COMBINATORIAL COVERS, ABELIAN DUALITY, AND PROPAGATION OF RESONANCE

Alex Suciu

Northeastern University

Joint work with Graham Denham and Sergey Yuzvinsky

Algebra, Topology and Combinatorics Seminar University of Pisa May 29, 2014

2 ABELIAN DUALITY

- **3** COMBINATORIAL COVERS
- **4** ARRANGEMENTS OF SUBMANIFOLDS

5 TORIC COMPLEXES

COHOMOLOGY JUMP LOCI

- Let k be an algebraically closed field.
- Let S be a commutative, finitely-generated k-algebra.
- Let $\text{Spec}(S) = \text{Hom}_{\Bbbk\text{-alg}}(S, \Bbbk)$ be the maximal spectrum of S.
- Let

$$C: 0 \longrightarrow C^0 \longrightarrow \cdots \longrightarrow C^i \xrightarrow{d_i} C^{i+1} \longrightarrow \cdots \longrightarrow C^n \longrightarrow 0$$

be a (bounded) cochain complex over S.

• The cohomology jump loci of C are defined as

 $\mathcal{V}^{i}(\mathcal{C}) := \{ \mathfrak{m} \in \operatorname{Spec}(\mathcal{S}) \mid \mathcal{H}^{i}(\mathcal{C} \otimes_{\mathcal{S}} \mathcal{S}/\mathfrak{m}) \neq 0 \}.$

PROPAGATION

- The sets *Vⁱ*(*C*) depend only on the chain-homotopy equivalence class of *C*.
- Assume C is a cochain complex of free, finitely-generated S-modules. Then Vⁱ(C) are Zariski closed subsets of Spec(S).
- We say the jump loci of *C propagate* if

 $\mathcal{V}^{i-1}(\mathcal{P}) \subseteq \mathcal{V}^i(\mathcal{P}) \qquad \text{for } 0 < i \leq n.$

THE BGG CORRESPONDENCE

- Let V be a finite-dimensional k-vector space.
- Fix basis e_1, \ldots, e_n for V, and dual basis x_1, \ldots, x_n for V^{\vee} .
- Let $E = \bigwedge V$ and $S = \text{Sym } V^{\vee}$.
- Let *P* be a finitely-generated, graded *E*-module.
 E.g., a graded, graded-commutative k-algebra *A* (char k ≠ 2).
- BGG yields a cochain complex of free, finitely-generated S-modules,

$$\mathbf{L}(P): \cdots \longrightarrow P^{i} \otimes_{\Bbbk} S \xrightarrow{d_{i}} P^{i+1} \otimes_{\Bbbk} S \longrightarrow \cdots,$$

with differentials $d_i(p \otimes s) = \sum_{j=1}^n e_j p \otimes x_j s$.

RESONANCE VARIETIES

• Evaluating L(P) at $a \in V$ gives the (Aomoto) cochain complex

 $(P, a) := \mathbf{L}(P) \otimes_{S} S/\mathfrak{m}_{a}: \cdots \longrightarrow P^{i} \xrightarrow{a} P^{i+1} \longrightarrow \cdots$

• The resonance varieties of *P* are the cohomology jump loci of L(P): $\mathcal{R}^{i}(P) := \mathcal{V}^{i}(L(P)) = \{a \in V \mid H^{i}(P, a) \neq 0\}.$

They are closed cones inside the affine space V = Spec(S).

PROPAGATION OF RESONANCE

Motivating result:

THEOREM (EISENBUD–POPESCU–YUZVINSKY 2003)

Let A be the Orlik–Solomon algebra of an arrangement. Then the resonance varieties of A propagate.

Using similar techniques, we obtain the following generalization.

THEOREM (DSY)

Suppose the \Bbbk -dual module, \hat{P} , has a linear free resolution over E. Then the resonance varieties of P propagate.

