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Characteristic varieties and Dwyer–Fried invariants Free abelian covers

Free abelian covers
Let X be a connected CW-complex, with finite k -skeleton, for
some k ≥ 1.
We may assume X has a single 0-cell, call it x0. Let G = π1(X , x0).
Consider the connected, regular covering spaces of X , with group
of deck transformations a free abelian group of fixed rank r .
Model situation: the r -dimensional torus T r and its universal
cover, Zr → Rr → T r .
Any epimorphism ν : G� Zr gives rise to a Zr -cover, by pull back:

X ν //

��

Rr

��
X

f // T r ,

where f] : π1(X , x0)→ π1(T r ) realizes ν. (Note: X ν is the
homotopy fiber of f ).
All connected, regular Zr -covers of X arise in this manner.
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Characteristic varieties and Dwyer–Fried invariants Free abelian covers

The map ν factors as

G ab−−→ Gab
ν∗−−→ Zr ,

where ν∗ may be identified with the induced homomorphism

f∗ : H1(X ,Z)→ H1(T r ,Z).

Passing to the homomorphism in Q-homology, we see that the
cover X ν → X is determined by the kernel of

ν∗ : H1(X ,Q)→ Qr .

Conversely, every codimension-r linear subspace of H1(X ,Q) can
be realized as

ker(ν∗ : H1(X ,Q)→ Qr ).

for some ν : G� Zr , and thus gives rise to a cover X ν → X .
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Let Grr (H1(X ,Q)) be the Grassmanian of r -planes in the
finite-dimensional, rational vector space H1(X ,Q).

Using the dual map ν∗ : Qr → H1(X ,Q) instead, we obtain:

Proposition (Dwyer–Fried 1987)
The connected, regular covers of X whose group of deck
transformations is free abelian of rank r are parametrized by the
rational Grassmannian Grr (H1(X ,Q)), via the correspondence{

Zr -covers X ν → X
}
←→

{
r -planes Pν := im(ν∗) in H1(X ,Q)

}
.
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Characteristic varieties and Dwyer–Fried invariants The Dwyer–Fried sets

The Dwyer–Fried sets
Moving about the rational Grassmannian, and recording how the Betti
numbers of the corresponding covers vary leads to:

Definition
The Dwyer–Fried invariants of X are the subsets

Ωi
r (X ) =

{
Pν ∈ Grr (H1(X ,Q))

∣∣ bj(X ν) <∞ for j ≤ i
}
,

defined for all i ≥ 0 and all r > 0, with the convention that Ωi
r (X ) = ∅ if

r > b1(X ).

For a fixed r > 0, get a descending filtration of the Grassmanian of
r -planes in Qn, where n = b1(X ):

Grr (Qn) = Ω0
r (X ) ⊇ Ω1

r (X ) ⊇ Ω2
r (X ) ⊇ · · · .
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Characteristic varieties and Dwyer–Fried invariants The Dwyer–Fried sets

The Ω-sets are homotopy-type invariants of X :

Lemma
Suppose X ' Y. For each r > 0, there is an isomorphism
Grr (H1(Y ,Q)) ∼= Grr (H1(X ,Q)) sending each subset Ωi

r (Y ) bijectively
onto Ωi

r (X ).

In view of this lemma, we may extend the definition of the Ω-sets from
spaces to groups.
Let G be a finitely-generated group. Pick a classifying space K (G,1)
with finite k -skeleton, for some k ≥ 1.

Definition

The Dwyer–Fried invariants of G are the subsets

Ωi
r (G) = Ωi

r (K (G,1))

of Grr (H1(G,Q)), defined for all i ≥ 0 and r ≥ 1.
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Especially manageable situation: r = n, where n = b1(X ) > 0.
In this case, Grn(H1(X ,Q)) = {pt}.
This single point corresponds to the maximal free abelian cover,
Xα → X , where α : G� Gab/Tors(Gab) = Zn.
The sets Ωi

n(X ) are then given by

Ωi
n(X ) =

{
{pt} if bj(Xα) <∞ for j ≤ i ,

∅ otherwise.

Example

Let X = S1 ∨ Sk , for some k > 1. Then Xα '
∨

j∈Z Sk
j . Thus,

Ωi
n(X ) =

{
{pt} for i < k ,

∅ for i ≥ k .
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Characteristic varieties and Dwyer–Fried invariants The Dwyer–Fried sets

Remark
Finiteness of the Betti numbers of a free abelian cover X ν does not
imply finite-generation of the integral homology groups of X ν .

