅[×]) = 𝔅[×].
 𝔅¹(𝑋_f) = {0}, and
 - $\mathcal{R}^2(X_f) = egin{cases} \{0\}, & ext{if } f'(1)
 eq 0, \ \mathbb{C}, & ext{otherwise.} \end{cases}$
- Therefore, X_f is always 1-straight, but

 X_f is 2-straight $\iff f'(1) \neq 0$.

Proposition

For each $k \ge 2$, there is a minimal CW-complex which has the integral homology of $S^1 \times S^k$ and which is (k - 1)-straight, but not k-straight.

Alternate description of straightness:

Proposition

The space X is k-straight if and only if the following equalities hold, for all $i \leq k$:

$$\mathcal{W}^i(X) = \left(igcup_{L\in\mathcal{C}_i(X)} \exp(L\otimes\mathbb{C})
ight) \cup Z_i$$
 $\mathcal{R}^i(X) = igcup_{L\in\mathcal{C}_i(X)} L\otimes\mathbb{C}$

for some finite (algebraic) subsets $Z_i \subset H^1(X, \mathbb{C}^{\times})^0$.

Corollary

Let X be a k-straight space. Then, for all $i \leq k$,

- $\mathbb{2} \ \mathcal{R}^{i}(X,\mathbb{Q}) = \bigcup_{L \in \mathcal{C}_{i}(X)} L.$

In particular, the resonance varieties $\mathcal{R}^{i}(X)$ are unions of rationally defined subspaces.

Example

Let *G* be the group with generators x_1, x_2, x_3, x_4 and relators $r_1 = [x_1, x_2], r_2 = [x_1, x_4][x_2^{-2}, x_3], r_3 = [x_1^{-1}, x_3][x_2, x_4]$. Then

$$\mathcal{R}^{1}(G) = \{z \in \mathbb{C}^{4} \mid z_{1}^{2} - 2z_{2}^{2} = 0\},\$$

which splits into two linear subspaces defined over \mathbb{R} , but not over \mathbb{Q} . Thus, *G* is not 1-straight.

Ω-invariants of straight spaces

Theorem

Suppose X is k-straight. Then, for all $i \leq k$ and $r \geq 1$,

 $\Omega^{i}_{r}(X) = \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \setminus \sigma_{r}(\mathcal{R}^{i}(X, \mathbb{Q})).$

In particular, if all components of $\mathcal{R}^{i}(X)$ have the same codimension r, then $\Omega_{r}^{i}(X)$ is the complement of the Chow divisor of $\mathcal{R}^{i}(X, \mathbb{Q})$.

Corollary

Let X be k-straight space, with $b_1(X) = n$. Then each set $\Omega_r^i(X)$ is the complement of a finite union of special Schubert varieties in $\operatorname{Gr}_r(\mathbb{Q}^n)$. In particular, $\Omega_r^i(X)$ is a Zariski open set in $\operatorname{Gr}_r(\mathbb{Q}^n)$.

Example

- Let $L = (L_1, L_2)$ be a 2-component link in S^3 , with $lk(L_1, L_2) = 1$, and Alexander polynomial $\Delta_L(t_1, t_2) = t_1 + t_1^{-1} 1$.
- Let X be the complement of L. Then $\mathcal{W}^1(X) \subset (\mathbb{C}^{\times})^2$ is given by

$$\mathcal{W}^{1}(X) = \{1\} \cup \{t \mid t_{1} = e^{\pi i/3}\} \cup \{t \mid t_{1} = e^{-\pi i/3}\}$$

Hence, X is not 1-straight.

• Since $\mathcal{W}^1(X)$ is infinite, we have

 $\Omega_2^1(X) = \emptyset.$

• On the other hand, \cup_X is non-trivial, and so $\mathcal{R}^1(X, \mathbb{Q}) = \{0\}$. Hence,

$$\sigma_2(\mathcal{R}^1(X,\mathbb{Q}))^{c} = \{\mathsf{pt}\}.$$

Toric complexes

Given L simplicial complex on n vertices, define the *toric complex* T_L = Z_L(S¹, *) as the subcomplex of Tⁿ obtained by deleting the cells corresponding to the missing simplices of L:

$$T_L = \bigcup_{\sigma \in L} T^{\sigma}$$
, where $T^{\sigma} = \{ x \in T^n \mid x_i = * \text{ if } i \notin \sigma \}$.