JUMP LOCI OF SPACES

- Let X be a connected, finite CW-complex.
- Fundamental group π = π₁(X, x₀): a finitely generated, discrete group, with π_{ab} ≃ H₁(X, Z).
- Let $S = \Bbbk[\pi_{ab}]$ and identify Spec(S) with the character group Hom $(\pi, \Bbbk^*) = H^1(X, \Bbbk^*)$.
- The characteristic varieties of X are the cohomology jump loci of the free S-cochain complex C = C*(X^{ab}, k):

$$\mathcal{V}^{i}(\boldsymbol{X}, \boldsymbol{\Bbbk}) = \{ \rho \in H^{1}(\boldsymbol{X}, \boldsymbol{\Bbbk}^{*}) \mid H^{i}(\boldsymbol{X}, \boldsymbol{\Bbbk}_{\rho}) \neq \boldsymbol{0} \}.$$

The resonance varieties of X are the jump loci associated to the cohomology algebra A = H^{*}(X, k):

$$\mathcal{R}^{i}(X,\Bbbk) = \{a \in H^{1}(X,\Bbbk) \mid H^{i}(A,a) \neq 0\}.$$

THEOREM (PAPADIMA-S. 2010)

Let X be a minimal CW-complex. Then the linearization of the cellular cochain complex $C^*(X^{ab}, \Bbbk)$ coincides with the complex L(A), where $A = H^*(X, \Bbbk)$.

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we start by recalling a notion due to Bieri and Eckmann (1978).

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent. E.g.:
 - Every orientable surface of genus *g* > 1 is a PD space, but not an abelian duality space.
 - Let $H = \langle x_1, \dots, x_4 \mid x_1^{-2}x_2x_1x_2^{-1}, \dots, x_4^{-2}x_1x_4x_1^{-1} \rangle$. Then $\pi = \mathbb{Z}^2 * H$ is a 2-dim abelian duality group, but not a duality group.

PROPAGATION OF JUMP LOCI

THEOREM

Let X be an abelian duality space of dimension n. If $\rho : \pi_1(X) \to \Bbbk^*$ satisfies $H^i(X, \Bbbk_\rho) \neq 0$, then $H^j(X, \Bbbk_\rho) \neq 0$, for all $i \leq j \leq n$.

Consequences:

- The characteristic varieties propagate: $\mathcal{V}^1(X, \Bbbk) \subseteq \cdots \subseteq \mathcal{V}^n(X, \Bbbk)$.
- dim_k $H^1(X, \mathbb{k}) \ge n-1$.
- If $n \ge 2$, then $H^i(X, \Bbbk) \ne 0$, for all $0 \le i \le n$.

THEOREM

If, moreover, *X* admits a minimal cell structure, then the resonance varieties also propagate: $\mathcal{R}^1(X, \Bbbk) \subseteq \cdots \subseteq \mathcal{R}^n(X, \Bbbk)$.

COROLLARY

Let *M* be a compact, connected, orientable manifold of dimension *n*. Suppose *M* admits a minimal cell structure, and $\mathcal{R}^1(M, \Bbbk) \neq 0$. Then *M* is not an abelian duality space.

PROOF.

Let $\omega \in H^n(M, \Bbbk) \cong \Bbbk$ be the orientation class. By Poincaré duality, for any $a \in H^1(M, \Bbbk)$, there is $b \in H^{n-1}(M, \Bbbk)$ such that $a \cup b = \omega$. Hence, $\mathcal{R}^n(M, \Bbbk) = \{0\}$, thus contradicting propagation of resonance.

EXAMPLE

- Let *M* be the 3-dimensional Heisenberg nilmanifold.
- *M* admits a perfect Morse function.
- Characteristic varieties propagate: $\mathcal{V}^i(M) = \{1\}$ for $i \leq 3$;.
- Resonance does not propagate: $\mathcal{R}^1(M, \Bbbk) = \Bbbk^2$, $\mathcal{R}^3(M, \Bbbk) = 0$.

COMBINATORIAL COVERS

A combinatorial cover for a space X is a triple $(\mathscr{C}, \phi, \rho)$, where

- If is a countable cover which is either open, or closed and locally finite.
- ② ϕ : *N*(*C*) → *P* is an order-preserving, surjective map from the nerve of the cover to a finite poset *P*, such that, if *S* ≤ *T* and $\phi(S) = \phi(T)$, then $\cap T \hookrightarrow \cap S$ admits a homotopy inverse.
- (3) If $S \leq T$ and $\bigcap S = \bigcap T$, then $\phi(S) = \phi(T)$.
- ④ $\rho: P \to \mathbb{Z}$ is an order-preserving map whose fibers are antichains.

