TOPOLOGY OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Geometry Seminar
University of Pisa
May 28, 2014

Hyperplane arrangements

- An arrangement of hyperplanes is a finite set \mathcal{A} of codimension-1 linear subspaces in \mathbb{C}^{ℓ}.
- Intersection lattice $L(\mathcal{A})$: poset of all intersections of \mathcal{A}, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \backslash \bigcup_{H \in \mathcal{A}} H$.
- The Boolean arrangement \mathcal{B}_{n}
- \mathcal{B}_{n} : all coordinate hyperplanes $z_{i}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{B}_{n}\right)$: Boolean lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$: complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$.
- The braid arrangement \mathcal{A}_{n} (or, reflection arr. of type A_{n-1})
- \mathcal{A}_{n} : all diagonal hyperplanes $z_{i}-z_{j}=0$ in \mathbb{C}^{n}.
- $L\left(\mathcal{A}_{n}\right)$: lattice of partitions of $[n]=\{1, \ldots, n\}$.
- $M\left(\mathcal{A}_{n}\right)$: configuration space of n ordered points in \mathbb{C} (a classifying space for the pure braid group on n strings).

Figure : A planar slice of the braid arrangement \mathcal{A}_{4}

- We may assume that \mathcal{A} is essential, i.e., $\bigcap_{H \in \mathcal{A}} H=\{0\}$.
- Fix an ordering $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$, and choose linear forms $f_{i}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ with $\operatorname{ker}\left(f_{i}\right)=H_{i}$.
- Define an injective linear map

$$
\iota: \mathbb{C}^{\ell} \rightarrow \mathbb{C}^{n}, \quad z \mapsto\left(f_{1}(z), \ldots, f_{n}(z)\right)
$$

- This map restricts to an inclusion $\iota: M(\mathcal{A}) \hookrightarrow M\left(\mathcal{B}_{n}\right)$. Hence,

$$
M(\mathcal{A})=\iota\left(\mathbb{C}^{\ell}\right) \cap\left(\mathbb{C}^{*}\right)^{n}
$$

a "very affine" subvariety of $\left(\mathbb{C}^{*}\right)^{n}$, and thus, a Stein manifold.

- Therefore, $M(\mathcal{A})$ has the homotopy type of a connected, finite cell complex of dimension ℓ.
- In fact, $M=M(\mathcal{A})$ admits a minimal cell structure. Consequently, $H_{*}(M, \mathbb{Z})$ is torsion-free.
- The Betti numbers $b_{q}(M):=\operatorname{rank} H_{q}(M, \mathbb{Z})$ are given by

$$
\sum_{q=0}^{\ell} b_{q}(M) t^{q}=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}
$$

where $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is the Möbius function, defined recursively by $\mu\left(\mathbb{C}^{\ell}\right)=1$ and $\mu(X)=-\sum_{Y \ni X} \mu(Y)$.

- The Orlik-Solomon algebra $H^{*}(M, \mathbb{Z})$ is the quotient of the exterior algebra on generators $\left\{e_{H} \mid H \in \mathcal{A}\right\}$ by an ideal determined by the circuits in the matroid of \mathcal{A}.
- Thus, the ring $H^{*}(M, \mathbb{k})$ is determined by $L(\mathcal{A})$, for every field \mathbb{k}.
- To compute the fundamental group of the complement, we may assume \mathcal{A} is an arrangement of planes in \mathbb{C}^{3}.
- Its projectivization, $\overline{\mathcal{A}}$, is an arrangement of lines in $\mathbb{C P}^{2}$.
- $L_{1}(\mathcal{A}) \longleftrightarrow$ lines of $\overline{\mathcal{A}}$, while $L_{2}(\mathcal{A}) \longleftrightarrow$ intersection points of $\overline{\mathcal{A}}$.
- Poset structure of $L_{\leqslant 2}(\mathcal{A}) \longleftrightarrow$ incidence structure of $\overline{\mathcal{A}}$.
- A flat $X \in L_{2}(\mathcal{A})$ has multiplicity q if the point \bar{X} has exactly q lines from $\overline{\mathcal{A}}$ passing through it.

