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RESONANCE AND PROPAGATION COHOMOLOGY JUMP LOCI

COHOMOLOGY JUMP LOCI

Let k be an algebraically closed field.

Let S be a commutative, finitely-generated k-algebra.

Let Spec(S) = Homk-alg(S, k) be the maximal spectrum of S.

Let

C : 0 // C0 // ¨ ¨ ¨ // C i di // C i+1 // ¨ ¨ ¨ // Cn // 0

be a (bounded) cochain complex over S.

The cohomology jump loci of C are defined as

V i(C) := tm P Spec(S) | H i(C bS S/m) ‰ 0u.
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RESONANCE AND PROPAGATION PROPAGATION

PROPAGATION

The sets V i(C) depend only on the chain-homotopy equivalence
class of C.

Assume C is a cochain complex of free, finitely-generated
S-modules. Then V i(C) are Zariski closed subsets of Spec(S).

We say the jump loci of C propagate if

V i´1(P) Ď V i(P) for 0 ă i ď n.
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RESONANCE AND PROPAGATION THE BGG CORRESPONDENCE

THE BGG CORRESPONDENCE

Let V be a finite-dimensional k-vector space.

Fix basis e1, . . . ,en for V , and dual basis x1, . . . , xn for V_.

Let E =
Ź

V and S = Sym V_.

Let P be a finitely-generated, graded E-module.
E.g., a graded, graded-commutative k-algebra A (chark ‰ 2).

BGG yields a cochain complex of free, finitely-generated
S-modules,

L(P) : ¨ ¨ ¨ // P i bk S
di // P i+1 bk S // ¨ ¨ ¨ ,

with differentials di(pb s) =
řn

j=1 ejpb xjs.
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RESONANCE AND PROPAGATION RESONANCE VARIETIES

RESONANCE VARIETIES

Evaluating L(P) at a P V gives the (Aomoto) cochain complex

(P,a) := L(P)bS S/ma : ¨ ¨ ¨ // P i ¨a // P i+1 // ¨ ¨ ¨

The resonance varieties of P are the cohomology jump loci of
L(P):

Ri(P) := V i(L(P)) = ta P V | H i(P,a) ‰ 0u.

They are closed cones inside the affine space V = Spec(S).
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RESONANCE AND PROPAGATION PROPAGATION OF RESONANCE

PROPAGATION OF RESONANCE

Motivating result:

THEOREM (EISENBUD–POPESCU–YUZVINSKY 2003)

Let A be the Orlik–Solomon algebra of an arrangement. Then the
resonance varieties of A propagate.

Using similar techniques, we obtain the following generalization.

THEOREM (DSY)

Suppose the k-dual module, pP, has a linear free resolution over E.
Then the resonance varieties of P propagate.
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ABELIAN DUALITY JUMP LOCI OF SPACES

JUMP LOCI OF SPACES

Let X be a connected, finite CW-complex.

Fundamental group π = π1(X , x0): a finitely generated, discrete
group, with πab – H1(X ,Z).

Let S = k[πab] and identify Spec(S) with the character group
Hom(π,k˚) = H1(X ,k˚).

The characteristic varieties of X are the cohomology jump loci of
the free S-cochain complex C = C˚(X ab,k):

V i(X ,k) = tρ P H1(X ,k˚) | H i(X , kρ) ‰ 0u.
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ABELIAN DUALITY JUMP LOCI OF SPACES

The resonance varieties of X are the jump loci associated to the
cohomology algebra A = H˚(X ,k):

Ri(X ,k) = ta P H1(X , k) | H i(A,a) ‰ 0u.

THEOREM (PAPADIMA–S. 2010)

Let X be a minimal CW-complex. Then the linearization of the cellular
cochain complex C˚(X ab,k) coincides with the complex L(A), where
A = H˚(X ,k).
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ABELIAN DUALITY DUALITY SPACES

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we
start by recalling a notion due to Bieri and Eckmann (1978).

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If D = Z, with trivial Zπ-action, then X is a Poincaré duality
space.

If X = K (π,1) is a duality space, then π is a duality group.
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ABELIAN DUALITY ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce an analogous notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

The two notions of duality are independent. E.g.:

Every orientable surface of genus g ą 1 is a PD space, but not an
abelian duality space.

Let H = xx1, . . . , x4 | x´2
1 x2x1x´1

2 , . . . , x´2
4 x1x4x´1

1 y. Then
π = Z2 ˚H is a 2-dim abelian duality group, but not a duality group.
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ABELIAN DUALITY ABELIAN DUALITY SPACES

PROPAGATION OF JUMP LOCI

THEOREM

Let X be an abelian duality space of dimension n. If ρ : π1(X )Ñ k˚
satisfies H i(X ,kρ) ‰ 0, then H j(X ,kρ) ‰ 0, for all i ď j ď n.