E.g., let K be a knot in S3, with complement X = S3 \ K , infinite cyclic
cover X ab, and Alexander polynomial ∆K ∈ Z[t±1]. Then

H1(X ab,Z) = Z[t±1]/(∆K ).

Hence, H1(X ab,Q) = Qd , where d = deg ∆K . Thus,

Ω1
1(X ) = {pt}.

But, if ∆K is not monic, H1(X ab,Z) need not be finitely generated.

Example (Milnor 1968)

Let K be the 52 knot, with Alex polynomial ∆K = 2t2 − 3t + 2. Then
H1(X ab,Z) = Z[1/2]⊕ Z[1/2] is not f.g., though H1(X ab,Q) = Q⊕Q.
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Characteristic varieties
Consider the group of complex-valued characters of G,

Ĝ = Hom(G,C×) = H1(X ,C×)

Let Gab = G/G′ ∼= H1(X ,Z) be the abelianization of G. The
projection ab : G→ Gab induces an isomorphism Ĝab

'−→ Ĝ.
The identity component, Ĝ0, is isomorphic to a complex algebraic
torus of dimension n = rank Gab.
The other connected components are all isomorphic to
Ĝ0 = (C×)n, and are indexed by the finite abelian group Tors(Gab).
Ĝ parametrizes rank 1 local systems on X :

ρ : G→ C×  Lρ

the complex vector space C, viewed as a right module over the
group ring ZG via a · g = ρ(g)a, for g ∈ G and a ∈ C.
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The homology groups of X with coefficients in Lρ are defined as

H∗(X ,Lρ) = H∗(Lρ ⊗ZG C•(X̃ ,Z)),

where C•(X̃ ,Z) is the equivariant chain complex of the universal cover
of X .

Definition
The characteristic varieties of X are the sets

V i(X ) = {ρ ∈ Ĝ | Hj(X ,Lρ) 6= 0, for some j ≤ i},

defined for all degrees 0 ≤ i ≤ k .

Get filtration {1} = V0(X ) ⊆ V1(X ) ⊆ · · · ⊆ Vk (X ) ⊆ Ĝ.
Each V i(X ) is a Zariski closed subset of the algebraic group Ĝ.
The characteristic varieties are homotopy-type invariants:
Suppose X ' X ′. There is then an isomorphism Ĝ′ ∼= Ĝ, which
restricts to isomorphisms V i(X ′) ∼= V i(X ), for all i ≤ k .
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The characteristic varieties may be reinterpreted as the support
varieties for the Alexander invariants of X .

Let X ab → X be the maximal abelian cover. View H∗(X ab,C) as a
module over C[Gab]. Then (Papadima–S. 2010),

V i(X ) = V
(

ann
(⊕

j≤i

Hj
(
X ab,C

)))
.

SetW i(X ) = V i(X ) ∩ Ĝ0. View H∗(Xα,C) as a module over
C[Gα] ∼= Z[t±1

1 , . . . , t±1
n ], where n = b1(G). Then

W i(X ) = V
(

ann
(⊕

j≤i

Hj
(
Xα,C

)))
.

Example

Let L = (L1, . . . ,Ln) be a link in S3, with complement X = S3 \
⋃n

i=1 Li
and Alexander polynomial ∆L = ∆L(t1, . . . , tn). Then

V1(X ) = {z ∈ (C×)n | ∆L(z) = 0} ∪ {1}.
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Computing the Ω-invariants

Given an epimorphism ν : G� Zr , let

ν̂ : Ẑr ↪→ Ĝ, ν̂(ρ)(g) = ν(ρ(g))

be the induced monomorphism between character groups.

Its image, Tν = ν̂
(
Ẑr
)
, is a complex algebraic subtorus of Ĝ,

isomorphic to (C×)r .

Theorem (Dwyer–Fried 1987, Papadima–S. 2010)

Let X be a connected CW-complex with finite k-skeleton, G = π1(X ).
For an epimorphism ν : G� Zr , the following are equivalent:

1 The vector space
⊕k

i=0 Hi(X ν ,C) is finite-dimensional.
2 The algebraic torus Tν intersects the varietyWk (X ) in only finitely

many points.
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Let exp : H1(X ,C)→ H1(X ,C×) be the coefficient homomorphism
induced by the homomorphism C→ C×, z 7→ ez .

Lemma

Let ν : G� Zr be an epimorphism. Under the universal coefficient
isomorphism H1(X ,C×) ∼= Hom(G,C×), the complex r -torus
exp(Pν ⊗ C) corresponds to Tν = ν̂

(
Ẑr
)
.