Multinets

Definition (Falk and Yuzvinsky 2007)
A multinet on a hyperplane arrangement \mathcal{A} consists of
(1) a partition of \mathcal{A} into $k \geqslant 3$ subsets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$;
(2) an assignment of multiplicities, $m: \mathcal{A} \rightarrow \mathbb{N}$;
(3) a subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, called the base locus,

such that

(1) there is $d \in \mathbb{N}$ such that $\sum_{H \in \mathcal{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$;
(2) if H and H^{\prime} are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$;
(3) for each $X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{\alpha}}: H \supset X$ 利 is independent of α;
(4) each space $\left(\cup_{H \in \mathcal{A}_{\alpha}} H\right) \backslash \mathcal{X}$ is connected.

- A multinet as above is also called a (k, d)-multinet, or a k-multinet.
- If $m_{H}=1$, for all $H \in \mathcal{A}$, the multinet is reduced.
- If, furthermore, $n_{X}=1$, for all $X \in \mathcal{X}$, this is a net. In this case, $\left|\mathcal{A}_{\alpha}\right|=|\mathcal{A}| / k=d$, for all α. Moreover, $\overline{\mathcal{X}}$ has size d^{2}, and is encoded by a $(k-2)$-tuple of orthogonal Latin squares.
- If \mathcal{A} has no flats of multiplicity $k r$, for some $r>1$, then every reduced k-multinet is a k-net.

$\mathrm{A}(3,2)$-net on the A_{3} arrangement $\mathrm{A}(3,4)$-multinet on the B_{3} arrangement $\overline{\mathcal{X}}$ consists of 4 triple points $\left(n_{X}=1\right) \quad \overline{\mathcal{X}}$ consists of 4 triple points $\left(n_{X}=1\right)$ and 3 triple points ($n_{X}=2$)

A $(3,3)$-net on the Ceva matroid. A $(4,3)$-net on the Hessian matroid.

- (Yuzvinsky 2004 \& 2009, Pereira-Yuzvinsky 2008): If \mathcal{A} supports a k-multinet with $|\mathcal{X}|>1$, then $k=3$ or 4 ; moreover, if the multinet is not reduced, then $k=3$.
- Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.
- (Cordovil-Forge 2003, Torielli-Yoshinaga 2014): Conjecture is true if \mathcal{A} is defined by real equations.

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite cell complex, and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
- Let \mathbb{k} be an algebraically closed field, and let $\operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right)$ be the affine algebraic group of \mathbb{k}-valued, multiplicative characters on π.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X :

$$
\mathcal{V}_{s}^{q}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right) \mid \operatorname{dim}_{\mathbb{k}} H_{q}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

Here, \mathbb{k}_{ρ} is the local system defined by ρ, i.e, \mathbb{k} viewed as a $\mathbb{k} \pi$-module, via $g \cdot x=\rho(g) x$, and $H_{i}\left(X, \mathbb{k}_{\rho}\right)=H_{i}\left(C_{*}(\tilde{X}, \mathbb{k}) \otimes_{\mathbb{k} \pi} \mathbb{k}_{\rho}\right)$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_{s}^{1}(X, \mathbb{k})$ depend only on $\pi / \pi^{\prime \prime}$.

Example (Circle)

We have $\widetilde{S^{1}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{k} \mathbb{Z}=\mathbb{k}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{k}\right): 0 \longrightarrow \mathbb{k}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{k}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{k}^{*}\right)=\mathbb{k}^{*}$, we get

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{k}\right) \otimes_{\mathbb{k} \mathbb{Z}} \mathbb{k}_{\rho}: 0 \longrightarrow \mathbb{k} \xrightarrow{\rho-1} \mathbb{k} \longrightarrow 0,
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{k}\right)=H_{1}\left(S^{1}, \mathbb{k}\right)=\mathbb{k}$. Hence: $\mathcal{V}_{1}^{0}\left(S^{1}, \mathbb{k}\right)=\mathcal{V}_{1}^{1}\left(S^{1}, \mathbb{k}\right)=\{1\}$ and $\mathcal{V}_{s}^{i}\left(S^{1}, \mathbb{k}\right)=\varnothing$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify $\pi_{1}(\mathbb{C} \backslash\{n$ points $\})=F_{n}$, and $\widehat{F_{n}}=\left(\mathbb{k}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{1}(\mathbb{C} \backslash\{n \text { points }\}, \mathbb{k})= \begin{cases}\left(\mathbb{k}^{*}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n, \\ \varnothing & \text { if } s>n\end{cases}
$$

- Let $A=H^{*}(X, \mathbb{k})$. If char $\mathbb{k}=2$, assume that $H_{1}(X, \mathbb{Z})$ has no 2-torsion. Then: $a \in A^{1} \Rightarrow a^{2}=0$.
- Thus, we get a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} .
$$

\qquad
known as the Aomoto complex of A.