Consequences:
The characteristic varieties propagate: V1(X ,k) Ď ¨ ¨ ¨ Ď Vn(X , k).
dimk H1(X ,k) ě n´ 1.
If n ě 2, then H i(X , k) ‰ 0, for all 0 ď i ď n.

THEOREM

If, moreover, X admits a minimal cell structure, then the resonance
varieties also propagate: R1(X , k) Ď ¨ ¨ ¨ Ď Rn(X ,k).
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ABELIAN DUALITY ABELIAN DUALITY SPACES

COROLLARY

Let M be a compact, connected, orientable manifold of dimension n.
Suppose M admits a minimal cell structure, and R1(M,k) ‰ 0. Then
M is not an abelian duality space.

PROOF.
Let ω P Hn(M, k) – k be the orientation class. By Poincaré duality, for
any a P H1(M,k), there is b P Hn´1(M,k) such that aY b = ω. Hence,
Rn(M,k) = t0u, thus contradicting propagation of resonance.

EXAMPLE

Let M be the 3-dimensional Heisenberg nilmanifold.
M admits a perfect Morse function.
Characteristic varieties propagate: V i(M) = t1u for i ď 3;.
Resonance does not propagate: R1(M, k) = k2, R3(M,k) = 0.
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COMBINATORIAL COVERS COMBINATORIAL COVERS

COMBINATORIAL COVERS

A combinatorial cover for a space X is a triple (C , φ, ρ), where

1 C is a countable cover which is either open, or closed and locally
finite.

2 φ : N(C )Ñ P is an order-preserving, surjective map from the
nerve of the cover to a finite poset P, such that, if S ď T and
φ(S) = φ(T ), then XT ãÑ XS admits a homotopy inverse.

3 If S ď T and
Ş

S =
Ş

T , then φ(S) = φ(T ).

4 ρ : P Ñ Z is an order-preserving map whose fibers are antichains.

We say that C is a strong combinatorial cover if, moreover, φ induces a
homotopy equivalence, φ : |N(C )| Ñ |P|.
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COMBINATORIAL COVERS COMBINATORIAL COVERS

Example: X = D2zt4 pointsu.

C :

U1

U2U3

N(C ) :

tU1,U2,U3u

tU1,U2u tU1,U3u tU2,U3u

tU1u tU2u tU3u

P :
˚

1 2 3

φ : N(C )Ñ P: φ(tUiu) = i and φ(S) = ˚ if |S| ‰ 1.
ρ : P Ñ Z: ρ(˚) = 1 and ρ(i) = 0.
XS = XT for any S,T P φ´1(˚).
Both |N(C )| and |P| are contractible.
Thus, C is a strong combinatorial cover.
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COMBINATORIAL COVERS A SPECTRAL SEQUENCE

A SPECTRAL SEQUENCE

Suppose X has a combinatorial cover (C , φ, ρ). For each x P P,
let Pďx = ty P P | y ď xu; then φ´1(Pďx ) is a sub-poset of N(C ).

Choose a set S P N(C ) with φ(S) = x , and write Ux = XS; then
Ux is well-defined up to homotopy.

THEOREM

For every locally constant sheaf F on X, there is a spectral sequence
with

Epq
2 =

ź

xPP

Hp´ρ(x)(φ´1(Pďx ), φ´1(Păx ); Hq+ρ(x)(X , F |Ux
)
)
,

converging to Hp+q(X ,F ). Moreover, if C is a strong combinatorial
cover, then

Epq
2 =

ź

xPP

rHp´ρ(x)´1(lk|P|(x); Hq+ρ(x)(X , F |Ux
)).
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ARRANGEMENTS OF SUBMANIFOLDS ARRANGEMENTS OF SUBMANIFOLDS

ARRANGEMENTS OF SUBMANIFOLDS

Let A be an arrangement of submanifolds in a smooth, connected
manifold. Assume that the intersection of any subset of A is also
smooth, and has only finitely many connected components.

THEOREM

1 If each submanifold is either compact or open, then the
complement M(A) has a combinatorial cover (C , φ, ρ) over the
(ranked) intersection poset L(A).

2 If, moreover, each submanifold in L(A) is contractible, then C is a
strong combinatorial cover.
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ARRANGEMENTS OF SUBMANIFOLDS ARRANGEMENTS OF SUBMANIFOLDS

THEOREM

Let F be a locally constant sheaf on M(A). There is then a spectral
sequence with

Epq
2 =

ź

XPL(A)

Hp´ρ(X )(X ,DX ;Hq+ρ(X )(M(A),FUX )),

converging to Hp+q(M(A),F ).

