TOPOLOGY OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Geometry Seminar University of Pisa May 28, 2014

ALEX SUCIU

TOPOLOGY OF HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite set A of codimension-1 linear subspaces in C^ℓ.
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$.
- The Boolean arrangement B_n
 - \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
 - $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
 - $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.
- The braid arrangement A_n (or, reflection arr. of type A_{n-1})
 - A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
 - $L(A_n)$: lattice of partitions of $[n] = \{1, ..., n\}$.
 - $M(\mathcal{A}_n)$: configuration space of *n* ordered points in \mathbb{C} (a classifying space for the pure braid group on *n* strings).

FIGURE : A planar slice of the braid arrangement A_4

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $\mathcal{A} = \{H_1, \dots, H_n\}$, and choose linear forms $f_i : \mathbb{C}^{\ell} \to \mathbb{C}$ with ker $(f_i) = H_i$.
- Define an injective linear map

$$\iota: \mathbb{C}^{\ell} \to \mathbb{C}^n, \quad z \mapsto (f_1(z), \dots, f_n(z)).$$

• This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M(\mathcal{B}_n)$. Hence,

$$M(\mathcal{A}) = \iota(\mathbb{C}^{\ell}) \cap (\mathbb{C}^*)^n$$
,

a "very affine" subvariety of $(\mathbb{C}^*)^n$, and thus, a Stein manifold.

Therefore, *M*(*A*) has the homotopy type of a connected, finite cell complex of dimension *ℓ*.

ALEX SUCIU

- In fact, M = M(A) admits a minimal cell structure. Consequently, $H_*(M, \mathbb{Z})$ is torsion-free.
- The Betti numbers $b_q(M) := \operatorname{rank} H_q(M, \mathbb{Z})$ are given by

$$\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)},$$

where $\mu: L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined recursively by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.

- The Orlik–Solomon algebra H^{*}(M, Z) is the quotient of the exterior algebra on generators {e_H | H ∈ A} by an ideal determined by the circuits in the matroid of A.
- Thus, the ring $H^*(M, \Bbbk)$ is determined by $L(\mathcal{A})$, for every field \Bbbk .

- To compute the fundamental group of the complement, we may assume *A* is an arrangement of planes in C³.
- Its projectivization, \overline{A} , is an arrangement of lines in \mathbb{CP}^2 .

• $L_1(\mathcal{A}) \longleftrightarrow$ lines of $\overline{\mathcal{A}}$, while $L_2(\mathcal{A}) \longleftrightarrow$ intersection points of $\overline{\mathcal{A}}$.

- Poset structure of $L_{\leq 2}(A) \longleftrightarrow$ incidence structure of \overline{A} .
- A flat X ∈ L₂(A) has multiplicity q if the point X has exactly q lines from A passing through it.

MULTINETS

DEFINITION (FALK AND YUZVINSKY 2007)

A multinet on a hyperplane arrangement \mathcal{A} consists of

- (1) a partition of A into $k \ge 3$ subsets A_1, \ldots, A_k ;
- 2) an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N};$
- ③ a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, called the base locus,

such that

- (1) there is $d \in \mathbb{N}$ such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$;
- ② if *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$;
- **③** for each *X* ∈ *X*, the sum $n_X = \sum_{H ∈ A_\alpha: H \supset X} m_H$ is independent of *α*;
- (each space $(\bigcup_{H \in \mathcal{A}_{x}} H) \setminus \mathcal{X}$ is connected.
 - A multinet as above is also called a (k, d)-multinet, or a k-multinet.
 - If $m_H = 1$, for all $H \in A$, the multinet is *reduced*.

- If, furthermore, $n_X = 1$, for all $X \in \mathcal{X}$, this is a *net*. In this case, $|\mathcal{A}_{\alpha}| = |\mathcal{A}| / k = d$, for all α . Moreover, $\bar{\mathcal{X}}$ has size d^2 , and is encoded by a (k 2)-tuple of orthogonal Latin squares.
- If *A* has no flats of multiplicity *kr*, for some *r* > 1, then every reduced *k*-multinet is a *k*-net.