We say that \mathscr{C} is a *strong* combinatorial cover if, moreover, ϕ induces a homotopy equivalence, $\phi: |N(\mathscr{C})| \to |P|$.

Example: $X = D^2 \setminus \{4 \text{ points}\}.$

$$\mathscr{C}: \qquad \bigcup_{3}^{\circ} \bigcup_{2}^{\circ} \bigcup_{2}^{\circ}$$

. .

- $\phi: N(\mathscr{C}) \to P$: $\phi(\{U_i\}) = i \text{ and } \phi(S) = * \text{ if } |S| \neq 1.$
- $\rho: P \to \mathbb{Z}$: $\rho(*) = 1 \text{ and } \rho(i) = 0.$
- $\cap S = \cap T$ for any $S, T \in \phi^{-1}(*)$.
- Both $|N(\mathscr{C})|$ and |P| are contractible.
- Thus, % is a strong combinatorial cover.

A SPECTRAL SEQUENCE

- Suppose X has a combinatorial cover (𝒞, φ, ρ). For each x ∈ P, let P_{≤x} = {y ∈ P | y ≤ x}; then φ⁻¹(P_{≤x}) is a sub-poset of N(𝒞).
- Choose a set $S \in N(\mathscr{C})$ with $\phi(S) = x$, and write $U_x = \cap S$; then U_x is well-defined up to homotopy.

THEOREM

For every locally constant sheaf \mathcal{F} on X, there is a spectral sequence with

$$E_{2}^{pq} = \prod_{x \in P} H^{p-\rho(x)} \big(\phi^{-1}(P_{\leq x}), \phi^{-1}(P_{< x}); H^{q+\rho(x)}(X, \mathcal{F}|_{U_{x}}) \big),$$

converging to $H^{p+q}(X, \mathcal{F})$. Moreover, if \mathscr{C} is a strong combinatorial cover, then

$$\mathsf{E}_{2}^{pq} = \prod_{x \in P} \widetilde{H}^{p-\rho(x)-1}(\mathsf{lk}_{|P|}(x); \, \mathsf{H}^{q+\rho(x)}(X, \, \mathcal{F}|_{U_x})).$$

ARRANGEMENTS OF SUBMANIFOLDS

Let \mathcal{A} be an arrangement of submanifolds in a smooth, connected manifold. Assume that the intersection of any subset of \mathcal{A} is also smooth, and has only finitely many connected components.

THEOREM

- If each submanifold is either compact or open, then the complement M(A) has a combinatorial cover (C, φ, ρ) over the (ranked) intersection poset L(A).
- 2 If, moreover, each submanifold in L(A) is contractible, then \mathscr{C} is a strong combinatorial cover.

ALEX SUCIU

COVERS, DUALITY AND RESONANCE

THEOREM

Let \mathcal{F} be a locally constant sheaf on $M(\mathcal{A})$. There is then a spectral sequence with

$$E_2^{pq} = \prod_{X \in \mathcal{L}(\mathcal{A})} H^{p-\rho(X)}(X, D_X; H^{q+\rho(X)}(M(\mathcal{A}), \mathcal{F}_{U_X})),$$

converging to $H^{p+q}(M(\mathcal{A}), \mathcal{F})$.

Here,

•
$$D_X = \bigcup_{Z \in L(\mathcal{A})_{< X}} Z.$$

• $U_X \in \mathscr{C}$ is such that min $\{X \in L(\mathcal{A}) \colon X \cap \overline{U} \neq \emptyset\} = X$.

HYPERPLANE ARRANGEMENTS

- Let \mathcal{A} be a central, essential hyperplane arrangement in \mathbb{C}^n .
- Its complement, M(A), has the homotopy type of a minimal CW-complex of dimension *n*.

THEOREM

Suppose $A = \mathbb{Z}[\pi]$ or $A = \mathbb{Z}[\pi_{ab}]$. Then $H^p(M(\mathcal{A}), A) = 0$ for all $p \neq n$, and $H^n(M(\mathcal{A}), A)$ is a free abelian group.