- The resonance varieties of X are the jump loci for the Aomoto-Betti numbers

$$
\mathcal{R}_{s}^{q}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{q}(A, \cdot a) \geqslant s\right\},
$$

- These loci are homogeneous subvarieties of $A^{1}=H^{1}(X, \mathbb{k})$.

EXAMPLE

- $\mathcal{R}_{1}^{1}\left(T^{n}, \mathbb{k}\right)=\{0\}$, for all $n>0$.
- $\mathcal{R}_{1}^{1}(\mathbb{C} \backslash\{n$ points $\}, \mathbb{k})=\mathbb{k}^{n}$, for all $n>1$.
- $\mathcal{R}_{1}^{1}\left(\Sigma_{g}, \mathbb{k}\right)=\mathbb{k}^{2 g}$, for all $g>1$.

JUMP LOCI OF ARRANGEMENTS

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an arrangement in \mathbb{C}^{3}, and identify $H^{1}(M(\mathcal{A}), \mathbb{k})=\mathbb{k}^{n}$, with basis dual to the meridians.
- The resonance varieties $\mathcal{R}_{s}^{1}(\mathcal{A}, \mathbb{k}):=\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{k}) \subset \mathbb{k}^{n}$ lie in the hyperplane $\left\{x \in \mathbb{k}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$.
- $\mathcal{R}(\mathcal{A})=\mathcal{R}_{1}^{1}(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in \mathbb{C}^{n}.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}^{1}(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least $s+1$.
- Each flat $X \in L_{2}(\mathcal{A})$ of multiplicity $k \geqslant 3$ gives rise to a local component of $\mathcal{R}(\mathcal{A})$, of dimension $k-1$.
- More generally, every k-multinet of a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension $k-1$, and all components of $\mathcal{R}(\mathcal{A})$ arise in this way.
- The resonance varieties $\mathcal{R}^{1}(\mathcal{A}, \mathbb{k})$ can be more complicated, e.g., they may have non-linear components.

Example (Braid arrangement \mathcal{A}_{4})

$\mathcal{R}^{1}(\mathcal{A}, \mathbb{C}) \subset \mathbb{C}^{6}$ has 4 local components (from triple points), and one non-local component, from the $(3,2)$-net:

$$
\begin{aligned}
& L_{124}=\left\{x_{1}+x_{2}+x_{4}=x_{3}=x_{5}=x_{6}=0\right\} \\
& L_{135}=\left\{x_{1}+x_{3}+x_{5}=x_{2}=x_{4}=x_{6}=0\right\} \\
& L_{236}=\left\{x_{2}+x_{3}+x_{6}=x_{1}=x_{4}=x_{5}=0\right\} \\
& L_{456}=\left\{x_{4}+x_{5}+x_{6}=x_{1}=x_{2}=x_{3}=0\right\} \\
& L=\left\{x_{1}+x_{2}+x_{3}=x_{1}-x_{6}=x_{2}-x_{5}=x_{3}-x_{4}=0\right\} .
\end{aligned}
$$

- Let $\operatorname{Hom}\left(\pi_{1}(M), \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$ be the character torus.
- The characteristic variety $\mathcal{V}^{1}(\mathcal{A}, \mathbb{k}):=\mathcal{V}_{1}^{1}(M(\mathcal{A}), \mathbb{k}) \subset\left(\mathbb{k}^{*}\right)^{n}$ lies in the substorus $\left\{t \in\left(\mathbb{k}^{*}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\}$.
- $\mathcal{V}^{1}(\mathcal{A}, \mathbb{C})$ is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{*}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}^{1}(\mathcal{A}, \mathbb{C})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}^{1}(\mathcal{A}, \mathbb{C})$.
- All components of $\mathcal{V}^{1}(\mathcal{A}, \mathbb{C})$ passing through the origin $1 \in\left(\mathbb{C}^{*}\right)^{n}$ arise in this way (and thus, are combinatorially determined).