A (3, 2)-net on the A₃ arrangement A (3, 4)-multinet on the B₃ arrangement $\bar{\mathcal{X}}$ consists of 4 triple points ($n_X = 1$) $\bar{\mathcal{X}}$ consists of 4 triple points ($n_X = 1$) and 3 triple points ($n_X = 2$)

A (3, 3)-net on the Ceva matroid. A (4, 3)-net on the Hessian matroid.

- (Yuzvinsky 2004 & 2009, Pereira–Yuzvinsky 2008): If A supports a k-multinet with |X| > 1, then k = 3 or 4; moreover, if the multinet is not reduced, then k = 3.
- Conjecture (Yuz): The only 4-multinet is the Hessian (4, 3)-net.
- (Cordovil–Forge 2003, Torielli–Yoshinaga 2014): Conjecture is true if *A* is defined by real equations.

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let k be an algebraically closed field, and let Hom(π, k*) be the affine algebraic group of k-valued, multiplicative characters on π.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^*) \mid \dim_{\Bbbk} H_{\boldsymbol{q}}(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

Here, \Bbbk_{ρ} is the local system defined by ρ , i.e, \Bbbk viewed as a $\Bbbk\pi$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \Bbbk_{\rho}) = H_i(C_*(\widetilde{X}, \Bbbk) \otimes_{\Bbbk\pi} \Bbbk_{\rho})$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_s^1(X, \Bbbk)$ depend only on π/π'' .

EXAMPLE (CIRCLE)

We have $\widetilde{S^1} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{k}\mathbb{Z} = \mathbb{k}[t^{\pm 1}]$. Then:

$$C_*(\widetilde{S^1}, \Bbbk): 0 \longrightarrow \Bbbk[t^{\pm 1}] \xrightarrow{t-1} \Bbbk[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \operatorname{Hom}(\mathbb{Z}, \Bbbk^*) = \Bbbk^*$, we get

$$\mathcal{C}_*(\widetilde{S^1}, \Bbbk) \otimes_{\Bbbk \mathbb{Z}} \Bbbk_{
ho} : \mathbf{0} \longrightarrow \Bbbk \xrightarrow{
ho_{-1}} \Bbbk \longrightarrow \mathbf{0}$$
,

which is exact, except for $\rho = 1$, when $H_0(S^1, \Bbbk) = H_1(S^1, \Bbbk) = \Bbbk$. Hence: $\mathcal{V}_1^0(S^1, \Bbbk) = \mathcal{V}_1^1(S^1, \Bbbk) = \{1\}$ and $\mathcal{V}_s^i(S^1, \Bbbk) = \emptyset$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\widehat{F_n} = (\mathbb{k}^*)^n$. Then: $\mathcal{V}_s^1(\mathbb{C}\setminus\{n \text{ points}\},\mathbb{k}) = \begin{cases} (\mathbb{k}^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

- Let $A = H^*(X, \mathbb{k})$. If char $\mathbb{k} = 2$, assume that $H_1(X, \mathbb{Z})$ has no 2-torsion. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- Thus, we get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{} \cdots$$
,

known as the Aomoto complex of A.

• The *resonance varieties* of *X* are the jump loci for the Aomoto-Betti numbers

$$\mathcal{R}^q_s(X, \Bbbk) = \{ a \in A^1 \mid \dim_{\Bbbk} H^q(A, \cdot a) \ge s \},$$

• These loci are *homogeneous* subvarieties of $A^1 = H^1(X, \Bbbk)$.

EXAMPLE

•
$$\mathcal{R}_1^1(T^n, \Bbbk) = \{0\}$$
, for all $n > 0$.

• $\mathcal{R}_1^1(\mathbb{C}\setminus\{n \text{ points}\}, \mathbb{k}) = \mathbb{k}^n$, for all n > 1.

•
$$\mathcal{R}^1_1(\Sigma_g, \Bbbk) = \Bbbk^{2g}$$
, for all $g > 1$.

JUMP LOCI OF ARRANGEMENTS

- Let A = {H₁,..., H_n} be an arrangement in C³, and identify H¹(M(A), k) = kⁿ, with basis dual to the meridians.
- The resonance varieties $\mathcal{R}_{s}^{1}(\mathcal{A}, \Bbbk) := \mathcal{R}_{s}^{1}(\mathcal{M}(\mathcal{A}), \Bbbk) \subset \Bbbk^{n}$ lie in the hyperplane $\{x \in \Bbbk^{n} \mid x_{1} + \dots + x_{n} = 0\}.$
- $\mathcal{R}(\mathcal{A}) = \mathcal{R}_1^1(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in \mathbb{C}^n .
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}^1_s(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least s + 1.