Proof: Chase the commuting diagram

Qr //ν∗ //
� _

��

H1(X ,Q)� _

��
Hom(Zr ,C)

∼

Hom(_ ,exp)
��

Cr ν∗ //

exp
��

H1(X ,C)
∼

exp
��

Hom(G,C)

Hom(_ ,exp)
��

Hom(Zr ,C×)
∼

ν̂=Hom(ν,_)

33
(C×)r ν∗ // H1(X ,C×)

∼Hom(G,C×).
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Thus, we may reinterpret the Ω-invariants, as follows:

Theorem

Ωi
r (X ) =

{
P ∈ Grr (H1(X ,Q))

∣∣ dim
(
exp(P ⊗ C) ∩W i(X )

)
= 0

}
.
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Corollary

SupposeW i(X ) is finite. Then Ωi
r (X ) = Grr (H1(X ,Q)), ∀r ≤ b1(X ).

Example

Let M be a nilmanifold. By (Macinic–Papadima 2009): W i(M) = {1},
for all i ≥ 0 . Hence,

Ωi
r (M) = Grr (Qn), ∀i ≥ 0, r ≤ n = b1(M).

Example
Let X be the complement of a knot in Sm, m ≥ 3. Then

Ωi
1(X ) = {pt}, ∀i ≥ 0.
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Corollary

Let n = b1(X ). SupposeW i(X ) is infinite, for some i > 0. Then
Ωq

n(X ) = ∅, for all q ≥ i .

Example
Let Sg be a Riemann surface of genus g > 1. Then

Ωi
r (Sg) = ∅, for all i , r ≥ 1

Ωn
r (Sg1 × · · · × Sgn ) = ∅, for all r ≥ 1

Example

Let Ym =
∨m S1 be a wedge of m circles, m > 1. Then

Ωi
r (Ym) = ∅, for all i , r ≥ 1

Ωn
r (Ym1 × · · · × Ymn ) = ∅, for all r ≥ 1
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Characteristic arrangements and Schubert varieties Tangent cones

Tangent cones

Let W = V (I) be a Zariski closed subset in (C×)n.

Definition
The tangent cone at 1 to W :

TC1(W ) = V (in(I))

The exponential tangent cone at 1 to W :

τ1(W ) = {z ∈ Cn | exp(λz) ∈W , ∀λ ∈ C}
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Both types of tangent cones
are homogeneous subvarieties of Cn;
are non-empty iff 1 ∈W ;
depend only on the analytic germ of W at 1;
commute with finite unions.

Moreover,
τ1 commutes with (arbitrary) intersections;
τ1(W ) ⊆ TC1(W )

I = if all irred components of W are subtori
I 6= in general

(Dimca–Papadima–S. 2009) τ1(W ) is a finite union of rationally
defined linear subspaces of Cn.
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Characteristic subspace arrangements
Let X be a connected CW-complex with finite k -skeleton. Set
n = b1(G), and identify H1(X ,C) = Cn and H1(X ,C×)0 = (C×)n.

Definition
For each i ≤ k , the i -th characteristic arrangement of X , denoted
Ci(X ), is the subspace arrangement in H1(X ,Q) whose complexified
union is the exponential tangent cone toW i(X ):

τ1(W i(X )) =
⋃

L∈Ci (X)

L⊗ C.

We get a sequence C0(X ), . . . , Ck (X ) of rational subspace
arrangements, all lying in H1(X ,Q) = Qn.
The arrangements Ci(X ) depend only on the homotopy type of X .
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Theorem

Ωi
r (X ) ⊆

( ⋃
L∈Ci (X)

{
P ∈ Grr (H1(X ,Q))

∣∣ P ∩ L 6= {0}
}){

,

for all i ≤ k and all 1 ≤ r ≤ b1(X ).

Proof.
Fix an r -plane P ∈ Grr (H1(X ,Q)), and let T = exp(P ⊗ C). Then:

P ∈ Ωi
r (X )⇐⇒ T ∩W i(X ) is finite

=⇒ τ1(T ∩W i(X )) = {0}

⇐⇒ (P ⊗ C) ∩ τ1(W i(X )) = {0}

⇐⇒ P ∩ L = {0}, for each L ∈ Ci(X ),
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For many spaces (e.g., “straight spaces"), the inclusion holds as
an equality.
If r = 1, the inclusion always holds as an equality (DF 1987, PS
2010)
In general, though, the inclusion is strict. E.g., there are finitely
presented (Kähler) groups G for which Ω1

2(G) is not open.
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Special Schubert varieties
Let V be a homogeneous variety in kn. The set

σr (V ) =
{

P ∈ Grr (kn)
∣∣ P ∩ V 6= {0}

}
is a Zariski closed subset of Grr (kn), called the variety of incident
r -planes to V .
When V is a a linear subspace L ⊂ kn, the variety σr (L) is called
the special Schubert variety defined by L.
If L has codimension d in kn, then σr (L) has codimension
d − r + 1 in Grr (kn).