- In general, though, there are translated subtori in $\mathcal{V}^{1}(\mathcal{A}, \mathbb{k})$.
- When this happens, the characteristic varieties $\mathcal{V}^{1}(\mathcal{A}, \mathbb{k})$ may depend (qualitatively) on char (\mathbb{k}).

The Milnor fibration(s) OF An ARRANGEMENT

- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m=\left(m_{H}\right)_{H \in \mathcal{A}}$ with $m_{H} \in \mathbb{N}$, let

$$
Q_{m}:=Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}}
$$

a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.

- The map $Q_{m}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the multi-arrangement (\mathcal{A}, m),

$$
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}} \mathbb{C}^{*}
$$

- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, and of dimension $\ell-1$.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi \mathrm{i} / N_{z}}
$$

- If all $m_{H}=1$, the polynomial $Q=Q_{m}(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})=F_{m}(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then:

- $M(\mathcal{A})=\mathbb{C}^{*}$.
- $Q_{m}(\mathcal{A})=z^{m}$.
- $F_{m}(\mathcal{A})=m$-roots of 1 .

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3 :

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

- Let \mathcal{B}_{n} be the Boolean arrangement, with $Q_{m}\left(\mathcal{B}_{n}\right)=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and

$$
F_{m}\left(\mathcal{B}_{n}\right)=\operatorname{ker}\left(\mathbb{Q}_{m}\right) \cong\left(\mathbb{C}^{*}\right)^{n-1} \times \mathbb{Z}_{\operatorname{gcd}(m)}
$$

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \rightarrow M\left(\mathcal{B}_{n}\right)$ restricts to a bundle map

$$
\begin{gathered}
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}(\mathcal{A})} \mathbb{C}^{*} \\
\downarrow \\
\mathbb{C}_{m}\left(\mathcal{B}_{n}\right) \longrightarrow M\left(\mathcal{B}_{n}\right) \xrightarrow{Q_{m}\left(\mathcal{B}_{n}\right)} \|^{*}
\end{gathered}
$$

- Thus,

$$
F_{m}(\mathcal{A})=M(\mathcal{A}) \cap F_{m}\left(\mathcal{B}_{n}\right)
$$

The homology of the Milnor fiber

Two basic questions about the topology of the Milnor fibration:
(Q1) Are the homology groups $H_{q}(F(\mathcal{A})$, $\mathbb{k})$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial

$$
\Delta_{q}(t)=\operatorname{det}\left(t \cdot \mathrm{id}-h_{*}\right),
$$

of the algebraic monodromy, $h_{*}: H_{q}(F(\mathcal{A}), \mathbb{k}) \rightarrow H_{q}(F(\mathcal{A}), \mathbb{k})$, also determined by $L(\mathcal{A})$?
(Q2) Are the homology groups $H_{q}(F(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F(\mathcal{A})$ admit a minimal cell structure?

- Let (\mathcal{A}, m) be a multi-arrangement with $\operatorname{gcd}\left\{m_{H} \mid H \in \mathcal{A}\right\}=1$. Set $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The Milnor fiber $F_{m}(\mathcal{A})$ is a regular \mathbb{Z}_{N}-cover of $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$ defined by the homomorphism

$$
\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, \quad x_{H} \mapsto m_{H} \bmod N
$$

- Let $\widehat{\delta_{m}}: \operatorname{Hom}\left(\mathbb{Z}_{N}, \mathbb{k}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U(\mathcal{A})), \mathbb{k}^{*}\right)$. If char $(\mathbb{k}) \nmid N$, then

$$
\operatorname{dim}_{\mathbb{k}} H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}^{q}(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}\left(\widehat{\delta_{m}}\right)\right| .
$$

- This gives a formula for $\Delta_{q}(t)$ in terms of the characteristic varieties of $U(\mathcal{A})$.
- The characteristic polynomial of h_{*} acting on $H_{1}(F(\mathcal{A}), \mathbb{C})$ can be written as

$$
\Delta(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

EXAMPLE

Let \mathcal{A} be the braid arrangement. $\mathcal{V}_{1}(\mathcal{A})$ has a single essential component, $T=\left\{t \in\left(\mathbb{C}^{*}\right)^{6} \mid t_{1} t_{2} t_{3}=t_{1} t_{6}^{-1}=t_{2} t_{5}^{-1}=t_{3} t_{4}^{-1}=1\right\}$. Clearly, $\delta^{2} \in T$, yet $\delta \notin T$; hence,

$$
\Delta(t)=(t-1)^{5}\left(t^{2}+t+1\right)
$$

- Thus, for $q=1$ and $\mathbb{k}=\mathbb{C}$, question (Q1) is equivalent to: are the integers $e_{d}(\mathcal{A})$ determined by $L_{\leqslant 2}(\mathcal{A})$?
- A partial (positive) answer is given in joint work with Stefan Papadima (2014).