Each flat X ∈ L₂(A) of multiplicity k ≥ 3 gives rise to a *local* component of R(A), of dimension k − 1.

• More generally, every *k*-multinet of a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension k - 1, and all components of $\mathcal{R}(\mathcal{A})$ arise in this way.

 The resonance varieties R¹(A, k) can be more complicated, e.g., they may have non-linear components.

EXAMPLE (BRAID ARRANGEMENT A_4)

 $\mathcal{R}^1(\mathcal{A}, \mathbb{C}) \subset \mathbb{C}^6$ has 4 local components (from triple points), and one non-local component, from the (3, 2)-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$

- Let $\operatorname{Hom}(\pi_1(M), \mathbb{k}^*) = (\mathbb{k}^*)^n$ be the character torus.
- The characteristic variety V¹(A, k) := V¹₁(M(A), k) ⊂ (k*)ⁿ lies in the substorus {t ∈ (k*)ⁿ | t₁ ··· t_n = 1}.
- 𝒱¹(𝔄, ℂ) is a finite union of torsion-translates of algebraic subtori of (ℂ*)ⁿ.
- If a linear subspace L ⊂ Cⁿ is a component of R¹(A, C), then the algebraic torus T = exp(L) is a component of V¹(A, C).
- All components of V¹(A, C) passing through the origin 1 ∈ (C*)ⁿ arise in this way (and thus, are combinatorially determined).

ALEX SUCIU

- In general, though, there are translated subtori in $\mathcal{V}^1(\mathcal{A}, \Bbbk)$.
- When this happens, the characteristic varieties V¹(A, k) may depend (qualitatively) on char(k).

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let

$$Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H},$$

a homogeneous polynomial of degree $N = \sum_{H \in A} m_H$.

- The map $Q_m \colon \mathbb{C}^\ell \to \mathbb{C}$ restricts to a map $Q_m \colon M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- $F_m(A)$ has the homotopy type of a finite cell complex, with gcd(m) connected components, and of dimension $\ell 1$.
- The (geometric) monodromy is the diffeomorphism

 $h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$

• If all $m_H = 1$, the polynomial $Q = Q_m(A)$ is the usual defining polynomial, and $F(A) = F_m(A)$ is the usual Milnor fiber of A.

EXAMPLE

- Let $\mathcal A$ be the single hyperplane $\{0\}$ inside $\mathbb C.$ Then:
 - $M(\mathcal{A}) = \mathbb{C}^*$.
 - $Q_m(\mathcal{A}) = z^m$.
 - $F_m(A) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

• Let $\mathcal{A} = \{H_1, \dots, H_n\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$

The homology of the Milnor Fiber

Two basic questions about the topology of the Milnor fibration:

(Q1) Are the homology groups $H_q(F(\mathcal{A}), \Bbbk)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial

 $\Delta_q(t) = \det(t \cdot \mathrm{id} - h_*),$

of the algebraic monodromy, $h_* \colon H_q(F(\mathcal{A}), \Bbbk) \to H_q(F(\mathcal{A}), \Bbbk)$, also determined by $L(\mathcal{A})$?

(Q2) Are the homology groups $H_q(F(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F(\mathcal{A})$ admit a minimal cell structure?

- Let (A, m) be a multi-arrangement with $gcd\{m_H \mid H \in A\} = 1$. Set $N = \sum_{H \in A} m_H$.
- The Milnor fiber *F_m*(*A*) is a regular ℤ_N-cover of *U*(*A*) = ℙ(*M*(*A*)) defined by the homomorphism

 $\delta_m \colon \pi_1(U(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, \quad x_H \mapsto m_H \bmod N$

• Let $\widehat{\delta_m}$: Hom $(\mathbb{Z}_N, \mathbb{k}^*) \to$ Hom $(\pi_1(U(\mathcal{A})), \mathbb{k}^*)$. If char $(\mathbb{k}) \nmid N$, then dim $_{\mathbb{k}} H_q(F_m(\mathcal{A}), \mathbb{k}) = \sum_{s \ge 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}(\widehat{\delta_m}) \right|.$

This gives a formula for Δ_q(t) in terms of the characteristic varieties of U(A).