Example

The Grassmannian Gr2(k4) is the hypersurface in P(k6) with equation
p12p34 − p13p24 + p23p14 = 0. Let L be a plane in k4, represented as
the row space of a 2× 4 matrix. Then σ2(L) is the 3-fold in Gr2(k4) cut
out by the hyperplane

p12L34 − p13L24 − p23L14 + p14L23 − p24L13 + p34L12 = 0.
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Theorem

Ωi
r (X ) ⊆ Grr

(
H1(X ,Q)

)
\
⋃

L∈Ci (X)

σr (L),

for all i ≤ k and all 1 ≤ r ≤ b1(X ).

Thus, each set Ωi
r (X ) is contained in the complement of a Zariski

closed subset of Grr (H1(X ,Q)): the union of the special Schubert
varieties corresponding to the subspaces comprising Ci(X ).

Corollary

Suppose Ci(X ) contains a subspace of codimension d. Then
Ωi

r (X ) = ∅, for all r ≥ d + 1.

Corollary

Let Xα be the maximal free abelian cover of X . If τ1(W1(X )) 6= {0},
then b1(Xα) =∞.
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The Aomoto complex

Consider the cohomology algebra A = H∗(X ,C), with product
operation given by the cup product of cohomology classes.

For each a ∈ A1, we have a2 = 0, by graded-commutativity of the cup
product.

Definition

The Aomoto complex of A (with respect to a ∈ A1) is the cochain
complex of finite-dimensional, complex vector spaces,

(A,a) : A0 a // A1 a // A2 a // · · · a // Ak ,

with differentials given by left-multiplication by a.
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Alternative interpretation: Pick a basis {e1, . . . ,en} for A1 = H1(X ,C),
and let {x1, . . . , xn} be the Kronecker dual basis for A1 = H1(X ,C).
Identify Sym(A1) with S = C[x1, . . . , xn].

Definition

The universal Aomoto complex of A is the cochain complex of free
S-modules,

: · · · // Ai ⊗C S
d i

// Ai+1 ⊗C S
d i+1

// Ai+2 ⊗C S // · · · ,

where the differentials are defined by d i(u ⊗ 1) =
∑n

j=1 eju ⊗ xj for
u ∈ Ai , and then extended by S-linearity.

Lemma
The evaluation of the universal Aomoto complex at an element a ∈ A1

coincides with the Aomoto complex (A,a).

Alex Suciu (Northeastern University) Free abelian covers and Schubert varieties Pisa, May 2010 26 / 41



Resonance varieties and straight spaces The Aomoto complex

Let X be a connected, finite-type CW-complex.

The CW-structure on X is minimal if the number of i-cells of X equals
the Betti number bi(X ), for every i ≥ 0.

Equivalently, all boundary maps in C•(X ,Z) are zero.

Theorem (Papadima–S. 2010)
If X is a minimal CW-complex, the linearization of the cochain complex
C•(X ab,C) coincides with the universal Aomoto complex of H∗(X ,C).
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Concretely:

Identify C[Zn] with Λ = C[t±1
1 , . . . , t±1

n ].

Filter Λ by powers of the maximal ideal I = (t1 − 1, . . . , tn − 1), and
identify gr(Λ) with S = C[x1, . . . , xn], via the ring map ti − 1 7→ xi .

The minimality hypothesis allows us to identify Ci(X ab,C) with
Λ⊗C Hi(X ,C) and C i(X ab,C) with Ai ⊗C Λ.

Under these identifications, the boundary map
∂ab

i+1 : Ci+1(X ab,C)→ Ci(X ab,C) dualizes to a map

δi : Ai ⊗C Λ→ Ai+1 ⊗C Λ.