Torsion in homology

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^{3} with

$$
Q_{m}(\mathcal{A})=x^{2} y\left(x^{2}-y^{2}\right)^{3}\left(x^{2}-z^{2}\right)^{2}\left(y^{2}-z^{2}\right)
$$

Then $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)=\mathbb{Z}^{7} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM-S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}. There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}\left(\mathcal{A}^{\prime}, \mathbb{k}\right)$ varies with char(k).

To produce p-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

$(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to rank $\mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

COROLLARY (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
Q(\mathcal{A}) & =x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) \\
& \left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

THE BOUNDARY MANIFOLD

- Let \mathcal{A} be a (central) arrangement of hyperplanes in $\mathbb{C}^{d+1}(d \geqslant 1)$.
- Let $\mathbb{P}(\mathcal{A})=\{\mathbb{P}(H)\}_{H \in \mathcal{A}}$, and let $v(W)$ be a regular neighborhood of the algebraic hypersurface $W=\bigcup_{H \in \mathcal{A}} \mathbb{P}(H)$ inside $\mathbb{C P}{ }^{d}$.
- Let $\bar{U}=\mathbb{C P}^{d} \backslash \operatorname{int}(v(W))$ be the exterior of $\mathbb{P}(\mathcal{A})$.
- The boundary manifold of \mathcal{A} is $\partial \bar{U}=\partial v(W)$: a compact, orientable, smooth manifold of dimension $2 d-1$.

EXAMPLE

Let \mathcal{A} be a pencil of n hyperplanes in \mathbb{C}^{d+1}, defined by $Q=z_{1}^{n}-z_{2}^{n}$. If $n=1$, then $\partial \bar{U}=S^{2 d-1}$. If $n>1$, then $\partial \bar{U}=\sharp^{n-1} S^{1} \times S^{2(d-1)}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^{3}, defined by
$Q=z_{1}\left(z_{2}^{n-1}-z_{3}^{n-1}\right)$. Then $\partial \bar{U}=S^{1} \times \Sigma_{n-2}$, where $\Sigma_{g}=\sharp^{9} S^{1} \times S^{1}$.

- By Lefschetz duality: $H_{q}(\partial \bar{U}, \mathbb{Z}) \cong H_{q}(U, \mathbb{Z}) \oplus H_{2 d-q-1}(U, \mathbb{Z})$
- Let $A=H^{*}(U, \mathbb{Z})$; then $\check{A}=\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Z})$ is an A-bimodule, with $(a \cdot f)(b)=f(b a)$ and $(f \cdot a)(b)=f(a b)$.

THEOREM (COHEN-S. 2006)

The ring $\hat{A}=H^{*}(\partial \bar{U}, \mathbb{Z})$ is the "double" of A, that is: $\hat{A}=A \oplus \check{A}$, with multiplication given by $(a, f) \cdot(b, g)=(a b, a g+f b)$, and grading $\hat{A}^{q}=A^{q} \oplus \check{A}^{2 d-q-1}$.

- Now assume $d=2$. Then $\partial \bar{U}$ is a graph-manifold of dimension 3, modeled on a graph Γ based on the poset $L_{\leqslant 2}(\mathcal{A})$.

THEOREM (COHEN-S. 2008)

The manifold $\partial \bar{U}$ admits a minimal cell structure. Moreover,

$$
\mathcal{V}_{1}^{1}(\partial \bar{U})=\bigcup_{v \in \mathrm{~V}(\Gamma): d_{v} \geqslant 3}\left\{t_{v}-1=0\right\}
$$

where d_{v} denotes the degree of the vertex v, and $t_{v}=\prod_{i \in v} t_{i}$.