• Let $\Gamma = (V, E)$ be the graph with vertex set the 0-cells of *L*, and edge set the 1-cells of *L*. Then $\pi_1(T_L)$ is the *right-angled Artin group* associated to Γ :

$$G_{\Gamma} = \langle \mathbf{v} \in \mathbf{V} \mid \mathbf{v}\mathbf{w} = \mathbf{w}\mathbf{v} \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathbf{E} \rangle.$$

- Identify $H^1(T_L, \mathbb{C})$ with $\mathbb{C}^{\vee} = \mathbb{C}^n$ and $H^1(T_K, \mathbb{C}^{\times})$ with $(\mathbb{C}^{\times})^{\vee} = (\mathbb{C}^{\times})^n$.
- For each W ⊆ V, let C^W be the respective coordinate subspace, and let (C[×])^W = exp(C^W) be the respective algebraic subtorus.

Theorem (Papadima-S. 2009)

$$\mathcal{R}^{i}(T_{L}) = \bigcup_{\mathsf{W}} \mathbb{C}^{\mathsf{W}} \text{ and } \mathcal{V}^{i}(T_{L}) = \bigcup_{\mathsf{W}} (\mathbb{C}^{\times})^{\mathsf{W}},$$

where, in both cases, the union is taken over all subsets $W \subset V$ for which there is $\sigma \in L_{V\setminus W}$ and $j \leq i$ such that $\widetilde{H}_{j-1-|\sigma|}(\text{lk}_{L_W}(\sigma), \mathbb{C}) \neq 0$.

Corollary

All toric complexes are straight spaces. Thus,

$$\Omega_r^k(T_L) = \sigma_r(\mathcal{R}^k(T_L,\mathbb{Q}))^{\complement}.$$

Hyperplane arrangements

- $\mathcal{A} = \{H_1, \ldots, H_n\}$ arrangement hyperplanes in \mathbb{C}^{ℓ} .
- Intersection lattice L(A): poset of all non-empty intersections, ordered by reverse inclusion.
- Complement $X(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$ admits a minimal cell structure.
- Cohomology ring A(A) = H^{*}(X(A), ℂ): the quotient A = E/I of the exterior algebra E on classes dual to the meridians, modulo an ideal I determined by L(A).
- Fundamental group G(A) = π₁(X(A)): computed from the braid monodromy read off a generic projection of a generic slice in C².
 G has a (minimal) finite presentation with
 - Meridional generators x_1, \ldots, x_n .
 - Commutator relators x_iα_j(x_i)⁻¹, where α_j ∈ P_n are the (pure) braid monodromy generators, acting on F_n via the Artin representation.
 - In particular, $G_{ab} = \mathbb{Z}^n$.

- Identify $\widehat{G} = H^1(X, \mathbb{C}^{\times}) = (\mathbb{C}^{\times})^n$ and $H^1(X, \mathbb{C}) = \mathbb{C}^n$.
- Set $\mathcal{V}^i(\mathcal{A}) = \mathcal{V}^i(\mathcal{X}(\mathcal{A}))$, etc.
- Tangent cone formula holds:

$$au_1(\mathcal{V}^i(\mathcal{A})) = \mathsf{TC}_1(\mathcal{V}^i(\mathcal{A})) = \mathcal{R}^i(\mathcal{A}).$$

- Components of Rⁱ(A) are rationally defined linear subspaces of Cⁿ, depending only on L(A).
- Components of Vⁱ(A) are subtori of (C[×])ⁿ, possibly translated by roots of 1.
- Components passing through 1 are combinatorially determined:

$$L \subset \mathcal{R}^i(\mathcal{A}) \rightsquigarrow T = \exp(L) \subset \mathcal{V}^i(\mathcal{A}).$$

V¹(A) may contain translated subtori, e.g., if A is the deleted B₃ arrangement.

 $\mathcal{R}^1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 local components (from triple points), and one non-local component, from neighborly partition $\Pi = (16|25|34)$:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L_{\Pi} = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$

There are no translated components.

Theorem

Suppose $\mathcal{V}^{k}(\mathcal{A})$ contains no translated components. Then:

- $X(\mathcal{A})$ is k-straight.
- $\ \ \, \mathfrak{Q}^k_r(\mathcal{A})=\mathrm{Gr}_r(\mathbb{Q}^n)\setminus\sigma_r(\mathcal{R}^k(\mathcal{A},\mathbb{Q})), \text{ for all } 1\leq r\leq n.$

Example

Let \mathcal{A} be an arrangement of *n* lines in \mathbb{C}^2 . Suppose \mathcal{A} has 1 or 2 lines which contain all the intersection points of multiplicity 3 and higher. By (Nazir–Raza '09): $X(\mathcal{A})$ is 1-straight, and $\Omega_r^1(\mathcal{A}) = \sigma_r(\mathcal{R}^1(\mathcal{A}, \mathbb{Q}))^{\complement}$.

Question

- Is k-straightness of X(A) a combinatorial property of the arrangement?
- 2 Are the Dwyer–Fried sets $\Omega_r^k(\mathcal{A})$ determined by $L(\mathcal{A})$?