COROLLARY

- **(1)** M(A) is a duality space of dimension **n** (due to [DJO 2011]).
- ⁽²⁾ M(A) is an abelian duality space of dimension *n*.
- ③ The characteristic and resonance varieties of $M(\mathcal{A})$ propagate.

TORIC ARRANGEMENTS

- A *toric arrangement* is a finite collection of codimension-1 subtori (possibly translated) in a complex algebraic torus.
- Studied by DeConcini–Procesi, Moci, Moci–Settepanella, d'Antonio–Delucchi, Davis–Settepanella, Callegaro–Delucchi, ...
- The complement is again a minimal space (Adiprasito–Delucchi).

Using some of this work and our machinery, we obtain:

THEOREM

- Let \mathcal{A} be a toric arrangement in $(\mathbb{C}^*)^n$. Then:
 - **(1)** $M(\mathcal{A})$ is a duality space of dimension *n* (due to [DS 2013]).
 - ⁽²⁾ $M(\mathcal{A})$ is an abelian duality space of dimension *n*.
 - **3** The characteristic and resonance varieties of $M(\mathcal{A})$ propagate.

ELLIPTIC ARRANGEMENTS

- An *elliptic arrangement* is a finite collection \mathcal{A} of subvarieties in a product of elliptic curves E^n , each subvariety being a fiber of a group homomorphism $E^n \to E$.
- If \mathcal{A} is essential, the complement $M(\mathcal{A})$ is a Stein manifold.
- M(A) is minimal, but it's not formal, in general.

THEOREM

The complement of an essential, unimodular elliptic arrangement in E^n is both a duality space and an abelian duality space of dimension n.

Our approach recovers and generalizes a result Levin and Varchenko.

THEOREM (LV 2012)

Let \mathcal{A} be an elliptic arrangement in \mathbb{E}^n , and let \Bbbk_ρ be a 'convenient' rank-1 local system on its complement. Then $H^i(\mathcal{M}(\mathcal{A}), \Bbbk_\rho) = 0$ for i < n and $H^n(\mathcal{M}(\mathcal{A}), \Bbbk_\rho) = H^n(\mathcal{M}(\mathcal{A}), \Bbbk)$.

TORIC COMPLEXES

- Let *L* be simplicial complex on *n* vertices.
- The *toric complex T*_{*L*} is the subcomplex of the *n*-torus obtained by deleting the cells corresponding to the missing simplices of *L*.
- By construction, *T_L* is a minimal CW-complex, of dimension dim *L* + 1.
- $\pi_{\Gamma} := \pi_1(T_L)$ is the *right-angled Artin group* associated to the graph $\Gamma = L^{(1)}$.
- $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ .
- $H^*(T_L, \Bbbk) = E/J_L$ is the exterior Stanley–Reisner ring of L.

L is *Cohen–Macaulay* if for each simplex *σ* ∈ *L*, the reduced cohomology of lk(*σ*) is concentrated in degree dim(*L*) − |*σ*| and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A right-angled Artin group π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

Theorem

 T_L is an abelian duality space (of dimension dim(L) + 1) if and only if L is Cohen-Macaulay.

In this case, the resonance varieties of T_L propagate. In general, though, they don't.

ALEX SUCIU

Given a (finite, simplicial) graph Γ , the corresponding Bestvina–Brady group is defined as

 $N_{\Gamma} = \ker(\nu \colon G_{\Gamma} \to \mathbb{Z}),$

where $\nu(\mathbf{v}) = 1$, for each vertex \mathbf{v} of Γ .

PROPOSITION (DAVIS-OKUN 2012)

Suppose Δ_{Γ} is acyclic. Then N_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay.

PROPOSITION

 N_{Γ} is an abelian duality group if and only if Δ_{Γ} is acyclic and Cohen-Macaulay.

REFERENCES

Graham Denham, Alexander I. Suciu, and Sergey Yuzvinsky, *Combinatorial covers and vanishing cohomology*, preprint, 2014.

Graham Denham, Alexander I. Suciu, and Sergey Yuzvinsky, *Abelian duality and propagation of resonance*, preprint, 2014.