The boundary of the Milnor fiber

- Let (\mathcal{A}, m) be a multi-arrangement in \mathbb{C}^{d+1}.
- Define $\bar{F}_{m}(\mathcal{A})=F_{m}(\mathcal{A}) \cap D^{2(d+1)}$ to be the closed Milnor fiber of (\mathcal{A}, m). Clearly, $F_{m}(\mathcal{A})$ deform-retracts onto $\bar{F}_{m}(\mathcal{A})$.
- The boundary of the Milnor fiber of (\mathcal{A}, m) is the compact, smooth, orientable, $(2 d-1)$-manifold $\partial \bar{F}_{m}(\mathcal{A})=F_{m}(\mathcal{A}) \cap S^{2 d+1}$.
- The pair $\left(\bar{F}_{m}, \partial \bar{F}_{m}\right)$ is $(d-1)$-connected. In particular, if $d \geqslant 2$, then $\partial \bar{F}_{m}$ is connected, and $\pi_{1}\left(\partial \bar{F}_{m}\right) \rightarrow \pi_{1}\left(\bar{F}_{m}\right)$ is surjective.

Figure : Closed Milnor fiber for $Q(\mathcal{A})=x y$

ExAMPLE

- Let \mathcal{B}_{n} be the Boolean arrangement in \mathbb{C}^{n}. Recall $F=\left(\mathbb{C}^{*}\right)^{n-1}$. Hence, $\bar{F}=T^{n-1} \times D^{n-1}$, and so $\partial \bar{F}=T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^{3}. Then $\partial \bar{F}=S^{1} \times \Sigma_{n-2}$.

The Hopf fibration $\pi: \mathbb{C}^{d+1} \backslash\{0\} \rightarrow \mathbb{C} \mathbb{P}^{d}$ restricts to regular, cyclic n-fold covers, $\pi: \bar{F} \rightarrow \bar{U}$ and $\pi: \partial \bar{F} \rightarrow \partial \bar{U}$, which fit into the ladder

Assume now that $d=2$. The group $\pi_{1}(\partial \bar{U})$ has generators x_{1}, \ldots, x_{n-1} corresponding to the meridians around the first $n-1$ lines in $\mathbb{P}(\mathcal{A})$, and generators y_{1}, \ldots, y_{s} corresponding to the cycles in the associated graph Γ.

PROPOSITION (S. 2014)

The \mathbb{Z}_{n}-cover $\pi: \partial \bar{F} \rightarrow \partial \bar{U}$ is classified by the homomorphism $\pi_{1}(\partial \bar{U}) \rightarrow \mathbb{Z}_{n}$ given by $x_{i} \mapsto 1$ and $y_{i} \mapsto 0$.

EXAMPLE

Let \mathcal{A} be a pencil of $n+1$ planes in \mathbb{C}^{3}. Since $\partial \bar{U}=\sharp^{n} S^{1} \times S^{2}$, and $\partial \bar{F} \rightarrow \partial \bar{U}$ is a cover with $n+1$ sheets, we see that $\partial \bar{F}=\sharp^{n^{2}} S^{1} \times S^{2}$.

THEOREM (NÉMETHI-SZILARD 2012)

Let \mathcal{A} be an arrangement of n planes in \mathbb{C}^{3}. The characteristic polynomial of the algebraic monodromy acting on $H_{1}(\partial \bar{F}, \mathbb{C})$ is given by

$$
\Delta(t)=\prod_{X \in L_{2}(\mathcal{A})}(t-1)\left(t^{\operatorname{gcd}(\mu(X)+1, n)}-1\right)^{\mu(X)-1}
$$

- This shows that $b_{1}(\partial \bar{F})$ is a much less subtle invariant than $b_{1}(F)$: it depends only on the number and type of multiple points of $\mathbb{P}(\mathcal{A})$, but not on their relative position.
- On the other hand, the torsion in $H_{1}(\partial \bar{F}, \mathbb{Z})$ is still not understood.
- For a generic arrangement of n planes in \mathbb{C}^{3}, I expect that $H_{1}(\partial \bar{F}, \mathbb{Z})=\mathbb{Z}^{n(n-1) / 2} \oplus \mathbb{Z}_{n}^{(n-2)(n-3) / 2}$.
- In general, it would be interesting to see whether all the torsion in $H_{1}(\partial \bar{F}(\mathcal{A}), \mathbb{Z})$ consists of \mathbb{Z}_{n}-summands, where $n=|\mathcal{A}|$.

REFERENCES

國 G. Denham, A. Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. 108 (2014), no. 6, 1435-1470.

圁 S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.

R A. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417-481, arxiv:1301.4851.