The characteristic polynomial of *h*_∗ acting on *H*₁(*F*(*A*), ℂ) can be written as

$$\Delta(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

EXAMPLE

Let \mathcal{A} be the braid arrangement. $\mathcal{V}_1(\mathcal{A})$ has a single essential component, $T = \{t \in (\mathbb{C}^*)^6 \mid t_1 t_2 t_3 = t_1 t_6^{-1} = t_2 t_5^{-1} = t_3 t_4^{-1} = 1\}$. Clearly, $\delta^2 \in T$, yet $\delta \notin T$; hence,

$$\Delta(t) = (t-1)^5(t^2+t+1).$$

- Thus, for q = 1 and k = C, question (Q1) is equivalent to: are the integers e_d(A) determined by L_{≤2}(A)?
- A partial (positive) answer is given in joint work with Stefan Papadima (2014).

ALEX SUCIU

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_1(F_m(\mathcal{A}), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

ALEX SUCIU

We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM-S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}(\mathcal{A}', \Bbbk)$ varies with char(\Bbbk).

To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' || m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$

COROLLARY (DS)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

 $Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2)(x^2 - 3w_1^2)(x^2 - 3w_1^2)(x - 4w_1) + y(x^2 - 3w_1^2)(x^2 - 3w_1^2)(x - 4w_1) + y(x^2 - 3w_1^2)(x - 3w_1^2)($

 $((x-y)^2-w_2^2)((x+y)^2-w_3^2)((x-z)^2-w_4^2)((x-z)^2-2w_4^2)\cdot((x+z)^2-w_5^2)((x+z)^2-2w_5^2).$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

ALEX SUCIU

The boundary manifold

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{d+1} ($d \ge 1$).
- Let P(A) = {P(H)}_{H∈A}, and let v(W) be a regular neighborhood of the algebraic hypersurface W = U_{H∈A} P(H) inside CP^d.
- Let $\overline{U} = \mathbb{CP}^d \setminus \operatorname{int}(\nu(W))$ be the *exterior* of $\mathbb{P}(\mathcal{A})$.
- The boundary manifold of \mathcal{A} is $\partial \overline{U} = \partial v(W)$: a compact, orientable, smooth manifold of dimension 2d 1.

EXAMPLE

Let \mathcal{A} be a pencil of *n* hyperplanes in \mathbb{C}^{d+1} , defined by $Q = z_1^n - z_2^n$. If n = 1, then $\partial \overline{U} = S^{2d-1}$. If n > 1, then $\partial \overline{U} = \sharp^{n-1}S^1 \times S^{2(d-1)}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^3 , defined by $Q = z_1(z_2^{n-1} - z_3^{n-1})$. Then $\partial \overline{U} = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$. By Lefschetz duality: H_q(∂U, Z) ≅ H_q(U, Z) ⊕ H_{2d-q-1}(U, Z)
Let A = H*(U, Z); then Ă = Hom_Z(A, Z) is an A-bimodule, with (a ⋅ f)(b) = f(ba) and (f ⋅ a)(b) = f(ab).

THEOREM (COHEN-S. 2006)

The ring $\widehat{A} = H^*(\partial \overline{U}, \mathbb{Z})$ is the "double" of A, that is: $\widehat{A} = A \oplus \check{A}$, with multiplication given by $(a, f) \cdot (b, g) = (ab, ag + fb)$, and grading $\widehat{A}^q = A^q \oplus \check{A}^{2d-q-1}$.

Now assume *d* = 2. Then ∂*U* is a graph-manifold of dimension 3, modeled on a graph Γ based on the poset *L*_{≤2}(*A*).

THEOREM (COHEN-S. 2008)

The manifold $\partial \overline{U}$ admits a minimal cell structure. Moreover,

$$\mathcal{V}_1^1(\partial \overline{U}) = \bigcup_{v \in V(\Gamma) : d_v \ge 3} \{t_v - 1 = 0\},\$$

where d_v denotes the degree of the vertex v, and $t_v = \prod_{i \in v} t_i$.