Let gr(δi) : Ai ⊗C S → Ai+1 ⊗C S be the associated graded of δi ,
and let gr(δi) lin be its linear part. Then:

gr(δi) lin = d i : Ai ⊗C S → Ai+1 ⊗C S.
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Resonance varieties

Definition

The resonance varieties of X are the sets

Ri(X ) = {a ∈ A1 | H j(A, ·a) 6= 0, for some j ≤ i},

defined for all integers 0 ≤ i ≤ k .

Get filtration
{0} = R0(X ) ⊆ R1(X ) ⊆ · · · ⊆ Rk (X ) ⊆ H1(X ,C) = Cn.
Each Ri(X ) is a homogeneous algebraic subvariety of Cn.
These varieties are homotopy-type invariants of X :
If X ' Y , there is an isomorphism H1(Y ,C) ∼= H1(X ,C) which
restricts to isomorphisms Ri(Y ) ∼= Ri(X ), for all i ≥ 0.
(Libgober 2002) TC1(W i(X )) ⊆ Ri(X ).
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Straight spaces
As before, let X be a connected CW-complex with finite k -skeleton.

Definition

We say X is k-straight if the following conditions hold, for each i ≤ k :

1 All positive-dimensional components ofW i(X ) are algebraic
subtori.

2 TC1(W i(X )) = Ri(X ).
If X is k -straight for all k ≥ 1, we say X is a straight space.

The k -straightness property depends only on the homotopy type
of a space.
Hence, we may declare a group G to be k -straight if there is a
K (G,1) which is k -straight; in particular, G must be of type Fk .
X is 1-straight if and only if π1(X ) is 1-straight.

Alex Suciu (Northeastern University) Free abelian covers and Schubert varieties Pisa, May 2010 30 / 41



Resonance varieties and straight spaces Straight spaces

Example

Let f ∈ Z[t ] with f (1) = 0. Then Xf = (S1 ∨ S2) ∪f e3 is minimal.
W1(Xf ) = {1},W2(Xf ) = V (f ): finite subsets of H1(X ,C×) = C×.
R1(Xf ) = {0}, and

R2(Xf ) =

{
{0}, if f ′(1) 6= 0,
C, otherwise.

Therefore, Xf is always 1-straight, but

Xf is 2-straight⇐⇒ f ′(1) 6= 0.

Proposition
For each k ≥ 2, there is a minimal CW-complex which has the integral
homology of S1 × Sk and which is (k − 1)-straight, but not k-straight.
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Alternate description of straightness:

Proposition
The space X is k-straight if and only if the following equalities hold, for
all i ≤ k:

W i(X ) =

( ⋃
L∈Ci (X)

exp(L⊗ C)

)
∪ Zi

Ri(X ) =
⋃

L∈Ci (X)

L⊗ C

for some finite (algebraic) subsets Zi ⊂ H1(X ,C×)0.
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Corollary
Let X be a k-straight space. Then, for all i ≤ k,

1 τ1(W i(X )) = TC1(W i(X )) = Ri(X ).
2 Ri(X ,Q) =

⋃
L∈Ci (X) L.

In particular, the resonance varieties Ri(X ) are unions of rationally
defined subspaces.

Example

Let G be the group with generators x1, x2, x3, x4 and relators
r1 = [x1, x2], r2 = [x1, x4][x−2

2 , x3], r3 = [x−1
1 , x3][x2, x4]. Then

R1(G) = {z ∈ C4 | z2
1 − 2z2

2 = 0},

which splits into two linear subspaces defined over R, but not over Q.
Thus, G is not 1-straight.
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Ω-invariants of straight spaces

Theorem
Suppose X is k-straight. Then, for all i ≤ k and r ≥ 1,

Ωi
r (X ) = Grr (H1(X ,Q)) \ σr (Ri(X ,Q)).

In particular, if all components of Ri(X ) have the same codimension r ,
then Ωi

r (X ) is the complement of the Chow divisor of Ri(X ,Q).

Corollary

Let X be k-straight space, with b1(X ) = n. Then each set Ωi
r (X ) is the

complement of a finite union of special Schubert varieties in Grr (Qn).
In particular, Ωi

r (X ) is a Zariski open set in Grr (Qn).
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Example

Let L = (L1,L2) be a 2-component link in S3, with lk(L1,L2) = 1,
and Alexander polynomial ∆L(t1, t2) = t1 + t−1

1 − 1.

Let X be the complement of L. ThenW1(X ) ⊂ (C×)2 is given by

W1(X ) = {1} ∪ {t | t1 = eπi/3} ∪ {t | t1 = e−πi/3}

Hence, X is not 1-straight.

SinceW1(X ) is infinite, we have

Ω1
2(X ) = ∅.