Here,
DX =

Ť

ZPL(A)ăX
Z .

UX P C is such that min
 

X P L(A) : X XU ‰ H
(

= X .
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ARRANGEMENTS OF SUBMANIFOLDS HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

Let A be a central, essential hyperplane arrangement in Cn.

Its complement, M(A), has the homotopy type of a minimal
CW-complex of dimension n.

THEOREM

Suppose A = Z[π] or A = Z[πab]. Then Hp(M(A),A) = 0 for all
p ‰ n, and Hn(M(A),A) is a free abelian group.

COROLLARY

1 M(A) is a duality space of dimension n (due to [DJO 2011]).
2 M(A) is an abelian duality space of dimension n.
3 The characteristic and resonance varieties of M(A) propagate.
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ARRANGEMENTS OF SUBMANIFOLDS TORIC ARRANGEMENTS

TORIC ARRANGEMENTS

A toric arrangement is a finite collection of codimension-1 subtori
(possibly translated) in a complex algebraic torus.

Studied by DeConcini–Procesi, Moci, Moci–Settepanella,
d’Antonio–Delucchi, Davis–Settepanella, Callegaro–Delucchi, . . .

The complement is again a minimal space (Adiprasito–Delucchi).

Using some of this work and our machinery, we obtain:

THEOREM

Let A be a toric arrangement in (C˚)n. Then:
1 M(A) is a duality space of dimension n (due to [DS 2013]).
2 M(A) is an abelian duality space of dimension n.
3 The characteristic and resonance varieties of M(A) propagate.
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ARRANGEMENTS OF SUBMANIFOLDS ELLIPTIC ARRANGEMENTS

ELLIPTIC ARRANGEMENTS

An elliptic arrangement is a finite collection A of subvarieties in a
product of elliptic curves En, each subvariety being a fiber of a
group homomorphism En Ñ E .

If A is essential, the complement M(A) is a Stein manifold.

M(A) is minimal, but it’s not formal, in general.

THEOREM

The complement of an essential, unimodular elliptic arrangement in En

is both a duality space and an abelian duality space of dimension n.

Our approach recovers and generalizes a result Levin and Varchenko.

THEOREM (LV 2012)

Let A be an elliptic arrangement in En, and let kρ be a ‘convenient’
rank-1 local system on its complement. Then H i(M(A), kρ) = 0 for
i ă n and Hn(M(A),kρ) = Hn(M(A), k).
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TORIC COMPLEXES TORIC COMPLEXES

TORIC COMPLEXES

Let L be simplicial complex on n vertices.

The toric complex TL is the subcomplex of the n-torus obtained by
deleting the cells corresponding to the missing simplices of L.

By construction, TL is a minimal CW-complex, of dimension
dim L + 1.

πΓ := π1(TL) is the right-angled Artin group associated to the
graph Γ = L(1).

K (πΓ,1) = T∆Γ , where ∆Γ is the flag complex of Γ.

H˚(TL, k) = E/JL is the exterior Stanley–Reisner ring of L.
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TORIC COMPLEXES TORIC COMPLEXES

L is Cohen–Macaulay if for each simplex σ P L, the reduced
cohomology of lk(σ) is concentrated in degree dim(L)´ |σ| and is
torsion-free.

THEOREM (N. BRADY–MEIER 2001, JENSEN–MEIER 2005)

A right-angled Artin group πΓ is a duality group if and only if ∆Γ is
Cohen–Macaulay. Moreover, πΓ is a Poincaré duality group if and only
if Γ is a complete graph.

THEOREM

TL is an abelian duality space (of dimension dim(L) + 1) if and only if
L is Cohen-Macaulay.

In this case, the resonance varieties of TL propagate. In general,
though, they don’t.
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TORIC COMPLEXES TORIC COMPLEXES

Given a (finite, simplicial) graph Γ, the corresponding Bestvina–Brady
group is defined as

NΓ = ker(ν : GΓ Ñ Z),

where ν(v) = 1, for each vertex v of Γ.

PROPOSITION (DAVIS–OKUN 2012)

Suppose ∆Γ is acyclic. Then NΓ is a duality group if and only if ∆Γ is
Cohen–Macaulay.

PROPOSITION

NΓ is an abelian duality group if and only if ∆Γ is acyclic and
Cohen-Macaulay.
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TORIC COMPLEXES TORIC COMPLEXES
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