ALEX SUCIU

TOPOLOGY OF HYPERPLANE ARRANGEMENTS

PISA, MAY 28, 2014 30 / 35

The boundary of the Milnor Fiber

- Let (\mathcal{A}, m) be a multi-arrangement in \mathbb{C}^{d+1} .
- Define $\overline{F}_m(\mathcal{A}) = F_m(\mathcal{A}) \cap D^{2(d+1)}$ to be the *closed Milnor fiber* of (\mathcal{A}, m) . Clearly, $F_m(\mathcal{A})$ deform-retracts onto $\overline{F}_m(\mathcal{A})$.
- The boundary of the Milnor fiber of (\mathcal{A}, m) is the compact, smooth, orientable, (2d-1)-manifold $\partial \overline{F}_m(\mathcal{A}) = F_m(\mathcal{A}) \cap S^{2d+1}$.
- The pair $(\overline{F}_m, \partial \overline{F}_m)$ is (d-1)-connected. In particular, if $d \ge 2$, then $\partial \overline{F}_m$ is connected, and $\pi_1(\partial \overline{F}_m) \to \pi_1(\overline{F}_m)$ is surjective.

FIGURE : Closed Milnor fiber for Q(A) = xy

TOPOLOGY OF HYPERPLANE ARRANGEMENTS

EXAMPLE

- Let \mathcal{B}_n be the Boolean arrangement in \mathbb{C}^n . Recall $F = (\mathbb{C}^*)^{n-1}$. Hence, $\overline{F} = T^{n-1} \times D^{n-1}$, and so $\partial \overline{F} = T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of *n* planes in \mathbb{C}^3 . Then $\partial \overline{F} = S^1 \times \Sigma_{n-2}$.

The Hopf fibration $\pi: \mathbb{C}^{d+1} \setminus \{0\} \to \mathbb{CP}^d$ restricts to regular, cyclic *n*-fold covers, $\pi: \overline{F} \to \overline{U}$ and $\pi: \partial \overline{F} \to \partial \overline{U}$, which fit into the ladder

Assume now that d = 2. The group $\pi_1(\partial \overline{U})$ has generators x_1, \ldots, x_{n-1} corresponding to the meridians around the first n-1 lines in $\mathbb{P}(\mathcal{A})$, and generators y_1, \ldots, y_s corresponding to the cycles in the associated graph Γ .

PROPOSITION (S. 2014)

The \mathbb{Z}_n -cover $\pi: \partial \overline{F} \to \partial \overline{U}$ is classified by the homomorphism $\pi_1(\partial \overline{U}) \twoheadrightarrow \mathbb{Z}_n$ given by $x_i \mapsto 1$ and $y_i \mapsto 0$.

EXAMPLE

Let \mathcal{A} be a pencil of n + 1 planes in \mathbb{C}^3 . Since $\partial \overline{U} = \sharp^n S^1 \times S^2$, and $\partial \overline{F} \to \partial \overline{U}$ is a cover with n + 1 sheets, we see that $\partial \overline{F} = \sharp^{n^2} S^1 \times S^2$.

THEOREM (NÉMETHI-SZILARD 2012)

Let \mathcal{A} be an arrangement of n planes in \mathbb{C}^3 . The characteristic polynomial of the algebraic monodromy acting on $H_1(\partial \overline{F}, \mathbb{C})$ is given by

$$\Delta(t) = \prod_{X \in L_2(\mathcal{A})} (t-1) (t^{\gcd(\mu(X)+1,n)} - 1)^{\mu(X)-1}.$$

- This shows that b₁(∂F) is a much less subtle invariant than b₁(F): it depends only on the number and type of multiple points of P(A), but not on their relative position.
- On the other hand, the torsion in $H_1(\partial \overline{F}, \mathbb{Z})$ is still not understood.
- For a generic arrangement of *n* planes in \mathbb{C}^3 , I expect that $H_1(\partial \overline{F}, \mathbb{Z}) = \mathbb{Z}^{n(n-1)/2} \oplus \mathbb{Z}_n^{(n-2)(n-3)/2}$.
- In general, it would be interesting to see whether all the torsion in $H_1(\partial \overline{F}(A), \mathbb{Z})$ consists of \mathbb{Z}_n -summands, where n = |A|.

REFERENCES

- G. Denham, A. Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, Proc. London Math. Soc. **108** (2014), no. 6, 1435–1470.
- S. Papadima, A. Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, arxiv:1401.0868.
- A. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417–481, arxiv:1301.4851.