On the other hand, ∪X is non-trivial, and so R1(X ,Q) = {0}.
Hence,

σ2(R1(X ,Q)){ = {pt}.
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Examples Toric complexes

Toric complexes

Given L simplicial complex on n vertices, define the toric complex
TL = ZL(S1, ∗) as the subcomplex of T n obtained by deleting the
cells corresponding to the missing simplices of L:

TL =
⋃
σ∈L

T σ, where T σ = {x ∈ T n | xi = ∗ if i /∈ σ}.

Let Γ = (V,E) be the graph with vertex set the 0-cells of L, and
edge set the 1-cells of L. Then π1(TL) is the right-angled Artin
group associated to Γ:

GΓ = 〈v ∈ V | vw = wv if {v ,w} ∈ E〉.
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Examples Toric complexes

Identify H1(TL,C) with CV = Cn and H1(TK ,C×) with
(C×)V = (C×)n.
For each W ⊆ V, let CW be the respective coordinate subspace,
and let (C×)W = exp(CW) be the respective algebraic subtorus.

Theorem (Papadima–S. 2009)

Ri(TL) =
⋃
W

CW and V i(TL) =
⋃
W

(C×)W,

where, in both cases, the union is taken over all subsets W ⊂ V for
which there is σ ∈ LV\W and j ≤ i such that H̃j−1−|σ|(lkLW(σ),C) 6= 0.

Corollary
All toric complexes are straight spaces. Thus,

Ωk
r (TL) = σr (Rk (TL,Q)){.
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Examples Hyperplane arrangements

Hyperplane arrangements

A = {H1, . . . ,Hn} arrangement hyperplanes in C`.
Intersection lattice L(A): poset of all non-empty intersections,
ordered by reverse inclusion.
Complement X (A) = C` \

⋃
H∈AH admits a minimal cell structure.

Cohomology ring A(A) = H∗(X (A),C): the quotient A = E/I of
the exterior algebra E on classes dual to the meridians, modulo
an ideal I determined by L(A).
Fundamental group G(A) = π1(X (A)): computed from the braid
monodromy read off a generic projection of a generic slice in C2.
G has a (minimal) finite presentation with

I Meridional generators x1, . . . , xn.
I Commutator relators xiαj (xi )

−1, where αj ∈ Pn are the (pure) braid
monodromy generators, acting on Fn via the Artin representation.

In particular, Gab = Zn.
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Examples Hyperplane arrangements

Identify Ĝ = H1(X ,C×) = (C×)n and H1(X ,C) = Cn.
Set V i(A) = V i(X (A)), etc.
Tangent cone formula holds:

τ1(V i(A)) = TC1(V i(A)) = Ri(A).

Components of Ri(A) are rationally defined linear subspaces of
Cn, depending only on L(A).
Components of V i(A) are subtori of (C×)n, possibly translated by
roots of 1.
Components passing through 1 are combinatorially determined:

L ⊂ Ri(A) T = exp(L) ⊂ V i(A).

V1(A) may contain translated subtori, e.g., if A is the deleted B3
arrangement.
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Examples Hyperplane arrangements

Example (Braid arrangement A4)
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1 3 5
6

R1(A) ⊂ C6 has 4 local components (from triple points), and one
non-local component, from neighborly partition Π = (16|25|34):

L124 = {x1 + x2 + x4 = x3 = x5 = x6 = 0},
L135 = {x1 + x3 + x5 = x2 = x4 = x6 = 0},
L236 = {x2 + x3 + x6 = x1 = x4 = x5 = 0},
L456 = {x4 + x5 + x6 = x1 = x2 = x3 = 0},
LΠ = {x1 + x2 + x3 = x1 − x6 = x2 − x5 = x3 − x4 = 0}.

There are no translated components.
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Examples Hyperplane arrangements

Theorem
Suppose Vk (A) contains no translated components. Then:

1 X (A) is k-straight.
2 Ωk

r (A) = Grr (Qn) \ σr (Rk (A,Q)), for all 1 ≤ r ≤ n.

Example

Let A be an arrangement of n lines in C2. Suppose A has 1 or 2 lines
which contain all the intersection points of multiplicity 3 and higher. By
(Nazir–Raza ’09): X (A) is 1-straight, and Ω1

r (A) = σr (R1(A,Q)){.

Question
1 Is k -straightness of X (A) a combinatorial property of the

arrangement?
2 Are the Dwyer–Fried sets Ωk

r (A) determined by L(A)?
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